Combinatorial approach of some ergodic and topological Proof

$\mathbf{B}\mathbf{Y}$

N. HEGYVÁRI, Eötvös University

In the present talk I discuss some results in combinatorial number theory having ergodic or topological proof; we sketch the proof of a result of Bergelson, and we give a generalization of a theorem of Raimi which originally sounds as follows: There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N} = \bigcup_{i=1}^{r} D_i$ there exist $i \in \{1, 2, \ldots, r\}$ and $k \in \mathbb{N}$ such that $(D_i + k) \cap E$ is infinite and $(D_i + k) \setminus E$ is infinite.

The original proof of Raimi based on a topological tool; or generalization is purely combinatorial.