Title: Davenport and Gao constants for a weighted zero-sum problem with quadratic residues
Joint result with David Grynkiewicz (Memphis)
Abstract: Given a ring R and a subset A of R, the A-weighted Davenport constant is the least integer denoted by $D_{A}(R)$ such that any sequence of terms from R of length $D_{A}(R)$ has a nontrivial subsequence $g_{1} \cdot g_{2} \cdots \cdot g_{\ell}$ where the g_{i} are the terms of the subsequence, such that $0=a_{1} g_{1}+\cdots+a_{\ell} g_{\ell}$ for some $a_{i} \in A$.

Let $R=\mathbf{Z} / n \mathbf{Z}$ for an integer $n \geq 2$, regarded as a ring, let U_{n} be the set of units in R, and let $U_{n}^{2}=\left\{u^{2}: u \in U_{n}\right\}$ be the set of all squares of invertible elements.

We prove that the weighted Davenport constant $D_{U_{n}^{2}}(\mathbf{Z} / n \mathbf{Z})$ is equal to $2 \Omega(n)+1$ when $\operatorname{gcd}(n ; 10)=1$ or $\operatorname{gcd}(n ; 6)=1$, where $\Omega(n)$ denotes the total number of prime factors of n.

