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Norbert Hegyvári (Eötvös University) 3 / 24



History
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An unpublished result of Erdős and Sárközy from the middle of 60’s
states : if the upper bound of an A ⊆ N

d(A) := lim sup
n→∞

A(n)

n

(A(n) is the counting function of A) is positive then A− A contains an
arbitrarily long arithmetic progression.
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On the iterated difference set D(D(A))

Theorem (Bogolyubov)

Let A ⊆ N with d(A) > 0. Then there is a Bohr set set

B(S , ε) = {m ∈ Z : max
s∈S

‖sm‖ < ε}

(‖x‖ = minn∈Z |x − n|, the absolute fractional part) for which

D(D(A)) = A− A+ A− A ⊇ B(S , ε).
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History

(It was an important tool at the proof of Freiman-Ruzsa theorem)
On the other hand

Theorem ( Kř́ıž)

There is a set A with positive upper density whose difference set contains
no Bohr set

Question

What about the structure of D(A) ?
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integers for which A− A ⊇ B + B + · · ·+ B, (k times)

Corollary

Erdős and Sárközy’s result on a.p.

Remark

Bergelson’s theorem has a stronger form. It will be revisited at the second
proof
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Norbert Hegyvári (Eötvös University) 7 / 24



A combinatorial proof I

Proof (Sketch) :
Let

Ai := {a ∈ A : a ≡ i(modk)}; 0 ≤ i ≤ k − 1.

Clearly for some i , d(Ai ) = ρ > 0.

Let A′ = Ai − i ⊆ L := {u : u ≡ 0(modk)}.

Since A′ − A′ = (Ai − i)− (Ai − i) = Ai − Ai ⊆ A− A,
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A combinatorial proof I

Proof (Sketch) :
Let

Ai := {a ∈ A : a ≡ i(modk)}; 0 ≤ i ≤ k − 1.

Clearly for some i , d(Ai ) = ρ > 0.

Let A′ = Ai − i ⊆ L := {u : u ≡ 0(modk)}.

Since A′ − A′ = (Ai − i)− (Ai − i) = Ai − Ai ⊆ A− A,

we are looking for the k-fold sum in A′ − A′.
An easy lemma says :

Lemma

If d(Ai) = ρ > 0, there exists an U ⊆ L such that

A′ − A′ + U = L and s := |U| ≤
2

ρ
.
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Norbert Hegyvári (Eötvös University) 10 / 24



A combinatorial proof I

Remark

This proof works in another structure too :

⋄ in higher dimension sets (for all Nk)
⋄ in σ−finite groups (G is countable torsion abelian group
H1 ⊆ H2 ⊆ . . .Hn ⊆ . . . finite subgroups of G . If G = ∪nHn then G is
said to be σ−finite group respect to {Hn})

⋄ in some LCA group where an appropriate notion of density can be built
(some nice work of Révész)
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Norbert Hegyvári (Eötvös University) 11 / 24



A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der
Waerden theorem :

Theorem

For any given positive integers r , k there exists a W (k , r) such that if the
integers {1, 2, . . . ,W (k , r)} are colored with r colors, then there exists a
monochromatic k−term arithmetic progression
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One of the first Ramsey-type result in AC is the well-known van der
Waerden theorem :

Theorem

For any given positive integers r , k there exists a W (k , r) such that if the
integers {1, 2, . . . ,W (k , r)} are colored with r colors, then there exists a
monochromatic k−term arithmetic progression

Remark

The arithmetic progression is not necessary infinite

Question

Is there a set E s.t. any coloring of N there exists a color class containing
an INFINITE sub-pattern of E and E c ?
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In 1968 Raimi proved the following :

Theorem (Raimi)

There exists E ⊆ N such that, whenever r ∈ N and N =
⋃r

i=1Di there
exist i ∈ {1, 2, . . . , r} and k ∈ N such that (Di + k) ∩ E is infinite and
(Di + k) \ E is infinite

One can perform it as

Theorem

There exists E ⊆ N such that, whenever r−coloring of integers, there
exists a monochromatic subsets Di and k ∈ N for which

k ∈ (E − Di) ∩ (E c −Di ),

and the representation of k as a difference is infinite both in the two sets
.(E c is the complement of E with respect to N.)
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Norbert Hegyvári (Eötvös University) 13 / 24



A structure theorem of Raimi

Remark

Raimi’s original proof used a topological result.

Norbert Hegyvári (Eötvös University) 13 / 24



A structure theorem of Raimi

Remark

Raimi’s original proof used a topological result.

I generalized this structure theorem
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A structure theorem of Raimi

Remark

Raimi’s original proof used a topological result.

I generalized this structure theorem

Definition

Given a sequence {xn}
∞

n=1 in N,

FS(x0, {xn}
∞

n=1) = {x0 +
∑

n∈F xn : F is a finite nonempty subset of N} .
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A structure theorem of Raimi

Theorem

Let α1, α2, . . . , αr be positive real numbers such that
∑r

i=1 αi = 1.
There exists a disjoint partition N =

⋃r
i=1 Ei such that for every

i ∈ {1, 2, . . . , r},
d(Ei ) = αi

and for each t−coloring of integers, there exists a monochromatic subsets
Fm, (m ∈ {1, 2, . . . , t}) and an infinite sequence {xn}

∞

n=0 ⊆ N such that
for every

h ∈ FS(x0, {xn}
∞

n=1)

and every i ∈ {1, 2, . . . , r},

|(Fm + h) ∩ Ei | = ∞,

i.e. ∃Fm such the it contains an infinite copy of sub-pattern from each Ei .
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Remark

1. In this theorem for ”each t−coloring of integers” N can be replaced to
any infinite sequence A for which ‖ηA‖ is dense in [0, 1] for some irrational
number η .
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Remark

1. In this theorem for ”each t−coloring of integers” N can be replaced to
any infinite sequence A for which ‖ηA‖ is dense in [0, 1] for some irrational
number η .

Sketch of the proof :
1. Construction of E1,E2, . . . Er :

Recall that if η is a nonzero irrational number, then {‖ηx‖ : x ∈ N} is
uniformly distributed mod1.
Let r ∈ N and let α1, α2, . . . , αr be positive real numbers such that
∑r

i=1 αi = 1.
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Norbert Hegyvári (Eötvös University) 16 / 24



A structure theorem of Raimi

Let s0 = 0 and inductively for i ∈ {1, 2, . . . , r}, let si = si−1 + αi (so
sr = 1).For i ∈ {1, 2, . . . , r} and j ∈ N, let

Ji ,j =

[

1−
1

2j
+

si−1

2j+1
, 1 −

1

2j
+

si
2j+1

)

.

For i ∈ {1, 2, . . . , r} let Ji =
⋃

∞

j=0 Ji ,j
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sr = 1).For i ∈ {1, 2, . . . , r} and j ∈ N, let

Ji ,j =

[

1−
1

2j
+

si−1

2j+1
, 1 −

1
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+
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)

.

For i ∈ {1, 2, . . . , r} let Ji =
⋃

∞

j=0 Ji ,j and let

Ei = {x ∈ N : ‖ηx‖ ∈ Ji}.

Then µ(Ji ) =
∑

∞

j=0

si − si−1

2j+1
= αi .

Lemma

d(Ei ) = αi
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Lemma

There exists m ∈ {1, 2, . . . , t} and a, b, with 0 ≤ a < b ≤ 1 such that
{‖ηx‖ : x ∈ Fm} is dense in (a, b).

3. Construction of the infinite cube FS({xn}
∞

n=1)

Lemma

For every ε > 0 there exists an infinite set {xn}
∞

n=1 s.t. for every
y ∈ FS({xn}

∞

n=1) ‖ηy‖ < ε.
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Norbert Hegyvári (Eötvös University) 18 / 24



A structure theorem of Raimi

4. Final step :
Since there is an m and an interval (a, b) ⊆ (0, 1) such that
{‖ηx‖ : x ∈ Fm} is dense in (a, b) we could find an x0 and an subscript j
such that for every y ∈ FS(0, {xn}

∞

n=1)

‖η((x0 + y) + Fm)‖ ⊇ ∪r
i=1Ji ,j ,

and hence (x0 + y) + Fm intersects all Ei in an infinite set.
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Norbert Hegyvári (Eötvös University) 19 / 24



Third (combinatorial proof) of Bergelson’s theorem

Some years ago Ruzsa and me observed a third proof in a stronger form
(also obtained by Bergelson before us)
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Some years ago Ruzsa and me observed a third proof in a stronger form
(also obtained by Bergelson before us) (published just in 2016)

Definition

Let f : N+ → N+ be any function and C ⊆ N; C 6= ∅.

FSf (C ) :=
{

∑

ci∈X

wici : X ⊆ C , |X | < ∞; wi ∈ [1, f (i)] ∩ N

}

.

(Let the sum be zero, when X is the empty set)

Furthermore write

FP(C ) :=
{

∏

ci∈X

ci : X ⊆ C ; X 6= ∅, |X | < ∞
}

.
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Norbert Hegyvári (Eötvös University) 20 / 24



A combinatorial proof II

Theorem

Let A be a set of integers d(A) > 0. Let f : N+ → N+ be any function.
There exists an infinite set C of integers, such that

A− A ⊇ FSf (C ) ∪ FP(C ).

For the proof we need the following

Lemma (Følner)
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There exists an infinite set C of integers, such that
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For the proof we need the following
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Norbert Hegyvári (Eötvös University) 21 / 24



A combinatorial proof II

Third Proof :[H., Ruzsa]

The set C inductively.
Let K1 := f (1). One can find an element c1 from B(S , ε/K1) such that
ic1 6∈ E := B(S , ε) \ (A− A) for i = 1, 2, . . .K1. So we have

FSf ({c1}) ∪ FP({c1}) = {0, c1, . . . ,K1c1} ⊆ B \ E ⊆ A− A.

Assume now that the elements c1 < c2 < · · · < cn have been defined with
the property

Fn := FSf ({c1, c2, . . . , cn}) ∪ FP({c1, c2, . . . , cn}) ⊆ B \ E ⊆ A− A.
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as we wanted.
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