Combinatorial approaches of some ergodic and topological proofs

Norbert Hegyvári (Budapest)
Institut of Mathematics, Eötvös University

2016, April 14

Introduction

In thepresent talk we will consider the following results:

Introduction

In thepresent talk we will consider the following results :
On a theorem of Bergelson

Introduction

In thepresent talk we will consider the following results :
On a theorem of Bergelson
\diamond Combinatorial Proof of Bergelson's theorem I

Introduction

In thepresent talk we will consider the following results :
On a theorem of Bergelson
\diamond Combinatorial Proof of Bergelson's theorem I
On Hindman-Raimi's theorem

Introduction

In thepresent talk we will consider the following results :
On a theorem of Bergelson
\diamond Combinatorial Proof of Bergelson's theorem I
On Hindman-Raimi's theorem
\diamond Combinatorial Proof of Bergelson's theorem II

History

History

An unpublished result of Erdős and Sárközy from the middle of 60's states:

History

An unpublished result of Erdős and Sárközy from the middle of 60's states : if the upper bound of an $A \subseteq \mathbb{N}$

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{A(n)}{n}
$$

History

An unpublished result of Erdős and Sárközy from the middle of 60's states: if the upper bound of an $A \subseteq \mathbb{N}$

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{A(n)}{n}
$$

$(A(n)$ is the counting function of $A)$

History

An unpublished result of Erdős and Sárközy from the middle of 60's states: if the upper bound of an $A \subseteq \mathbb{N}$

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{A(n)}{n}
$$

$(A(n)$ is the counting function of $A)$ is positive

History

An unpublished result of Erdős and Sárközy from the middle of 60's states : if the upper bound of an $A \subseteq \mathbb{N}$

$$
\bar{d}(A):=\limsup _{n \rightarrow \infty} \frac{A(n)}{n}
$$

$(A(n)$ is the counting function of $A)$ is positive then $A-A$ contains an arbitrarily long arithmetic progression.

History

History

On the iterated difference set $D(D(A))$

History

On the iterated difference set $D(D(A))$

Theorem (Bogolyubov)

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$.

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there is a Bohr set set

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there is a Bohr set set

$$
B(S, \varepsilon)=\left\{m \in \mathbb{Z}: \max _{s \in S}\|s m\|<\varepsilon\right\}
$$

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there is a Bohr set set

$$
B(S, \varepsilon)=\left\{m \in \mathbb{Z}: \max _{s \in S}\|s m\|<\varepsilon\right\}
$$

($\|x\|=\min _{n \in \mathbb{Z}}|x-n|$, the absolute fractional part)

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there is a Bohr set set

$$
B(S, \varepsilon)=\left\{m \in \mathbb{Z}: \max _{s \in S}\|s m\|<\varepsilon\right\}
$$

($\|x\|=\min _{n \in \mathbb{Z}}|x-n|$, the absolute fractional part) for which

History

On the iterated difference set $D(D(A))$
Theorem (Bogolyubov)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there is a Bohr set set

$$
B(S, \varepsilon)=\left\{m \in \mathbb{Z}: \max _{s \in S}\|s m\|<\varepsilon\right\}
$$

($\|x\|=\min _{n \in \mathbb{Z}}|x-n|$, the absolute fractional part) for which

$$
D(D(A))=A-A+A-A \supseteq B(S, \varepsilon) .
$$

History

History

(It was an important tool at the proof of Freiman-Ruzsa theorem)

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

Theorem (Křiž)

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

Theorem (Kříž)
There is a set A with positive upper density whose difference set contains no Bohr set

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

Theorem (Ḱ̌̌̃

There is a set A with positive upper density whose difference set contains no Bohr set

Question

History

(It was an important tool at the proof of Freiman-Ruzsa theorem) On the other hand

Theorem (Kříž)

There is a set A with positive upper density whose difference set contains no Bohr set

Question

What about the structure of $D(A)$?

History

History

In 1985 Bergelson proved

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$.

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k there exists an infinite set B of integers for

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k there exists an infinite set B of integers for which $A-A \supseteq B+B+\cdots+B$, (k times)

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k there exists an infinite set B of integers for which $A-A \supseteq B+B+\cdots+B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k there exists an infinite set B of integers for which $A-A \supseteq B+B+\cdots+B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

Remark

Bergelson's theorem has a stronger form.

History

In 1985 Bergelson proved
Theorem
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. For every k there exists an infinite set B of integers for which $A-A \supseteq B+B+\cdots+B$, (k times)

Corollary

Erdős and Sárközy's result on a.p.

Remark

Bergelson's theorem has a stronger form. It will be revisited at the second proof

A combinatorial proof I

A combinatorial proof I

Proof (Sketch) :

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1 .
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

Lemma

If $\bar{d}\left(A_{i}\right)=\rho>0$,

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

Lemma

If $\bar{d}\left(A_{i}\right)=\rho>0$, there exists an $U \subseteq L$

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

Lemma

If $\bar{d}\left(A_{i}\right)=\rho>0$, there exists an $U \subseteq L$ such that

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

Lemma

If $\bar{d}\left(A_{i}\right)=\rho>0$, there exists an $U \subseteq L$ such that

$$
A^{\prime}-A^{\prime}+U=L
$$

A combinatorial proof I

Proof (Sketch) :

Let

$$
A_{i}:=\{a \in A: a \equiv i(\bmod k)\} ; \quad 0 \leq i \leq k-1
$$

Clearly for some $i, \bar{d}\left(A_{i}\right)=\rho>0$.
Let $A^{\prime}=A_{i}-i \subseteq L:=\{u: u \equiv 0(\bmod k)\}$.
Since $A^{\prime}-A^{\prime}=\left(A_{i}-i\right)-\left(A_{i}-i\right)=A_{i}-A_{i} \subseteq A-A$,
we are looking for the k-fold sum in $A^{\prime}-A^{\prime}$.
An easy lemma says :

Lemma

If $\bar{d}\left(A_{i}\right)=\rho>0$, there exists an $U \subseteq L$ such that

$$
A^{\prime}-A^{\prime}+U=L \quad \text { and } s:=|U| \leq \frac{2}{\rho} .
$$

A combinatorial proof I

Let

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

(this coloring is not necessary unique, so use the smallest i).

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

(this coloring is not necessary unique, so use the smallest i). By the infinite Ramsey theorem there exists a color i

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

(this coloring is not necessary unique, so use the smallest i).
By the infinite Ramsey theorem there exists a color i and an infinite subset B^{\prime} of \mathbb{Z}

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

(this coloring is not necessary unique, so use the smallest i).
By the infinite Ramsey theorem there exists a color i and an infinite subset B^{\prime} of \mathbb{Z} for which every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

A combinatorial proof I

Let

$$
\chi:(\mathbb{Z})^{k} \mapsto\{1,2, \ldots, s\}
$$

be the coloring of all k-tuples of integers;

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

if

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

(this coloring is not necessary unique, so use the smallest i).
By the infinite Ramsey theorem there exists a color i and an infinite subset B^{\prime} of \mathbb{Z} for which every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
\chi\left(x_{1}, x_{2}, \ldots, x_{k}\right)=i
$$

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i} .
$$

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i} .
$$

Finally let

$$
B:=B^{\prime}-\frac{u_{i}}{k}
$$

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

Finally let

$$
B:=B^{\prime}-\frac{u_{i}}{k}
$$

(recall that all $u_{i} \in U$ is divisible by k).

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i}
$$

Finally let

$$
B:=B^{\prime}-\frac{u_{i}}{k}
$$

(recall that all $u_{i} \in U$ is divisible by k). Now

$$
\left(B+\frac{u_{i}}{k}\right)+\left(B+\frac{u_{i}}{k}\right)+\ldots\left(B+\frac{u_{i}}{k}\right)=
$$

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i} .
$$

Finally let

$$
B:=B^{\prime}-\frac{u_{i}}{k}
$$

(recall that all $u_{i} \in U$ is divisible by k). Now

$$
\left(B+\frac{u_{i}}{k}\right)+\left(B+\frac{u_{i}}{k}\right)+\ldots\left(B+\frac{u_{i}}{k}\right)=k B^{\prime} \subseteq A^{\prime}-A^{\prime}+u_{i}
$$

A combinatorial proof I

It means that for every $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in B^{\prime}$,

$$
x_{1}+x_{2}+\cdots+x_{k} \in A^{\prime}-A^{\prime}+u_{i} .
$$

Finally let

$$
B:=B^{\prime}-\frac{u_{i}}{k}
$$

(recall that all $u_{i} \in U$ is divisible by k). Now

$$
\left(B+\frac{u_{i}}{k}\right)+\left(B+\frac{u_{i}}{k}\right)+\ldots\left(B+\frac{u_{i}}{k}\right)=k B^{\prime} \subseteq A^{\prime}-A^{\prime}+u_{i}
$$

and so $k B \subseteq A^{\prime}-A^{\prime}$ as we wanted.

A combinatorial proof I

Remark

A combinatorial proof I

Remark

This proof works in another structure too :

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G.

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$ then G is said to be σ-finite group respect to $\left\{H_{n}\right\}$)

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$ then G is said to be σ-finite group respect to $\left\{H_{n}\right\}$)
\diamond in some LCA group

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$ then G is said to be σ-finite group respect to $\left\{H_{n}\right\}$)
\diamond in some LCA group where an appropriate notion of density can be built

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$ then G is said to be σ-finite group respect to $\left\{H_{n}\right\}$)
\diamond in some LCA group where an appropriate notion of density can be built (some nice work of Révész)

A combinatorial proof I

Remark

This proof works in another structure too:
\diamond in higher dimension sets (for all \mathbb{N}^{k})
\diamond in σ-finite groups (G is countable torsion abelian group $H_{1} \subseteq H_{2} \subseteq \ldots H_{n} \subseteq \ldots$ finite subgroups of G. If $G=\cup_{n} H_{n}$ then G is said to be σ-finite group respect to $\left\{H_{n}\right\}$)
\diamond in some LCA group where an appropriate notion of density can be built (some nice work of Révész)

A structure theorem of Raimi

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a $W(k, r)$ such that if the integers $\{1,2, \ldots, W(k, r)\}$ are colored with r colors,

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a $W(k, r)$ such that if the integers $\{1,2, \ldots, W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a $W(k, r)$ such that if the integers $\{1,2, \ldots, W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

Remark

The arithmetic progression is not necessary infinite

A structure theorem of Raimi

One of the first Ramsey-type result in AC is the well-known van der Waerden theorem :

Theorem

For any given positive integers r, k there exists a $W(k, r)$ such that if the integers $\{1,2, \ldots, W(k, r)\}$ are colored with r colors, then there exists a monochromatic k-term arithmetic progression

Remark

The arithmetic progression is not necessary infinite

Question

Is there a set E s.t. any coloring of \mathbb{N} there exists a color class containing an INFINITE sub-pattern of E and E^{c} ?

A structure theorem of Raimi

A structure theorem of Raimi

In 1968 Raimi proved the following :

A structure theorem of Raimi

In 1968 Raimi proved the following :

Theorem (Raimi)

There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N}=\bigcup_{i=1}^{r} D_{i}$ there exist $i \in\{1,2, \ldots, r\}$ and $k \in \mathbb{N}$ such that $\left(D_{i}+k\right) \cap E$ is infinite and $\left(D_{i}+k\right) \backslash E$ is infinite

A structure theorem of Raimi

In 1968 Raimi proved the following :

Theorem (Raimi)

There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N}=\bigcup_{i=1}^{r} D_{i}$ there exist $i \in\{1,2, \ldots, r\}$ and $k \in \mathbb{N}$ such that $\left(D_{i}+k\right) \cap E$ is infinite and $\left(D_{i}+k\right) \backslash E$ is infinite

One can perform it as

Theorem

There exists $E \subseteq \mathbb{N}$ such that, whenever r-coloring of integers, there exists a monochromatic subsets D_{i} and $k \in \mathbb{N}$ for which

$$
k \in\left(E-D_{i}\right) \cap\left(E^{c}-D_{i}\right)
$$

and the representation of k as a difference is infinite both in the two sets . (E^{c} is the complement of E with respect to \mathbb{N}.)

A structure theorem of Raimi

A structure theorem of Raimi

Remark

Raimi's original proof used a topological result.

A structure theorem of Raimi

Remark

Raimi's original proof used a topological result.

I generalized this structure theorem

A structure theorem of Raimi

Remark

Raimi's original proof used a topological result.

I generalized this structure theorem

Definition

Given a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{N}, $F S\left(x_{0},\left\{x_{n}\right\}_{n=1}^{\infty}\right)=\left\{x_{0}+\sum_{n \in F} x_{n}: F\right.$ is a finite nonempty subset of $\left.\mathbb{N}\right\}$.

A structure theorem of Raimi

A structure theorem of Raimi

A structure theorem of Raimi

Theorem
 Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.

A structure theorem of Raimi

Theorem
 Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.
 There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$

A structure theorem of Raimi

Theorem
 Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.
 There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.
There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.
There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.
There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$ and an infinite sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$. There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$ and an infinite sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$
h \in F S\left(x_{0},\left\{x_{n}\right\}_{n=1}^{\infty}\right)
$$

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$. There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$ and an infinite sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$
h \in F S\left(x_{0},\left\{x_{n}\right\}_{n=1}^{\infty}\right)
$$

and every $i \in\{1,2, \ldots, r\}$,

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$. There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$ and an infinite sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$
h \in F S\left(x_{0},\left\{x_{n}\right\}_{n=1}^{\infty}\right)
$$

and every $i \in\{1,2, \ldots, r\}$,

$$
\left|\left(F_{m}+h\right) \cap E_{i}\right|=\infty
$$

A structure theorem of Raimi

Theorem

Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$. There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r} E_{i}$ such that for every $i \in\{1,2, \ldots, r\}$,

$$
d\left(E_{i}\right)=\alpha_{i}
$$

and for each t-coloring of integers, there exists a monochromatic subsets $F_{m},(m \in\{1,2, \ldots, t\})$ and an infinite sequence $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{N}$ such that for every

$$
h \in F S\left(x_{0},\left\{x_{n}\right\}_{n=1}^{\infty}\right)
$$

and every $i \in\{1,2, \ldots, r\}$,

$$
\left|\left(F_{m}+h\right) \cap E_{i}\right|=\infty
$$

i.e. $\exists F_{m}$ such the it contains an infinite copy of sub-pattern from each E_{i}.

A structure theorem of Raimi

A structure theorem of Raimi

Remark

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in $[0,1]$ for some irrational number η.

A structure theorem of Raimi

Remark

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in $[0,1]$ for some irrational number η.

Sketch of the proof :

A structure theorem of Raimi

Remark

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in $[0,1]$ for some irrational number η.

Sketch of the proof :

1. Construction of $E_{1}, E_{2}, \ldots E_{r}$:

A structure theorem of Raimi

Remark

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in $[0,1]$ for some irrational number η.

Sketch of the proof :

1. Construction of $E_{1}, E_{2}, \ldots E_{r}$:

Recall that if η is a nonzero irrational number, then $\{\|\eta x\|: x \in \mathbb{N}\}$ is uniformly distributed mod1.

A structure theorem of Raimi

Remark

1. In this theorem for "each t-coloring of integers" \mathbb{N} can be replaced to any infinite sequence A for which $\|\eta A\|$ is dense in $[0,1]$ for some irrational number η.

Sketch of the proof :

1. Construction of $E_{1}, E_{2}, \ldots E_{r}$:

Recall that if η is a nonzero irrational number, then $\{\|\eta x\|: x \in \mathbb{N}\}$ is uniformly distributed mod1.
Let $r \in \mathbb{N}$ and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$.

A structure theorem of Raimi

A structure theorem of Raimi

Let $s_{0}=0$

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $s_{r}=1$).

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $\left.s_{r}=1\right)$.For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $\left.s_{r}=1\right)$.For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

For $i \in\{1,2, \ldots, r\}$ let $J_{i}=\bigcup_{j=0}^{\infty} J_{i, j}$

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $s_{r}=1$). For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

For $i \in\{1,2, \ldots, r\}$ let $J_{i}=\bigcup_{j=0}^{\infty} J_{i, j}$ and let

$$
E_{i}=\left\{x \in \mathbb{N}:\|\eta x\| \in J_{i}\right\}
$$

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $s_{r}=1$). For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

For $i \in\{1,2, \ldots, r\}$ let $J_{i}=\bigcup_{j=0}^{\infty} J_{i, j}$ and let

$$
E_{i}=\left\{x \in \mathbb{N}:\|\eta x\| \in J_{i}\right\}
$$

Then $\mu\left(J_{i}\right)=\sum_{j=0}^{\infty} \frac{s_{i}-s_{i-1}}{2^{j+1}}=\alpha_{i}$.

A structure theorem of Raimi

Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}$ (so $\left.s_{r}=1\right)$.For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

For $i \in\{1,2, \ldots, r\}$ let $J_{i}=\bigcup_{j=0}^{\infty} J_{i, j}$ and let

$$
E_{i}=\left\{x \in \mathbb{N}:\|\eta x\| \in J_{i}\right\}
$$

Then $\mu\left(J_{i}\right)=\sum_{j=0}^{\infty} \frac{s_{i}-s_{i-1}}{2^{j+1}}=\alpha_{i}$.

Lemma

$$
d\left(E_{i}\right)=\alpha_{i}
$$

A structure theorem of Raimi

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).
3. Construction of the infinite cube $\operatorname{FS}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).
3. Construction of the infinite cube $\operatorname{FS}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

Lemma

For every $\varepsilon>0$

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).
3. Construction of the infinite cube $\operatorname{FS}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

Lemma

For every $\varepsilon>0$ there exists an infinite set $\left\{x_{n}\right\}_{n=1}^{\infty}$ s.t.

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).
3. Construction of the infinite cube $\operatorname{FS}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

Lemma

For every $\varepsilon>0$ there exists an infinite set $\left\{x_{n}\right\}_{n=1}^{\infty}$ s.t. for every $y \in F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

A structure theorem of Raimi

2. For any coloring of \mathbb{N} the existence of a color class F_{m} :

Lemma

There exists $m \in\{1,2, \ldots, t\}$ and a, b, with $0 \leq a<b \leq 1$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b).
3. Construction of the infinite cube $\operatorname{FS}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

Lemma

For every $\varepsilon>0$ there exists an infinite set $\left\{x_{n}\right\}_{n=1}^{\infty}$ s.t. for every $y \in F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)\|\eta y\|<\varepsilon$.

A structure theorem of Raimi

A structure theorem of Raimi

4. Final step :

A structure theorem of Raimi

4. Final step :
 Since there is an m

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b)

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b) we could find an x_{0} and an subscript j

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b) we could find an x_{0} and an subscript j such that for every $y \in F S\left(0,\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b) we could find an x_{0} and an subscript j such that for every $y \in F S\left(0,\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

$$
\left\|\eta\left(\left(x_{0}+y\right)+F_{m}\right)\right\| \supseteq \cup_{i=1}^{r} J_{i, j}
$$

A structure theorem of Raimi

4. Final step :

Since there is an m and an interval $(a, b) \subseteq(0,1)$ such that $\left\{\|\eta x\|: x \in F_{m}\right\}$ is dense in (a, b) we could find an x_{0} and an subscript j such that for every $y \in F S\left(0,\left\{x_{n}\right\}_{n=1}^{\infty}\right)$

$$
\left\|\eta\left(\left(x_{0}+y\right)+F_{m}\right)\right\| \supseteq \cup_{i=1}^{r} J_{i, j}
$$

and hence $\left(x_{0}+y\right)+F_{m}$ intersects all E_{i} in an infinite set.

Third (combinatorial proof) of Bergelson's theorem

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us)

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function and $C \subseteq \mathbb{N} ; C \neq \emptyset$.

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function and $C \subseteq \mathbb{N} ; C \neq \emptyset$.

$$
F S_{f}(C):=\left\{\sum_{c_{i} \in X} w_{i} c_{i}: X \subseteq C,|X|<\infty ; w_{i} \in[1, f(i)] \cap \mathbb{N}\right\}
$$

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function and $C \subseteq \mathbb{N} ; C \neq \emptyset$.

$$
F S_{f}(C):=\left\{\sum_{c_{i} \in X} w_{i} c_{i}: X \subseteq C,|X|<\infty ; w_{i} \in[1, f(i)] \cap \mathbb{N}\right\}
$$

(Let the sum be zero, when X is the empty set)

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function and $C \subseteq \mathbb{N} ; C \neq \emptyset$.

$$
F S_{f}(C):=\left\{\sum_{c_{i} \in X} w_{i} c_{i}: X \subseteq C,|X|<\infty ; w_{i} \in[1, f(i)] \cap \mathbb{N}\right\}
$$

(Let the sum be zero, when X is the empty set)
Furthermore write

Third (combinatorial proof) of Bergelson's theorem

Some years ago Ruzsa and me observed a third proof in a stronger form (also obtained by Bergelson before us) (published just in 2016)

Definition

Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function and $C \subseteq \mathbb{N} ; C \neq \emptyset$.

$$
F S_{f}(C):=\left\{\sum_{c_{i} \in X} w_{i} c_{i}: X \subseteq C,|X|<\infty ; w_{i} \in[1, f(i)] \cap \mathbb{N}\right\}
$$

(Let the sum be zero, when X is the empty set)
Furthermore write

$$
F P(C):=\left\{\prod_{c_{i} \in X} c_{i}: X \subseteq C ; X \neq \emptyset,|X|<\infty\right\}
$$

A combinatorial proof II

A combinatorial proof II

Theorem
 Let A be a set of integers

A combinatorial proof II

Theorem
Let A be a set of integers $\bar{d}(A)>0$.

A combinatorial proof II

Theorem
Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function.

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers,

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C) .
$$

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C)
$$

For the proof we need the following

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C)
$$

For the proof we need the following

Lemma (FøIner)

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C) .
$$

For the proof we need the following
Lemma (Følner)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$.

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C) .
$$

For the proof we need the following
Lemma (FøIner)
Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there exists a Bohr set $B=B(S, \varepsilon)$

A combinatorial proof II

Theorem

Let A be a set of integers $\bar{d}(A)>0$. Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}$be any function. There exists an infinite set C of integers, such that

$$
A-A \supseteq F S_{f}(C) \cup F P(C)
$$

For the proof we need the following

Lemma (FøIner)

Let $A \subseteq \mathbb{N}$ with $\bar{d}(A)>0$. Then there exists a Bohr set $B=B(S, \varepsilon)$ for which

$$
d(B(S, \varepsilon) \backslash(A-A))=0
$$

A combinatorial proof II

A combinatorial proof II

Third Proof :[H., Ruzsa]

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$.

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$.

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A
$$

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$,

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$, and let $K:=\max \left\{f(n+1), p_{m}\right\}$.

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$, and let $K:=\max \left\{f(n+1), p_{m}\right\}$. Define

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$, and let $K:=\max \left\{f(n+1), p_{m}\right\}$. Define

$$
\begin{equation*}
\varepsilon_{1}=\frac{1}{K} \min \left\{\varepsilon-\|x s\|: x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) ; s \in S\right\} \tag{1}
\end{equation*}
$$

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$, and let $K:=\max \left\{f(n+1), p_{m}\right\}$. Define

$$
\begin{equation*}
\varepsilon_{1}=\frac{1}{K} \min \left\{\varepsilon-\|x s\|: x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) ; s \in S\right\} \tag{1}
\end{equation*}
$$

and let $B_{1}:=B\left(S, \varepsilon_{1}\right)$.

A combinatorial proof II

Third Proof :[H., Ruzsa]
The set C inductively.
Let $K_{1}:=f(1)$. One can find an element c_{1} from $B\left(S, \varepsilon / K_{1}\right)$ such that $i c_{1} \notin E:=B(S, \varepsilon) \backslash(A-A)$ for $i=1,2, \ldots K_{1}$. So we have

$$
F S_{f}\left(\left\{c_{1}\right\}\right) \cup F P\left(\left\{c_{1}\right\}\right)=\left\{0, c_{1}, \ldots, K_{1} c_{1}\right\} \subseteq B \backslash E \subseteq A-A .
$$

Assume now that the elements $c_{1}<c_{2}<\cdots<c_{n}$ have been defined with the property

$$
\mathcal{F}_{n}:=F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \cup F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq B \backslash E \subseteq A-A
$$

Write $\operatorname{FP}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)=\left\{p_{1}<p_{2}<\cdots<p_{m}\right\}$, and let $K:=\max \left\{f(n+1), p_{m}\right\}$. Define

$$
\begin{equation*}
\varepsilon_{1}=\frac{1}{K} \min \left\{\varepsilon-\|x s\|: x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) ; s \in S\right\} \tag{1}
\end{equation*}
$$

and let $B_{1}:=B\left(S, \varepsilon_{1}\right)$. (Note that $B\left(S, \varepsilon_{1}\right) \subseteq B=B(S, \varepsilon)$.)

A combinatorial proof II

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$.

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary: for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary: for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and a $B_{1}^{\prime} \subseteq B_{1}$,

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and a $B_{1}^{\prime} \subseteq B_{1}$, such that $\underline{d}\left(B_{1}\right)>0$

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and a $B_{1}^{\prime} \subseteq B_{1}$, such that $\underline{d}\left(B_{1}\right)>0$ and $x_{0}+j_{0} B_{1}^{\prime} \subseteq E$

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary : for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and a $B_{1}^{\prime} \subseteq B_{1}$, such that $\underline{d}\left(B_{1}\right)>0$ and $x_{0}+j_{0} B_{1}^{\prime} \subseteq E$ It contradicts the fact that $d(E)=0$ and

A combinatorial proof II

By (1) we have that for every non-negative integer $i \leq K$, for every $u \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$, for every $c \in B_{1}$ and $s \in S$

$$
\|s(u+i c)\|<\varepsilon
$$

holds, hence

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B
$$

We claim that there exists an element $c \in B_{1}$, with $c>c_{1}$ for which,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\{0, c, 2 c, \ldots K \cdot c\} \subseteq B \backslash E \subseteq A-A
$$

also holds.
Contrary: for every $c \in B_{1}$ with $c>c_{1}$ there would be at least one element $x \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)$ and one integer $j \in[1, \ldots, K]$ for which $x+j c \in E$. Since $d\left(B_{1} \backslash\left[1, c_{n}\right]\right)>0$, by the pigeonhole principle there would be an $x_{0} \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right), j_{0} \in[1, \ldots, K]$ and a $B_{1}^{\prime} \subseteq B_{1}$, such that $\underline{d}\left(B_{1}\right)>0$ and $x_{0}+j_{0} B_{1}^{\prime} \subseteq E$
It contradicts the fact that $d(E)=0$ and $\underline{d}\left(x_{0}+j_{0} B_{1}^{\prime}\right)>0$.

A combinatorial proof II

A combinatorial proof II

Let c_{n+1} be any such c.

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$.

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}, c_{n+1}\right\}\right) \subseteq
$$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}, c_{n+1}\right\}\right) \subseteq
$$

$$
\subseteq F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}, c_{n+1}\right\}\right) \subseteq
$$

$$
\subseteq F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Thus we have that

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}, c_{n+1}\right\}\right) \subseteq
$$

$$
\subseteq F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Thus we have that

$$
\mathcal{F}_{n+1} \subseteq B \backslash E \subseteq A-A
$$

A combinatorial proof II

Let c_{n+1} be any such c. Since $K \geq p_{m}$ and $0 \in F S_{f}\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)$ we have

$$
c_{n+1} \cdot F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right) \subseteq\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Then by

$$
F P\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)=F P\left(\left\{c_{1}, c_{2}, \ldots c_{n-1}\right\}\right) \cdot\left\{1, c_{n}\right\}
$$

and by the inductive hypothesis $F P\left(\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}\right\}\right) \subseteq B \backslash E$. Moreover $K>f(n+1)$,

$$
F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}, c_{n+1}\right\}\right) \subseteq
$$

$$
\subseteq F S_{f}\left(\left\{c_{1}, c_{2}, \ldots c_{n}\right\}\right)+\left\{0, c_{n+1}, 2 c_{n+1}, \ldots, K \cdot c_{n+1}\right\} \subseteq B \backslash E
$$

Thus we have that

$$
\mathcal{F}_{n+1} \subseteq B \backslash E \subseteq A-A
$$

as we wanted.

Merci pour l'attention

Merci pour l'attention (Thank you for your attention)

