Combinatorial approaches of some ergodic and topological proofs

Norbert Hegyvári (Budapest)

Institut of Mathematics, Eötvös University

2016, April 14

.

3 🖌 🖌 3 🕨

On a theorem of Bergelson

3 🖌 🖌 3 🕨

On a theorem of Bergelson

 \diamond Combinatorial Proof of Bergelson's theorem I

On a theorem of Bergelson

 \diamond Combinatorial Proof of Bergelson's theorem I

On Hindman-Raimi's theorem

On a theorem of Bergelson

 \diamond Combinatorial Proof of Bergelson's theorem I

On Hindman-Raimi's theorem

Combinatorial Proof of Bergelson's theorem II

3

・ロト ・聞ト ・ヨト ・ヨト

An unpublished result of Erdős and Sárközy from the middle of 60's states :

E

$$\overline{d}(A) := \limsup_{n \to \infty} \frac{A(n)}{n}$$

3 🖌 🖌 3 🕨

$$\overline{d}(A) := \limsup_{n \to \infty} \frac{A(n)}{n}$$

(A(n) is the counting function of A)

$$\overline{d}(A) := \limsup_{n \to \infty} \frac{A(n)}{n}$$

(A(n) is the counting function of A) is positive

3 🖌 🖌 3 🕨

$$\overline{d}(A) := \limsup_{n \to \infty} \frac{A(n)}{n}$$

(A(n) is the counting function of A) is positive then A - A contains an arbitrarily long arithmetic progression.

3

・ロト ・聞ト ・ヨト ・ヨト

æ

イロト イヨト イヨト イヨト

Theorem (Bogolyubov)

Norbert Hegyvári (Eötvös University)

4 / 24

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$.

3

イロト イ理ト イヨト イヨトー

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there is a Bohr set set

(本語)と (本語)と (本語)と

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there is a Bohr set set

 $B(S,\varepsilon) = \{m \in \mathbb{Z} : \max_{s \in S} \|sm\| < \varepsilon\}$

・ 日本 ・ 日本 ・ 日本 ・

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there is a Bohr set set

$$B(S,\varepsilon) = \{m \in \mathbb{Z} : \max_{s \in S} \|sm\| < \varepsilon\}$$

 $(||x|| = \min_{n \in \mathbb{Z}} |x - n|, \text{ the absolute fractional part})$

- 세례에 세계에 세계에 관했다.

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there is a Bohr set set

$$B(S,\varepsilon) = \{m \in \mathbb{Z} : \max_{s \in S} \|sm\| < \varepsilon\}$$

 $(||x|| = \min_{n \in \mathbb{Z}} |x - n|, \text{ the absolute fractional part})$ for which

《曰》《聞》《臣》《臣》 [] 臣

Theorem (Bogolyubov)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there is a Bohr set set

$$B(S,\varepsilon) = \{m \in \mathbb{Z} : \max_{s \in S} \|sm\| < \varepsilon\}$$

 $(||x|| = \min_{n \in \mathbb{Z}} |x - n|, \text{ the absolute fractional part})$ for which

$$D(D(A)) = A - A + A - A \supseteq B(S, \varepsilon).$$

《曰》《聞》《臣》《臣》 [] 臣

3

・ロト ・聞ト ・ヨト ・ヨト

(It was an important tool at the proof of Freiman-Ruzsa theorem)

伺 ト イヨト イヨト

< ロト < 同ト < ヨト < ヨト

< ロト < 同ト < ヨト < ヨト

Theorem (Kříž)

< ロト < 同ト < ヨト < ヨト

Theorem (Kříž)

There is a set A with positive upper density whose difference set contains no Bohr set

Theorem (Kříž)

There is a set A with positive upper density whose difference set contains no Bohr set

Question

イロト イポト イヨト イヨト

Theorem (Kříž)

There is a set A with positive upper density whose difference set contains no Bohr set

Question

What about the structure of D(A)?

- 4月 ト 4 ヨ ト 4 ヨ ト

3

・ロト ・聞ト ・ヨト ・ヨト

2

イロト イヨト イヨト イヨト

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$.

2

イロト イ理ト イヨト イヨトー

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k

æ

イロト イ理ト イヨト イヨトー

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k there exists an infinite set B of integers for

・ロト ・聞ト ・ ヨト ・ ヨト

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k there exists an infinite set B of integers for which $A - A \supseteq B + B + \cdots + B$, (k times)

イロト イポト イヨト イヨト

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k there exists an infinite set B of integers for which $A - A \supseteq B + B + \cdots + B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

소리가 소聞가 소문가 소문가 ...

In 1985 Bergelson proved

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k there exists an infinite set B of integers for which $A - A \supseteq B + B + \cdots + B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

Remark

Bergelson's theorem has a stronger form.

イロン イ理と イヨン イヨン

In 1985 Bergelson proved

Theorem

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. For every k there exists an infinite set B of integers for which $A - A \supseteq B + B + \cdots + B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

Remark

Bergelson's theorem has a stronger form. It will be revisited at the second proof

소리가 소聞가 소문가 소문가 ...

Norbert Hegyvári (Eötvös University)

7 / 24

Proof (Sketch) :

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

æ

イロト イヨト イヨト イヨト

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some *i*, $\overline{d}(A_i) = \rho > 0$.

イロト イヨト イヨト イヨト

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some *i*, $\overline{d}(A_i) = \rho > 0$.

Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$

3

イロト イポト イヨト イヨト

Proof (Sketch) :

Let

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some $i, \overline{d}(A_i) = \rho > 0.$
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$

Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Proof (Sketch) :

Let

١

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k - 1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.

æ

< ロト < 同ト < ヨト < ヨト

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

æ

.

A B A A B A

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

If
$$\overline{d}(A_i) = \rho > 0$$
,

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1$$

Clearly for some $i, \overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

Lemma

If
$$\overline{d}(A_i) = \rho > 0$$
, there exists an $U \subseteq L$

•

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

If
$$\overline{d}(A_i) = \rho > 0$$
, there exists an $U \subseteq L$ such that

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

If
$$\overline{d}(A_i) = \rho > 0$$
, there exists an $U \subseteq L$ such that

$$A'-A'+U=L$$

Proof (Sketch) :

Let

$$A_i := \{a \in A : a \equiv i(modk)\}; \quad 0 \le i \le k-1.$$

Clearly for some i , $\overline{d}(A_i) = \rho > 0$.
Let $A' = A_i - i \subseteq L := \{u : u \equiv 0(modk)\}.$
Since $A' - A' = (A_i - i) - (A_i - i) = A_i - A_i \subseteq A - A$,
we are looking for the k-fold sum in $A' - A'$.
An easy lemma says :

If
$$\overline{d}(A_i) = \rho > 0$$
, there exists an $U \subseteq L$ such that

$$\mathcal{A}'-\mathcal{A}'+\mathcal{U}=\mathcal{L}~~$$
 and $\mathbf{s}:=|\mathcal{U}|\leq rac{2}{
ho}.$

Let

Norbert Hegyvári (Eötvös University)

8 / 24

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

Norbert Hegyvári (Eötvös University)

8 / 24

2

イロト イヨト イヨト イヨト

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all *k*-tuples of integers;

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \dots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i$$

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1 + x_2 + \cdots + x_k \in A' - A' + u_i$$

(this coloring is not necessary unique, so use the smallest *i*).

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1 + x_2 + \cdots + x_k \in A' - A' + u_i$$

(this coloring is not necessary unique, so use the smallest i). By the infinite Ramsey theorem there exists a color i

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1 + x_2 + \cdots + x_k \in A' - A' + u_i$$

(this coloring is not necessary unique, so use the smallest i). By the infinite Ramsey theorem there exists a color i and an infinite subset B' of \mathbb{Z}

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1 + x_2 + \cdots + x_k \in A' - A' + u_i$$

(this coloring is not necessary unique, so use the smallest *i*). By the infinite Ramsey theorem there exists a color *i* and an infinite subset B' of \mathbb{Z} for which every $(x_1, x_2, \ldots, x_k) \in B'$,

Let

$$\chi: (\mathbb{Z})^k \mapsto \{1, 2, \ldots, s\}$$

be the coloring of all k-tuples of integers;

$$\chi(x_1, x_2, \ldots, x_k) = i$$

if

$$x_1 + x_2 + \cdots + x_k \in A' - A' + u_i$$

(this coloring is not necessary unique, so use the smallest *i*). By the infinite Ramsey theorem there exists a color *i* and an infinite subset B' of \mathbb{Z} for which every $(x_1, x_2, \ldots, x_k) \in B'$,

$$\chi(x_1,x_2,\ldots,x_k)=i.$$

Image: Image:

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Image: Image:

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Finally let

$$B := B' - \frac{u_i}{k}$$

Image: Image:

.

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Finally let

$$B := B' - \frac{u_i}{k}$$

(recall that all $u_i \in U$ is divisible by k).

3 K K 3 K

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Finally let

$$B:=B'-\frac{u_i}{k}$$

(recall that all $u_i \in U$ is divisible by k). Now

$$\left(B+\frac{u_i}{k}\right)+\left(B+\frac{u_i}{k}\right)+\ldots\left(B+\frac{u_i}{k}\right)=$$

< 3 > < 3 >

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Finally let

$$B:=B'-\frac{u_i}{k}$$

(recall that all $u_i \in U$ is divisible by k). Now

$$\left(B+\frac{u_i}{k}\right)+\left(B+\frac{u_i}{k}\right)+\ldots\left(B+\frac{u_i}{k}\right)=kB'\subseteq A'-A'+u_i$$

< 3 > < 3 >

$$x_1+x_2+\cdots+x_k\in A'-A'+u_i.$$

Finally let

$$B:=B'-\frac{u_i}{k}$$

(recall that all $u_i \in U$ is divisible by k). Now

$$\left(B+\frac{u_i}{k}\right)+\left(B+\frac{u_i}{k}\right)+\ldots\left(B+\frac{u_i}{k}\right)=kB'\subseteq A'-A'+u_i$$

and so $kB \subseteq A' - A'$ as we wanted.

4 3 4 3 4

Remark

Norbert Hegyvári (Eötvös University)

æ

* ロ > * 個 > * 注 > * 注 >

Remark

This proof works in another structure too :

Norbert Hegyvári (Eötvös University)

æ

.

Image: Image:

Remark

This proof works in another structure too :

 \diamond in higher dimension sets (for all \mathbb{N}^k)

This proof works in another structure too :

- \diamond in higher dimension sets (for all \mathbb{N}^k)
- \diamond in $\sigma-$ finite groups

This proof works in another structure too :

- \diamond in higher dimension sets (for all \mathbb{N}^k)
- \diamond in σ -finite groups (G is countable torsion abelian group

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 ⊆ H_2 ⊆ ... H_n ⊆ ...$ finite subgroups of G.

This proof works in another structure too :

 \diamond in higher dimension sets (for all \mathbb{N}^k) \diamond in σ −finite groups (G is countable torsion abelian group $H_1 \subseteq H_2 \subseteq \ldots H_n \subseteq \ldots$ finite subgroups of G. If $G = \bigcup_n H_n$

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 \subseteq H_2 \subseteq ... H_n \subseteq ...$ finite subgroups of G. If $G = \bigcup_n H_n$ then G is said to be σ-finite group respect to { H_n })

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 \subseteq H_2 \subseteq ..., H_n \subseteq ...$ finite subgroups of G. If $G = \bigcup_n H_n$ then G is said to be σ-finite group respect to { H_n }) ◊ in some LCA group

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 ⊆ H_2 ⊆ ... H_n ⊆ ...$ finite subgroups of G. If $G = ∪_n H_n$ then G is said to be σ-finite group respect to { H_n })

◊ in some LCA group where an appropriate notion of density can be built

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 ⊆ H_2 ⊆ ... H_n ⊆ ...$ finite subgroups of G. If $G = ∪_n H_n$ then G is said to be σ-finite group respect to $\{H_n\}$)

◊ in some LCA group where an appropriate notion of density can be built (some nice work of Révész)

This proof works in another structure too :

◊ in higher dimension sets (for all \mathbb{N}^k) ◊ in σ-finite groups (G is countable torsion abelian group $H_1 ⊆ H_2 ⊆ ... H_n ⊆ ...$ finite subgroups of G. If $G = ∪_n H_n$ then G is said to be σ-finite group respect to $\{H_n\}$)

◊ in some LCA group where an appropriate notion of density can be built (some nice work of Révész)

Norbert Hegyvári (Eötvös University)

æ

< ロト < 同ト < ヨト < ヨト

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

- ∢ ∃ ▶

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k

-∢ ∃ ▶

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a W(k, r) such that if the integers $\{1, 2, ..., W(k, r)\}$ are colored with r colors,

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a W(k, r) such that if the integers $\{1, 2, ..., W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a W(k, r) such that if the integers $\{1, 2, ..., W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

Remark

The arithmetic progression is not necessary infinite

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a W(k, r) such that if the integers $\{1, 2, ..., W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

Remark

The arithmetic progression is not necessary infinite

Question

Is there a set E s.t. any coloring of $\mathbb N$ there exists a color class containing an INFINITE sub-pattern of E and E^c ?

Norbert Hegyvári (Eötvös University)

æ

< ロト < 同ト < ヨト < ヨト

In 1968 Raimi proved the following :

- ∢ ∃ ▶

In 1968 Raimi proved the following :

Theorem (Raimi)

There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N} = \bigcup_{i=1}^{r} D_i$ there exist $i \in \{1, 2, ..., r\}$ and $k \in \mathbb{N}$ such that $(D_i + k) \cap E$ is infinite and $(D_i + k) \setminus E$ is infinite

イロト イポト イヨト イヨト

In 1968 Raimi proved the following :

Theorem (Raimi)

There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N} = \bigcup_{i=1}^{r} D_i$ there exist $i \in \{1, 2, ..., r\}$ and $k \in \mathbb{N}$ such that $(D_i + k) \cap E$ is infinite and $(D_i + k) \setminus E$ is infinite

One can perform it as

Theorem

There exists $E \subseteq \mathbb{N}$ such that, whenever r-coloring of integers, there exists a monochromatic subsets D_i and $k \in \mathbb{N}$ for which

 $k \in (E - D_i) \cap (E^c - D_i),$

and the representation of k as a difference is infinite both in the two sets .(E^c is the complement of E with respect to \mathbb{N} .)

Norbert Hegyvári (Eötvös University)

13 / 24

Raimi's original proof used a topological result.

æ

・ロト ・聞ト ・ ヨト ・ ヨト

Raimi's original proof used a topological result.

I generalized this structure theorem

ヨト イヨト

Raimi's original proof used a topological result.

I generalized this structure theorem

Definition

Given a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{N} ,

 $FS(x_0, \{x_n\}_{n=1}^{\infty}) = \{x_0 + \sum_{n \in F} x_n : F \text{ is a finite nonempty subset of } \mathbb{N}\}.$

- 米田 ト 米 油 ト - イ 油 ト - - 油

Norbert Hegyvári (Eötvös University)

14 / 24

Norbert Hegyvári (Eötvös University)

14 / 24

Theorem

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$.

э

イロト 不得 トイヨト イヨト

Theorem

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$

< 67 ▶

Theorem

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

Theorem

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

 $d(E_i) = \alpha_i$

・ 日本 ・ 日本 ・ 日本 ・

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$ and an infinite sequence $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$ and an infinite sequence $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$h \in FS(x_0, \{x_n\}_{n=1}^{\infty})$$

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$ and an infinite sequence $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$h \in FS(x_0, \{x_n\}_{n=1}^{\infty})$$

and every $i \in \{1, 2, ..., r\}$,

< ≣ > < ≣ >

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$ and an infinite sequence $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$h \in FS(x_0, \{x_n\}_{n=1}^{\infty})$$

and every $i \in \{1, 2, ..., r\}$,

$$|(F_m+h)\cap E_i|=\infty,$$

Let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r E_i$ such that for every $i \in \{1, 2, \ldots, r\}$,

$$d(E_i) = \alpha_i$$

and for each t-coloring of integers, there exists a monochromatic subsets F_m , $(m \in \{1, 2, ..., t\})$ and an infinite sequence $\{x_n\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$h \in FS(x_0, \{x_n\}_{n=1}^{\infty})$$

and every $i \in \{1, 2, ..., r\}$,

$$|(F_m+h)\cap E_i|=\infty,$$

i.e. $\exists F_m$ such the it contains an infinite copy of sub-pattern from each E_i .

イロン イ団と イヨン ト

Norbert Hegyvári (Eötvös University)

15 / 24

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in [0,1] for some irrational number η .

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in [0,1] for some irrational number η .

Sketch of the proof :

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in [0,1] for some irrational number η .

Sketch of the proof :

1. Construction of $E_1, E_2, \ldots E_r$:

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in [0,1] for some irrational number η .

Sketch of the proof :

1. Construction of $E_1, E_2, \ldots E_r$:

Recall that if η is a nonzero irrational number, then $\{\|\eta x\| : x \in \mathbb{N}\}$ is uniformly distributed mod1.

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in [0,1] for some irrational number η .

Sketch of the proof :

1. Construction of $E_1, E_2, \ldots E_r$:

Recall that if η is a nonzero irrational number, then $\{\|\eta x\| : x \in \mathbb{N}\}$ is uniformly distributed mod1.

Let $r \in \mathbb{N}$ and let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$.

Norbert Hegyvári (Eötvös University)

Let $s_0 = 0$

Norbert Hegyvári (Eötvös University)

2

Let $s_0 = 0$ and inductively for $i \in \{1, 2, \dots, r\}$, let $s_i = s_{i-1} + \alpha_i$

16 / 24

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$).

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, ..., r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - rac{1}{2^j} + rac{s_{i-1}}{2^{j+1}}, 1 - rac{1}{2^j} + rac{s_i}{2^{j+1}}
ight)\,.$$

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, ..., r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - rac{1}{2^j} + rac{s_{i-1}}{2^{j+1}}, 1 - rac{1}{2^j} + rac{s_i}{2^{j+1}}
ight)\,.$$

For $i \in \{1, 2, \dots, r\}$ let $J_i = \bigcup_{j=0}^{\infty} J_{i,j}$

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, ..., r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - rac{1}{2^j} + rac{s_{i-1}}{2^{j+1}}, 1 - rac{1}{2^j} + rac{s_i}{2^{j+1}}
ight)\,.$$

For $i \in \{1, 2, \dots, r\}$ let $J_i = \bigcup_{j=0}^{\infty} J_{i,j}$ and let

$$E_i = \{x \in \mathbb{N} : \|\eta x\| \in J_i\}.$$

- < 🗇 > < E > < E > -

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, ..., r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - rac{1}{2^j} + rac{s_{i-1}}{2^{j+1}}, 1 - rac{1}{2^j} + rac{s_i}{2^{j+1}}
ight)\,.$$

For $i \in \{1, 2, \dots, r\}$ let $J_i = \bigcup_{j=0}^{\infty} J_{i,j}$ and let

$$E_i = \{x \in \mathbb{N} : \|\eta x\| \in J_i\}.$$

Then $\mu(J_i) = \sum_{j=0}^{\infty} \frac{s_i - s_{i-1}}{2^{j+1}} = \alpha_i$.

Let $s_0 = 0$ and inductively for $i \in \{1, 2, ..., r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, ..., r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - rac{1}{2^j} + rac{s_{i-1}}{2^{j+1}}, 1 - rac{1}{2^j} + rac{s_i}{2^{j+1}}
ight)\,.$$

For $i \in \{1, 2, \dots, r\}$ let $J_i = \bigcup_{j=0}^{\infty} J_{i,j}$ and let

$$E_i = \{x \in \mathbb{N} : \|\eta x\| \in J_i\}.$$

Then $\mu(J_i) = \sum_{j=0}^{\infty} \frac{s_i - s_{i-1}}{2^{j+1}} = \alpha_i$.

Lemma

$$d(E_i) = \alpha_i$$

Norbert Hegyvári (Eötvös University)

∃ ▶ ∢ ∃ ▶

Lemma

There exists $m \in \{1, 2, \ldots, t\}$

《曰》《聞》《臣》《臣》 [] 臣

Lemma

There exists $m \in \{1, 2, \dots, t\}$ and a, b, with $0 \le a < b \le 1$

《曰》《聞》《臣》《臣》 [] 臣

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

3. Construction of the infinite cube $FS({x_n}_{n=1}^{\infty})$

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

3. Construction of the infinite cube $FS({x_n}_{n=1}^{\infty})$

Lemma For every $\varepsilon > 0$

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

3. Construction of the infinite cube $FS({x_n}_{n=1}^{\infty})$

Lemma

For every $\varepsilon > 0$ there exists an infinite set $\{x_n\}_{n=1}^{\infty}$ s.t.

(日) (周) (三) (三)

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

3. Construction of the infinite cube $FS({x_n}_{n=1}^{\infty})$

Lemma

For every $\varepsilon > 0$ there exists an infinite set $\{x_n\}_{n=1}^{\infty}$ s.t. for every $y \in FS(\{x_n\}_{n=1}^{\infty})$

Lemma

There exists $m \in \{1, 2, ..., t\}$ and a, b, with $0 \le a < b \le 1$ such that $\{\|\eta x\| : x \in F_m\}$ is dense in (a, b).

3. Construction of the infinite cube $FS({x_n}_{n=1}^{\infty})$

Lemma

For every $\varepsilon > 0$ there exists an infinite set $\{x_n\}_{n=1}^{\infty}$ s.t. for every $y \in FS(\{x_n\}_{n=1}^{\infty}) ||\eta y|| < \varepsilon$.

Norbert Hegyvári (Eötvös University)

18 / 24

4. Final step :

Norbert Hegyvári (Eötvös University)

æ

▶ ∢ ∃ ▶

4. Final step : Since there is an *m*

э

- ∢ ∃ →

4. Final step : Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ **4.** Final step : Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ such that $\{ \|\eta x\| : x \in F_m \}$ is dense in (a, b) **4.** Final step : Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ such that $\{ \|\eta x\| : x \in F_m \}$ is dense in (a, b) we could find an x_0 and an subscript *j*

4. Final step :

Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ such that $\{ \|\eta x\| : x \in F_m \}$ is dense in (a, b) we could find an x_0 and an subscript *j* such that for every $y \in FS(0, \{x_n\}_{n=1}^{\infty})$

4. Final step :

Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ such that $\{ \|\eta x\| : x \in F_m \}$ is dense in (a, b) we could find an x_0 and an subscript *j* such that for every $y \in FS(0, \{x_n\}_{n=1}^{\infty})$

$$\|\eta((x_0+y)+F_m)\| \supseteq \cup_{i=1}^r J_{i,j},$$

4. Final step :

Since there is an *m* and an interval $(a, b) \subseteq (0, 1)$ such that $\{ \|\eta x\| : x \in F_m \}$ is dense in (a, b) we could find an x_0 and an subscript *j* such that for every $y \in FS(0, \{x_n\}_{n=1}^{\infty})$

$$\|\eta((x_0+y)+F_m)\| \supseteq \cup_{i=1}^r J_{i,j},$$

and hence $(x_0 + y) + F_m$ intersects all E_i in an infinite set.

Third (combinatorial proof) of Bergelson's theorem

Norbert Hegyvári (Eötvös University)

3 K K 3 K

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us)

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function and $C \subseteq \mathbb{N}$; $C \neq \emptyset$.

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function and $C \subseteq \mathbb{N}$; $C \neq \emptyset$.

$$FS_f(C) := \Big\{\sum_{c_i \in X} w_i c_i : X \subseteq C, |X| < \infty; w_i \in [1, f(i)] \cap \mathbb{N}\Big\}.$$

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function and $C \subseteq \mathbb{N}$; $C \neq \emptyset$.

$$FS_f(C) := \Big\{ \sum_{c_i \in X} w_i c_i : X \subseteq C, |X| < \infty; w_i \in [1, f(i)] \cap \mathbb{N} \Big\}.$$

(Let the sum be zero, when X is the empty set)

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function and $C \subseteq \mathbb{N}$; $C \neq \emptyset$.

$$FS_f(C) := \Big\{ \sum_{c_i \in X} w_i c_i : X \subseteq C, |X| < \infty; w_i \in [1, f(i)] \cap \mathbb{N} \Big\}.$$

(Let the sum be zero, when X is the empty set) Furthermore write

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function and $C \subseteq \mathbb{N}$; $C \neq \emptyset$.

$$FS_f(C) := \Big\{ \sum_{c_i \in X} w_i c_i : X \subseteq C, |X| < \infty; w_i \in [1, f(i)] \cap \mathbb{N} \Big\}.$$

(Let the sum be zero, when X is the empty set) Furthermore write

$$FP(C) := \Big\{ \prod_{c_i \in X} c_i : X \subseteq C; \ X \neq \emptyset, \ |X| < \infty \Big\}.$$

イロン イ理シ イヨン ・

Norbert Hegyvári (Eötvös University)

20 / 24

Theorem

Let A be a set of integers

æ

Theorem

Let A be a set of integers $\overline{d}(A) > 0$.

Norbert Hegyvári (Eötvös University)

æ

Theorem

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function.

Norbert Hegyvári (Eötvös University)

æ

Theorem

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers,

.

Theorem

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

 $A - A \supseteq FS_f(C) \cup FP(C).$

Theorem

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

$A - A \supseteq FS_f(C) \cup FP(C).$

For the proof we need the following

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

 $A - A \supseteq FS_f(C) \cup FP(C).$

For the proof we need the following

Lemma (Følner)

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

 $A - A \supseteq FS_f(C) \cup FP(C).$

For the proof we need the following

Lemma (Følner)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$.

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

 $A - A \supseteq FS_f(C) \cup FP(C).$

For the proof we need the following

Lemma (Følner)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there exists a Bohr set $B = B(S, \varepsilon)$

Let A be a set of integers $\overline{d}(A) > 0$. Let $f : \mathbb{N}_+ \to \mathbb{N}_+$ be any function. There exists an infinite set C of integers, such that

 $A - A \supseteq FS_f(C) \cup FP(C).$

For the proof we need the following

Lemma (Følner)

Let $A \subseteq \mathbb{N}$ with $\overline{d}(A) > 0$. Then there exists a Bohr set $B = B(S, \varepsilon)$ for which

$$d(B(S,\varepsilon)\setminus (A-A))=0.$$

Norbert Hegyvári (Eötvös University)

21 / 24

Third Proof :[H., Ruzsa]

21 / 24

Third Proof :[H., Ruzsa] The set *C* inductively.

æ

3 K K 3 K

Image: Image:

Third Proof :[H., Ruzsa] The set C inductively. Let $K_1 := f(1)$.

æ

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$

Image: Image:

.

Third Proof :[H., Ruzsa]

The set C inductively.

Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$.

Third Proof :[H., Ruzsa]

The set C inductively.

Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

Third Proof :[H., Ruzsa]

The set C inductively.

Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

 $FS_f({c_1}) \cup FP({c_1}) = {0, c_1, \ldots, K_1c_1} \subseteq B \setminus E \subseteq A - A.$

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

 $FS_f({c_1}) \cup FP({c_1}) = {0, c_1, \ldots, K_1c_1} \subseteq B \setminus E \subseteq A - A.$

Assume now that the elements

3

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト …

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f(\{c_1\}) \cup \mathsf{FP}(\{c_1\}) = \{0, c_1, \dots, \mathcal{K}_1 c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f({c_1}) \cup \mathsf{FP}({c_1}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f({c_1}) \cup \mathsf{FP}({c_1}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := FS_f(\{c_1, c_2, \ldots, c_n\}) \cup FP(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f({c_1}) \cup \mathsf{FP}({c_1}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := \mathsf{FS}_f(\{c_1, c_2, \ldots, c_n\}) \cup \mathsf{FP}(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \cdots < p_m\},\$

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f({c_1}) \cup \mathsf{FP}({c_1}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := \mathsf{FS}_f(\{c_1, c_2, \ldots, c_n\}) \cup \mathsf{FP}(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \dots < p_m\}$, and let $K := \max\{f(n+1), p_m\}.$

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f({c_1}) \cup \mathsf{FP}({c_1}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := \mathsf{FS}_f(\{c_1, c_2, \ldots, c_n\}) \cup \mathsf{FP}(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \dots < p_m\}$, and let $K := \max\{f(n+1), p_m\}$. Define

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f(\{c_1\}) \cup \mathsf{FP}(\{c_1\}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := FS_f(\{c_1, c_2, \ldots, c_n\}) \cup FP(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \dots < p_m\}$, and let $K := \max\{f(n+1), p_m\}$. Define

$$\varepsilon_1 = \frac{1}{K} \min\{\varepsilon - \|\mathbf{x}\mathbf{s}\| : \mathbf{x} \in FS_f(\{c_1, c_2, \dots, c_n\}); \mathbf{s} \in S\},$$
(1)

Third Proof :[H., Ruzsa]

The set C inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, \dots, K_1$. So we have

$$\mathsf{FS}_f(\{c_1\}) \cup \mathsf{FP}(\{c_1\}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := FS_f(\{c_1, c_2, \ldots, c_n\}) \cup FP(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \cdots < p_m\}$, and let $K := \max\{f(n+1), p_m\}$. Define

$$\varepsilon_1 = \frac{1}{K} \min\{\varepsilon - \|\mathbf{x}\mathbf{s}\| : \mathbf{x} \in FS_f(\{c_1, c_2, \dots, c_n\}); \mathbf{s} \in S\}, \qquad (1)$$

and let $B_1 := B(S, \varepsilon_1)$. 21 / 24

Third Proof :[H., Ruzsa]

The set *C* inductively. Let $K_1 := f(1)$. One can find an element c_1 from $B(S, \varepsilon/K_1)$ such that $ic_1 \notin E := B(S, \varepsilon) \setminus (A - A)$ for $i = 1, 2, ..., K_1$. So we have

$$\mathsf{FS}_f(\{c_1\}) \cup \mathsf{FP}(\{c_1\}) = \{0, c_1, \dots, K_1c_1\} \subseteq B \setminus E \subseteq A - A.$$

Assume now that the elements $c_1 < c_2 < \cdots < c_n$ have been defined with the property

$$\mathcal{F}_n := FS_f(\{c_1, c_2, \ldots, c_n\}) \cup FP(\{c_1, c_2, \ldots, c_n\}) \subseteq B \setminus E \subseteq A - A.$$

Write $FP(\{c_1, c_2, ..., c_n\}) = \{p_1 < p_2 < \dots < p_m\}$, and let $K := \max\{f(n+1), p_m\}$. Define

$$\varepsilon_1 = \frac{1}{K} \min\{\varepsilon - \|\mathbf{x}\mathbf{s}\| : \mathbf{x} \in FS_f(\{c_1, c_2, \dots, c_n\}); \mathbf{s} \in S\},$$
(1)

and let $B_1 := B(S, \varepsilon_1)$. (Note that $B(S, \varepsilon_1) \subseteq B = B(S, \varepsilon)$.)

Norbert Hegyvári (Eötvös University)

By (1) we have that for every non-negative integer $i \leq K$,

< ロト < 同ト < ヨト < ヨト

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \ldots, c_n\})$,

3

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \ldots, c_n\})$, for every $c \in B_1$

イロト イポト イヨト イヨト

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \ldots, c_n\})$, for every $c \in B_1$ and $s \in S$

イロト イポト イヨト イヨト

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \ldots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds,

3

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \dots c_n}) + {0, c, 2c, \dots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c, 2c, \ldots K \cdot c\} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \dots, c_n\})$ and one integer $j \in [1, \dots, K]$ for which $x + jc \in E$.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c, 2c, \ldots K \cdot c\} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$,

- ロ ト - 4 同 ト - 4 回 ト - - - 回

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \dots, c_n\})$ and one integer $j \in [1, \dots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \dots, c_n\})$,

・ロト ・四ト ・ヨト ・ヨト ・ヨ

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \ldots c_n\}), j_0 \in [1, \ldots, K]$ and

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \ldots c_n\}), j_0 \in [1, \ldots, K]$ and a $B'_1 \subseteq B_1$,

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \ldots c_n\}), j_0 \in [1, \ldots, K]$ and a $B'_1 \subseteq B_1$, such that $\underline{d}(B_1) > 0$

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \dots c_n\})$ and one integer $j \in [1, \dots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \dots c_n\}), j_0 \in [1, \dots, K]$ and a $B'_1 \subseteq B_1$, such that $\underline{d}(B_1) > 0$ and $x_0 + j_0B'_1 \subseteq E$

《曰》《聞》《臣》《臣》 [] 臣

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c, 2c, \ldots K \cdot c\} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \ldots c_n\}), j_0 \in [1, \ldots, K]$ and a $B'_1 \subseteq B_1$, such that $\underline{d}(B_1) > 0$ and $x_0 + j_0B'_1 \subseteq E$ It contradicts the fact that d(E) = 0 and

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in FS_f(\{c_1, c_2, \dots, c_n\})$, for every $c \in B_1$ and $s \in S$ $\|s(u + ic)\| < \varepsilon$

holds, hence

$$FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c, 2c, \ldots K \cdot c\} \subseteq B.$$

We claim that there exists an element $c \in B_1$, with $c > c_1$ for which,

$$FS_f({c_1, c_2, \ldots c_n}) + {0, c, 2c, \ldots K \cdot c} \subseteq B \setminus E \subseteq A - A$$

also holds.

Contrary : for every $c \in B_1$ with $c > c_1$ there would be at least one element $x \in FS_f(\{c_1, c_2, \ldots c_n\})$ and one integer $j \in [1, \ldots, K]$ for which $x + jc \in E$. Since $d(B_1 \setminus [1, c_n]) > 0$, by the pigeonhole principle there would be an $x_0 \in FS_f(\{c_1, c_2, \ldots c_n\}), j_0 \in [1, \ldots, K]$ and a $B'_1 \subseteq B_1$, such that $\underline{d}(B_1) > 0$ and $x_0 + j_0 B'_1 \subseteq E$ It contradicts the fact that d(E) = 0 and $\underline{d}(x_0 + j_0 B'_1) > 0$.

Norbert Hegyvári (Eötvös University)

Let c_{n+1} be any such c.

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$

イロト イポト イヨト イヨト

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

 $c_{n+1} \cdot FP(\{c_1, c_2, \ldots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \ldots, K \cdot c_{n+1}\} \subseteq B \setminus E.$

イロト イポト イヨト イヨト

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

hen by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

4 3 4 3 4

< m²

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},$$

and by the inductive hypothesis

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

hen by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, \ldots, c_n, c_{n+1}\}) \subseteq B \setminus E$.

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

イロト イポト イヨト イヨト

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

 $FS_f({c_1, c_2, \ldots c_n, c_{n+1}}) \subseteq$

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

$$FS_f({c_1, c_2, \ldots c_n, c_{n+1}}) \subseteq$$

$$\subseteq FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c_{n+1}, 2c_{n+1}, \ldots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

- < 🗇 > < E > < E >

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

$$FS_f({c_1, c_2, \ldots c_n, c_{n+1}}) \subseteq$$

$$\subseteq FS_f(\{c_1, c_2, \dots, c_n\}) + \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Thus we have that

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

$$FS_f({c_1, c_2, \ldots c_n, c_{n+1}}) \subseteq$$

$$\subseteq FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c_{n+1}, 2c_{n+1}, \ldots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Thus we have that

$$\mathcal{F}_{n+1}\subseteq B\setminus E\subseteq A-A,$$

Let c_{n+1} be any such c. Since $K \ge p_m$ and $0 \in FS_f(\{c_1, c_2, \ldots, c_n\})$ we have

$$c_{n+1} \cdot FP(\{c_1, c_2, \dots, c_n\}) \subseteq \{0, c_{n+1}, 2c_{n+1}, \dots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Then by

$$FP(\{c_1, c_2, \dots c_n\}) = FP(\{c_1, c_2, \dots c_{n-1}\}) \cdot \{1, c_n\},\$$

and by the inductive hypothesis $FP(\{c_1, c_2, ..., c_n, c_{n+1}\}) \subseteq B \setminus E$. Moreover K > f(n+1),

$$FS_f({c_1, c_2, \ldots c_n, c_{n+1}}) \subseteq$$

$$\subseteq FS_f(\{c_1, c_2, \ldots c_n\}) + \{0, c_{n+1}, 2c_{n+1}, \ldots, K \cdot c_{n+1}\} \subseteq B \setminus E.$$

Thus we have that

$$\mathcal{F}_{n+1}\subseteq B\setminus E\subseteq A-A,$$

as we wanted.

Norbert Hegyvári (Eötvös University)

通 ト イヨト イヨト

Merci pour l'attention

Merci pour l'attention (Thank you for your attention)

Norbert Hegyvári (Eötvös University)

Image: A image: A