q-Racah polynomials

from scalar products of Bethe states

Rodrigo Alves Pimenta

based on arXiv:2211.14727 with Pascal Baseilhac

\checkmark Bethe ansatz for XXZ: few facts
\checkmark Askey-Wilson algebra and reflection equation
\checkmark Solution of HAW operator
q-Racah polynomials and scalar products

XXZ chain

$$
H=\sum_{k=1}^{N-1}\left(\sigma_{k}^{x} \sigma_{k+1}^{x}+\sigma_{k}^{y} \sigma_{k+1}^{y}+\Delta \sigma_{k}^{z} \sigma_{k+1}^{z}\right)+\quad \text { boundary conditions }
$$

\checkmark case $\Delta=1$, pbc, solved long ago: Bethe 1931
\checkmark fundamental model in Mathematical-Physics
paralell boundary fields, solved in the 80^{\prime}
\checkmark Alcaraz et. al. (coordinate Bethe ansatz) and Sklyanin (reflection algebra).

XXZ chain

Integrability follows from the Yang-Baxter equation (bulk) and reflection equation (boundary).

From R and K,one can build the so-called transfer matrix (polynomial of conserved charges), which can (hopefully) be diagonalized with Bethe ansatz.

XXZ chain

\checkmark Bethe ansatz with longitudinal fields:

XXZ chain

But for important models we cannot easily f $\Psi_{0} \mathbf{d}$!

XXZ chain

But for important models we cannot easily f $\Psi_{0} \mathbf{d}$!

spin chains with generic boundaries
XXZ chain with anti-periodic b.
XYZ chain with periodic b.c.

XXZ chain

$$
H=\sum_{k=1}^{N-1}\left(\sigma_{k}^{x} \sigma_{k+1}^{x}+\sigma_{k}^{y} \sigma_{k+1}^{y}+\Delta \sigma_{k}^{z} \sigma_{k+1}^{z}\right)+\epsilon \sigma_{1}^{z}+\kappa^{ \pm} \sigma_{1}^{ \pm}+\nu \sigma_{N}^{z}+\tau^{ \pm} \sigma_{N}^{ \pm}
$$

Preserve integrability!

 But $\left[H, S^{z}\right] \neq 0$Thanks to the breaking of the $\mathbf{U}(1)$ symmetry, the Bethe ansatz solution of this model remained elusive for quite a while.

Modified Bethe Ansatz Belliard-Crampé 13, Belliard-P 15,...

 modified creation operator$$
\Psi=\tilde{\mathcal{B}} \ldots \tilde{\mathcal{B}} \Omega \longrightarrow \underset{\text { theory }}{\text { modified rep. }}
$$

H\Psi=E\Psi
H\Psi=E\Psi
$\Lambda Q=\Lambda_{1} Q^{+}+\Lambda_{2} Q^{-}+F \longrightarrow$ Inhomogeneous TQ (Cao-Yang-Shi-Wang, 13)

XXZ chain

Open problems

- Scalar products: (Ψ, Ψ)
$\Psi=\tilde{\mathcal{B}} \ldots \tilde{\mathcal{B}} \Omega$
- Form factors: $(\Psi, \sigma, \Psi)=$?
- k-points: $(\Psi, \sigma . . . \sigma, \Psi)=$?

$$
H \Psi=E \Psi
$$

$\Lambda Q=\Lambda_{1} Q^{+}+\Lambda_{2} Q^{-}+F \longrightarrow$ Classification of Bethe roots?

Askey-Wilson algebra

Modified Bethe ansatz can be used to solve the spectral problem of operators that appear in the qOnsager frameworkBaseilhac 04

Here we will be interested in the Askey-Wilson algebra, which can be viewed as a certain quotient of the q-Onsager algebra.

Askey-Wilson algebra

$$
\begin{aligned}
& {\left[\mathrm{A},\left[\mathrm{~A}, \mathrm{~A}^{*}\right]_{q}\right]_{q^{-1}}=\rho \mathrm{A}^{*}+\omega \mathrm{A}+\eta \mathcal{I},} \\
& {\left[\mathrm{A}^{*},\left[\mathrm{~A}^{*}, \mathrm{~A}\right]_{q}\right]_{q^{-1}}=\rho \mathrm{A}+\omega \mathrm{A}^{*}+\eta^{*} \mathrm{I}}
\end{aligned}
$$

Zhedanov 91
$[X, Y]_{q}=q X Y-q^{-1} Y X$
$\checkmark \quad$ AW provides a solution of the RE:

Askey-Wilson \& Reflection equation

$$
R(u / v)(K(u) \otimes \mathbb{I}) R(u v)(\mathbb{I} \otimes K(v))=(\mathbb{I} \otimes K(v)) R(u v)(K(u) \otimes \mathbb{I}) R(u / v)
$$

$$
R(u)=\left(\begin{array}{cccc}
u q-u^{-1} q^{-1} & 0 & 0 & 0 \\
0 & u-u^{-1} & q-q^{-1} & 0 \\
0 & q-q^{-1} & u-u^{-1} & 0 \\
0 & 0 & 0 & u q-u^{-1} q^{-1}
\end{array}\right)
$$

$$
K(u)=\left(\begin{array}{cc}
\mathcal{A}(u) & \mathcal{B}(u) \\
\mathcal{C}(u) & \mathcal{D}(u)
\end{array}\right)
$$

$$
\begin{aligned}
& \mathcal{A}(u)=\left(u^{2}-u^{-2}\right)\left(q u A-q^{-1} u^{-1} A^{*}\right)-\left(q+q^{-1}\right) \rho^{-1}\left(\eta u+\eta^{*} u^{-1}\right), \\
& \mathcal{D}(u)=\left(u^{2}-u^{-2}\right)\left(q u A^{*}-q^{-1} u^{-1} A\right)-\left(q+q^{-1}\right) \rho^{-1}\left(\eta^{*} u+\eta u^{-1}\right), \\
& \mathcal{B}(u)=\chi\left(u^{2}-u^{-2}\right)\left(\rho^{-1}\left(\left[\mathcal{A}^{*}, A\right]_{q}+\frac{\omega}{q-q^{-1}}\right)+\frac{q u^{2}+q^{-1} u^{-2}}{q^{2}-q^{-2}}\right), \\
& \mathcal{C}(u)=\rho \chi^{-1}\left(u^{2}-u^{-2}\right)\left(\rho^{-1}\left(\left[A, A^{*}\right]_{q}+\frac{\omega}{q-q^{-1}}\right)+\frac{q u^{2}+q^{-1} u^{-2}}{q^{2}-q^{-2}}\right)
\end{aligned}
$$

Transfer matrix

To build the transfer matrix we consider the most general scalar solution of the dual reflection equation.

$$
K^{+}(u)=\left(\begin{array}{cc}
q u \kappa+q^{-1} u^{-1} \kappa^{*} & \kappa_{+}\left(q^{2} u^{2}-q^{-2} u^{-2}\right) \\
\kappa_{-} \rho\left(q^{2} u^{2}-q^{-2} u^{-2}\right) & q u \kappa^{*}+q^{-1} u^{-1} \kappa
\end{array}\right)
$$

\checkmark Transfer matrix:

$$
t(u)=\operatorname{tr}\left(K^{+}(u) K(u)\right)
$$

Transfer matrix

$$
t(u)=\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\left(u^{2}-u^{-2}\right)\left(\kappa \mathrm{A}+\kappa^{*} \mathrm{~A}^{*}+\kappa_{+} \chi^{-1}\left[\mathrm{~A}, \mathrm{~A}^{*}\right]_{q}+\kappa_{-} \chi\left[\mathrm{A}^{*}, \mathrm{~A}\right]_{q}\right)+\mathcal{F}_{0}(u)
$$

Ann. Henri Poincaré 20 (2019), 3091-3112 © 2019 Springer Nature Switzerland AG

 1424-0637/19 (1993991-22 published online July 2,2019https://doi.org/10.1007/s00023-019-00821-3
The Heun-Askey-Wilson Algebra and the Heun Operator of Askey-Wilson Type

Pascal Baseilhac, Satoshi Tsujimoto, Luc Vinet©

Heun-Askey-Wilson operator
Baseilhac-Tsujimoto-Vinet-Zhedanov 18

The spectral problem of the HAW operator is the same as the spectral problem of the transfer matrix.

Modified Bethe ansatz and Leonard pairs

Leonard pairs

From the theory of Leonard pairs, we know how A and \mathbf{A}^{*} act on finite dim representationwiliger+Vidunas 03

$\left\{\left|\theta_{1}^{*}\right\rangle,\left|\theta_{1}^{*}\right\rangle, \ldots,\left|\theta_{2 s}^{*}\right\rangle\right\}$ $\operatorname{dim}(V)=2 s+1$

$$
\bar{\pi}(\mathrm{A})\left|\theta_{M}\right\rangle=\theta_{M}\left|\theta_{M}\right\rangle, \quad \bar{\pi}\left(\mathrm{A}^{*}\right)\left|\theta_{M}\right\rangle=a_{M, M+1}\left|\theta_{M+1}\right\rangle+a_{M, M}\left|\theta_{M}\right\rangle+a_{M, M-1}\left|\theta_{M-1}\right\rangle
$$

$\boldsymbol{V} \overline{\bar{\pi}}\left(\mathrm{A}^{*}\right)\left|\theta_{M}^{*}\right\rangle=\theta_{M}^{*}\left|\theta_{M}^{*}\right\rangle, \quad \bar{\pi}(\mathrm{A})\left|\theta_{M}^{*}\right\rangle=a_{M, M+1}^{*}\left|\theta_{M+1}^{*}\right\rangle+a_{M, M}^{*}\left|\theta_{M}^{*}\right\rangle+a_{M, M-1}^{*}\left|\theta_{M-1}^{*}\right\rangle$

Leonard pairs

$\checkmark \quad$ Parametrization of the eigenvalues:

$$
\theta_{M}=b q^{2 M}+c q^{-2 M}, \quad \theta_{M}^{*}=b^{*} q^{2 M}+c^{*} q^{-2 M}
$$

Recall the transfer matrix:

$$
t(u)=a(u) \mathcal{A}(u)+b(u) \mathcal{B}(u)+c(u) \mathcal{C}(u)+d(u) \mathcal{D}(u)
$$

Two-problems: B, C in t , and cannot find $\mathrm{C}(\mathrm{u}) \mid 0>=0$.

Gauge transformation

\checkmark Manipulate the transfer matrix(Cao-Yang-Shi-Wang, 03)

```
\epsilon=\pm1,\alpha,\beta be generic complex parameters and m be an integer
```

$$
\left|X^{\epsilon}(u, m)\right\rangle=\binom{\alpha q^{\epsilon m} u^{\epsilon}}{1}, \quad\left|Y^{\epsilon}(u, m)\right\rangle=\binom{\beta q^{-\epsilon m} u^{\epsilon}}{1}
$$

$$
\left\langle\tilde{X}^{\epsilon}(u, m)\right|=-\epsilon \frac{q^{-\epsilon} u^{-\epsilon}}{\gamma^{\epsilon}(1, m-1)}\left(\begin{array}{cc}
-1 & \alpha q^{\epsilon m} u^{\epsilon}
\end{array}\right), \quad\left\langle\tilde{Y}^{\epsilon}(u, m)\right|=-\epsilon \frac{q^{-\epsilon} u^{-\epsilon}}{\gamma^{\epsilon}(1, m+1)}\left(\begin{array}{cc}
1 & -\beta q^{-\epsilon m} u^{\epsilon}
\end{array}\right)
$$

$$
\gamma^{\epsilon}(u, m)=\alpha^{\frac{1-\epsilon}{2}} \beta^{\frac{\epsilon+1}{2}} q^{-m} u-\alpha^{\frac{\epsilon+1}{2}} \beta^{\frac{1-\epsilon}{2}} q^{m} u^{-1}
$$

Gauge transformation

Dynamical operators

$$
\begin{aligned}
& \mathscr{A}^{\epsilon}(u, m)=\left\langle\tilde{Y}^{\epsilon}(u, m-2)\right| K(u)\left|X^{\epsilon}\left(u^{-1}, m\right)\right\rangle, \\
& \mathscr{B}^{\epsilon}(u, m)=\left\langle\tilde{Y}^{\epsilon}(u, m)\right| K(u)\left|Y^{\epsilon}\left(u^{-1}, m\right)\right\rangle, \\
& \mathscr{C}^{\epsilon}(u, m)=\left\langle\tilde{X}^{\epsilon}(u, m)\right| K(u)\left|X^{\epsilon}\left(u^{-1}, m\right)\right\rangle, \\
& \mathscr{D}^{\epsilon}(u, m)=\frac{\gamma^{\epsilon}(1, m+1)}{\gamma^{\epsilon}(1, m)}\left\langle\tilde{X}^{\epsilon}(u, m+2)\right| K(u)\left|Y^{\epsilon}\left(u^{-1}, m\right)\right\rangle-\frac{\left(q-q^{-1}\right) \gamma^{\epsilon}\left(u^{-2}, m+1\right)}{\left(q u^{2}-q^{-1} u^{-2}\right) \gamma^{\epsilon}(1, m)} \mathscr{A}^{\epsilon}(u, m)
\end{aligned}
$$

\checkmark Transfer matrix

$$
t(u)=\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\left(a(u, m) \mathscr{A}^{\epsilon}(u, m)+d(u, m) \mathscr{D}^{\epsilon}(u, m)+b(u, m) \mathscr{B}^{\epsilon}(u, m)+c(u, m) \mathscr{C}^{\epsilon}(u, m)\right)
$$

Gauge transformation

$$
\begin{aligned}
& a(u, m)=\frac{\alpha u^{2 \epsilon}\left(\kappa u+\kappa^{*} u^{-1}\right)+u^{\epsilon}\left(u^{2}-u^{-2}\right) q^{-(m+1) \epsilon}\left(\kappa_{+}-\alpha \beta \kappa_{-} \rho\right)-\beta q^{-(2 m+2) \epsilon}\left(\kappa^{*} u+\kappa u^{-1}\right)}{\left(\alpha-\beta q^{-\epsilon(2 m+2)}\right)\left(q u^{2}-q^{-1} u^{-2}\right)}, \\
& d(u, m)=\frac{-\beta u^{2 \epsilon} q^{-(2 m+1) \epsilon}\left(q \kappa u+q^{-1} \kappa^{*} u^{-1}\right)-u^{\epsilon} q^{-(m+1) \epsilon}\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\left(\kappa_{+}-\alpha \beta \kappa_{-} \rho\right)+\alpha q^{-\epsilon}\left(q \kappa^{*} u+q^{-1} \kappa u^{-1}\right)}{\left(\alpha-\beta q^{-\epsilon(2 m+2)}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)} \\
& b(u, m)=\frac{u^{\epsilon}\left(\alpha^{2} \kappa_{-} \rho q^{(m+2) \epsilon}-\alpha \epsilon q^{\epsilon} \kappa^{\frac{\epsilon+1}{2}} \kappa^{* \frac{1-\epsilon}{2}}-\kappa+q^{-m \epsilon}\right)}{\alpha-\beta q^{-2 m \epsilon}}, \\
& c(u, m)=\frac{u^{\epsilon}\left(-\beta^{2} \kappa_{-} \rho q^{(2-3 m) \epsilon}+\beta \epsilon q^{(1-2 m) \epsilon} \kappa^{\frac{\epsilon+1}{2}} \kappa^{* \frac{1-\epsilon}{2}}+\kappa_{+} q^{-m \epsilon}\right)}{\alpha-\beta q^{-2 m \epsilon}} .
\end{aligned}
$$

Gauge transformation

Example:

$$
\begin{aligned}
& \mathscr{B}^{-}(u, m)=\frac{\beta b\left(u^{2}\right) q^{2 m+1}}{\alpha q^{-2}-\beta q^{2 m}}\left(\frac{u \chi q^{-m-1}}{\beta \rho}\left[\mathrm{~A}^{*}, \mathrm{~A}\right]_{q}-\frac{\beta u q^{m-1}}{\chi}\left[\mathrm{~A}, \mathrm{~A}^{*}\right]_{q}+\frac{\left(q^{2} u^{4}+1\right)}{q^{2} u} \mathrm{~A}-\frac{\left(q^{2}+1\right) u}{q^{2}} \mathrm{~A}^{*}\right. \\
& \left.\quad-\frac{q^{-m-4}}{\beta \rho \chi b\left(q^{2}\right)}\left(\rho q^{2}\left(q^{2} u^{3}+u^{-1}\right)\left(\beta^{2} \rho q^{2 m}-\chi^{2}\right)+\left(q^{2}+1\right) u\left(\omega\left(\beta^{2} \rho q^{2 m+2}-q^{2} \chi^{2}\right)+\beta\left(q^{4}-1\right) \eta \chi q^{m}\right)\right)\right)
\end{aligned}
$$

Commutation relations: dynamical operators

Commutation relations

$$
\begin{aligned}
\mathscr{B}^{\epsilon}(u, m+2) \mathscr{B}^{\epsilon}(v, m)= & \mathscr{B}^{\epsilon}(v, m+2) \mathscr{B}^{\epsilon}(u, m), \\
\mathscr{A}^{\epsilon}(u, m+2) \mathscr{B}^{\epsilon}(v, m)= & f(u, v) \mathscr{B}^{\epsilon}(v, m) \mathscr{A}^{\epsilon}(u, m) \\
& +g(u, v, m) \mathscr{B}^{\epsilon}(u, m) \mathscr{A}^{\epsilon}(v, m)+w(u, v, m) \mathscr{B}^{\epsilon}(u, m) \mathscr{D}^{\epsilon}(v, m) \\
\mathscr{D}^{\epsilon}(u, m+2) \mathscr{B}^{\epsilon}(v, m)= & h(u, v) \mathscr{B}^{\epsilon}(v, m) \mathscr{D}^{\epsilon}(u, m), \\
& +k(u, v, m) \mathscr{B}^{\epsilon}(u, m) \mathscr{D}^{\epsilon}(v, m)+n(u, v, m) \mathscr{B}^{\epsilon}(u, m) \mathscr{A}^{\epsilon}(v, m)
\end{aligned}
$$

Define the string of creation operators

$$
\begin{aligned}
B^{\epsilon}(\bar{u}, m, M) & =\mathscr{B}^{\epsilon}\left(u_{1}, m+2(M-1)\right) \cdots \mathscr{B}^{\epsilon}\left(u_{M}, m\right), \\
B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m, M\right) & =\mathscr{B}^{\epsilon}\left(u_{1}, m+2(M-1)\right) \cdots \mathscr{B}^{\epsilon}(u, m+2(M-i)) \ldots \mathscr{B}^{\epsilon}\left(u_{M}, m\right)
\end{aligned}
$$

Commutation relations: dynamical operators

\checkmark Commutation relations

$$
\begin{aligned}
\mathscr{C}^{\epsilon}(u, m-2) \mathscr{C}^{\epsilon}(v, m)= & \mathscr{C}^{\epsilon}(v, m-2) \mathscr{C}^{\epsilon}(u, m), \\
\mathscr{C}^{\epsilon}(v, m+2) \mathscr{A}^{\epsilon}(u, m+2)= & f(u, v) \mathscr{A}^{\epsilon}(u, m) \mathscr{C}^{\epsilon}(v, m+2) \\
& +g(u, v, m) \mathscr{A}^{\epsilon}(v, m) \mathscr{C}^{\epsilon}(u, m+2)+w(v, u, m) \mathscr{D}^{\epsilon}(v, m) \mathscr{C}^{\epsilon}(u, m+2), \\
\mathscr{C}^{\epsilon}(v, m+2) \mathscr{D}^{\epsilon}(u, m+2)= & h(u, v) \mathscr{D}^{\epsilon}(u, m) \mathscr{C}^{\epsilon}(v, m+2) \\
& +k(u, v, m) \mathscr{D}^{\epsilon}(v, m) \mathscr{C}^{\epsilon}(u, m+2)+n(u, v, m) \mathscr{A}^{\epsilon}(v, m) \mathscr{C}^{\epsilon}(u, m+2)
\end{aligned}
$$

Define the string of creation operators

$$
C^{\epsilon}(\bar{v}, m, N)=\mathscr{C}^{\epsilon}\left(v_{1}, m+2\right) \cdots \mathscr{C}^{\epsilon}\left(v_{N}, m+2 N\right)
$$

$$
C^{\epsilon}\left(\left\{v, \bar{v}_{i}\right\}, m, N\right)=\mathscr{C}^{\epsilon}\left(v_{1}, m+2\right) \cdots \mathscr{C}^{\epsilon}(v, m+2 i) \cdots \mathscr{C}^{\epsilon}\left(v_{N}, m+2 N\right)
$$

Commutation relations: dynamical operators

$$
f(u, v)=\frac{b(q v / u) b(u v)}{b(v / u) b(q u v)}, \quad h(u, v)=\frac{b\left(q^{2} u v\right) b(q u / v)}{b(q u v) b(u / v)}
$$

$b(x)=x-x^{-1}$

Commutation relations: dynamical operators

Multiple actions

$$
\begin{aligned}
\mathscr{A}^{\epsilon}(u, m+2 M) B^{\epsilon}(\bar{u}, m, M) & =\prod_{i=1}^{M} f\left(u, u_{i}\right) B^{\epsilon}(\bar{u}, m, M) \mathscr{A}^{\epsilon}(u, m) \\
& +\sum_{i=1}^{M} g\left(u, u_{i}, m+2(M-1)\right) \prod_{j=1, j \neq i}^{M} f\left(u_{i}, u_{j}\right) B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m, M\right) \mathscr{A}^{\epsilon}\left(u_{i}, m\right) \\
& +\sum_{i=1}^{M} w\left(u, u_{i}, m+2(M-1)\right) \prod_{j=1, j \neq i}^{M} h\left(u_{i}, u_{j}\right) B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m, M\right) \mathscr{D}^{\epsilon}\left(u_{i}, m\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{D}^{\epsilon}(u, m+2 M) B^{\epsilon}(\bar{u}, m, M) & =\prod_{i=1} h\left(u, u_{i}\right) B^{\epsilon}(\bar{u}, m, M) \mathscr{D}^{\epsilon}(u, m) \\
& +\sum_{i=1}^{M} k\left(u, u_{i}, m+2(M-1)\right) \prod_{j=1, j \neq i}^{M} h\left(u_{i}, u_{j}\right) B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m, M\right) \mathscr{D}^{\epsilon}\left(u_{i}, m\right) \\
& +\sum_{i=1}^{M} n\left(u, u_{i}, m+2(M-1)\right) \prod_{j=1, j \neq i}^{M} f\left(u_{i}, u_{j}\right) B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m, M\right) \mathscr{A}^{\epsilon}\left(u_{i}, m\right)
\end{aligned}
$$

Commutation relations: dynamical operators

Multiple actions

$$
\begin{aligned}
& C^{\epsilon}(\bar{v}, m, N) \mathscr{A}^{\epsilon}(v, m+2 N)=f(v, \bar{v}) \mathscr{A}^{\epsilon}(v, m) C^{\epsilon}(\bar{v}, m, N) \\
&+\sum_{i=1}^{N} g\left(v, v_{i}, m+2(N-1)\right) f\left(v_{i}, \bar{v}_{i}\right) \mathscr{A}^{\epsilon}\left(v_{i}, m\right) C^{\epsilon}\left(\left\{v, \bar{v}_{i}\right\}, m, N\right) \\
&+\sum_{i=1}^{N} w\left(v, v_{i}, m+2(N-1)\right) h\left(v_{i}, \bar{v}_{i}\right) \mathscr{D}^{\epsilon}\left(v_{i}, m\right) C^{\epsilon}\left(\left\{v, \bar{v}_{i}\right\}, m, N\right) \\
& C^{\epsilon}(\bar{v}, m, N) \mathscr{D}^{\epsilon}(v, m+2 N)=h(v, \bar{v}) \mathscr{D}^{\epsilon}(v, m) C^{\epsilon}(\bar{v}, m, N) \\
&+\sum_{i=1}^{N} k\left(v, v_{i}, m+2(N-1)\right) h\left(v_{i}, \bar{v}_{i}\right) \mathscr{D}^{\epsilon}\left(v_{i}, m\right) C^{\epsilon}\left(\left\{v, \bar{v}_{i}\right\}, m, N\right) \\
&+\sum_{i=1}^{N} n\left(v, v_{i}, m+2(N-1)\right) f\left(v_{i}, \bar{v}_{i}\right) \mathscr{A}^{\epsilon}\left(v_{i}, m\right) C^{\epsilon}\left(\left\{v, \bar{v}_{i}\right\}, m, N\right) .
\end{aligned}
$$

Reference state

Lemma 3.1. If the parameter α is such that:

$$
\text { (3.1) } \quad\left(q^{2}-q^{-2}\right) \chi^{-1} \alpha c^{*} q^{m_{0}}=1 \quad\left(\text { resp. }\left(q^{2}-q^{-2}\right) \chi^{-1} \alpha \mathrm{~b} q^{-m_{0}}=-1\right)
$$

then
(3.2)

$$
\pi\left(\mathscr{C}^{+}\left(u, m_{0}\right)\right)\left|\theta_{0}^{*}\right\rangle=0 \quad\left(\text { resp. } \pi\left(\mathscr{C}^{-}\left(u, m_{0}\right)\right)\left|\theta_{0}\right\rangle=0\right) .
$$

Lemma 3.2. If the parameter β is such that:
(3.3)

$$
\left(q^{2}-q^{-2}\right) \chi^{-1} \beta \mathbf{b}^{*} q^{-m_{0}+2}=1 \quad\left(\text { resp. }\left(q^{2}-q^{-2}\right) \chi^{-1} \beta \subset q^{m_{0}-2}=-1\right)
$$

then
(3.4)

$$
\left\langle\theta_{0}^{*}\right| \pi\left(\mathscr{B}^{+}\left(u, m_{0}-2\right)\right)=0 \quad\left(\text { resp. }\left\langle\theta_{0}\right| \pi\left(\mathscr{B}^{-}\left(u, m_{0}-2\right)\right)=0\right) .
$$

$$
\left|\theta_{0}\right\rangle=\left|\Omega^{-}\right\rangle, \quad\left|\theta_{0}^{*}\right\rangle=\left|\Omega^{+}\right\rangle, \quad\left\langle\theta_{0}\right|=\left\langle\Omega^{-}\right|, \quad\left\langle\theta_{0}^{*}\right|=\left\langle\Omega^{+}\right|
$$

Lemma 3.4. Let α, β be fixed according to Lemmas 3.1, 3.2. Then, the dynamical operators act as:

(3.9)	$\pi\left(\mathscr{A}^{ \pm}\left(u, m_{0}\right)\right)\left\|\Omega^{ \pm}\right\rangle$	$=\Lambda_{1}^{ \pm}(u)\left\|\Omega^{ \pm}\right\rangle$	and	$\pi\left(\mathscr{D}^{ \pm}\left(u, m_{0}\right)\right)\left\|\Omega^{-}\right\rangle=\Lambda_{2}^{ \pm}(u)\left\|\Omega^{ \pm}\right\rangle$,
(3.10)	$\left\langle\Omega^{ \pm}\right\| \pi\left(\mathscr{A}^{ \pm}\left(v, m_{0}\right)\right)$	$=\left\langle\Omega^{ \pm}\right\| \Lambda_{1}^{ \pm}(v)$	and	$\left\langle\Omega^{ \pm}\right\| \pi\left(\mathscr{D}^{ \pm}\left(v, m_{0}\right)\right)=\left\langle\Omega^{ \pm}\right\| \Lambda^{ \pm}(v)$

Bethe states - 2 families

$$
\begin{aligned}
& \left|\Psi_{-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\pi\left(B^{-}\left(\bar{u}, m_{0}, M\right)\right)\left|\Omega^{-}\right\rangle \quad \text { for } \quad\left(q^{2}-q^{-2}\right) \chi^{-1} \alpha \mathrm{~b} q^{-m_{0}}=-1 \quad \text { and } \quad \beta=0 \\
& \left|\Psi_{+}^{M}\left(\bar{w}, m_{0}\right)\right\rangle=\pi\left(B^{+}\left(\bar{w}, m_{0}, M\right)\right)\left|\Omega^{+}\right\rangle \quad \text { for } \quad\left(q^{2}-q^{-2}\right) \chi^{-1} \alpha \mathrm{c}^{*} q^{m_{0}}=1 \quad \text { and } \quad \beta=0 \\
& \left\langle\Psi_{-}^{N}\left(\bar{v}, m_{0}\right)\right|=\left\langle\Omega^{-}\right| \pi\left(C^{-}\left(\bar{v}, m_{0}, N\right)\right) \quad \text { for } \quad\left(q^{2}-q^{-2}\right) \chi^{-1} \beta \mathrm{c} q^{m_{0}-2}=-1 \quad \text { and } \quad \alpha=0 \\
& \left\langle\Psi_{+}^{N}\left(\bar{y}, m_{0}\right)\right|=\left\langle\Omega^{+}\right| \pi\left(C^{+}\left(\bar{y}, m_{0}, N\right)\right) \quad \text { for } \quad\left(q^{2}-q^{-2}\right) \chi^{-1} \beta \mathrm{~b}^{*} q^{-m_{0}+2}=1 \quad \text { and } \quad \alpha=0
\end{aligned}
$$

Solution

$$
\mathrm{I}\left(\kappa, \kappa^{*}, \kappa_{+}, \kappa_{-}\right)=\kappa \mathrm{A}+\kappa^{*} \mathrm{~A}^{*}+\kappa_{+} \chi^{-1}\left[\mathrm{~A}, \mathrm{~A}^{*}\right]_{q}+\kappa_{-} \chi\left[\mathrm{A}^{*}, \mathrm{~A}\right]_{q}
$$

We know how the dynamical operators act on a string of creation operators. All we have to do is to A, A"ress in terms of them.
Special case:

$$
\mathrm{I}(\kappa, 0,0,0)=\kappa \mathrm{A} \quad \text { or } \quad \mathrm{I}\left(0, \kappa^{*}, 0,0\right)=\kappa^{*} \mathrm{~A}^{*}
$$

\checkmark Diagonal case:

$$
\mathrm{I}\left(\kappa, \kappa^{*}, 0,0\right)=\kappa \mathrm{A}+\kappa^{*} \mathrm{~A}^{*}
$$

\checkmark Generic case

Special case

$$
\begin{aligned}
& \mathbf{A}=\mathbb{A}^{-}(u, m)+\frac{\left(q u \bar{\eta}(u)+q^{-1} u^{-1} \bar{\eta}\left(u^{-1}\right)\right)}{\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}, \\
& \mathbf{A}^{*}=\mathbb{A}^{+}(u, m)+\frac{\left(q u \bar{\eta}\left(u^{-1}\right)+q^{-1} u^{-1} \bar{\eta}(u)\right)}{\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)} \quad \text { with } \quad \bar{\eta}(u)=\left(q+q^{-1}\right) \rho^{-1}\left(\eta u+\eta^{*} u^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{A}^{-}(u, m)=\frac{u^{-1}}{\left(u^{2}-u^{-2}\right)}\left(\frac{1}{\left(q u^{2}-q^{-1} u^{-2}\right)} \mathscr{A}^{-}(u, m)+\frac{1}{\left(q^{2} u^{2}-q^{-2} u^{-2}\right)} \mathscr{D}^{-}(u, m)\right) \\
& \mathbb{A}^{+}(u, m)=\frac{u}{\left(u^{2}-u^{-2}\right)}\left(\frac{1}{\left(q u^{2}-q^{-1} u^{-2}\right)} \mathscr{A}^{+}(u, m)+\frac{1}{\left(q^{2} u^{2}-q^{-2} u^{-2}\right)} \mathscr{D}^{+}(u, m)\right)
\end{aligned}
$$

Special case

Proposition 3.1. Define
(3.57)

$$
\left|\Psi_{s p,-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\bar{\pi}\left(B^{-}\left(\bar{u}, m_{0}, M\right)\right)\left|\Omega^{-}\right\rangle .
$$

One has:
(3.58)

$$
\bar{\pi}(I(\kappa, 0,0,0))\left|\Psi_{s p,-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\frac{\kappa}{2} q^{\frac{1}{2}\left(\nu+\nu^{\prime}\right)}\left(e^{-\mu} q^{-2 s+2 M}+e^{\mu} q^{2 s-2 M}\right)\left|\Psi_{s p,-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle
$$

where the set \bar{u} satisfies the Bethe equations:
$\prod_{j=1, j \neq i}^{M}\left(\frac{b\left(u_{i} /\left(q u_{j}\right)\right) b\left(u_{i} u_{j}\right)}{b\left(q u_{i} / u_{j}\right) b\left(q^{2} u_{i} u_{j}\right)}\right)=\frac{\left(q e^{\mu^{\prime}} u_{i}+q^{-1} e^{\mu} u_{i}^{-1}\right)\left(q e^{-\mu} u_{i}+q^{-1} e^{\mu^{\prime}} u_{i}^{-1}\right) b\left(q^{\frac{1}{2}-s} v u_{i}\right) b\left(q^{\frac{1}{2}-s} v^{-1} u_{i}\right)}{\left(e^{\mu^{\prime}} u_{i}+e^{-\mu} u_{i}^{-1}\right)\left(e^{\mu} u_{i}+e^{\mu^{\prime}} u_{i}^{-1}\right) b\left(q^{s+\frac{1}{2}} v u_{i}\right) b\left(q^{s+\frac{1}{2}} v^{-1} u_{i}\right)}$
for $i=1, \ldots, M$.

Special case

Proposition 3.2. Define

(3.64)

$$
\left|\Psi_{s p,+}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\bar{\pi}\left(B^{+}\left(\bar{u}, m_{0}, M\right)\right)\left|\Omega^{+}\right\rangle .
$$

One has:
(3.65) $\bar{\pi}\left(I\left(0, \kappa^{*}, 0,0\right)\right)\left|\Psi_{s p,+}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\frac{\kappa^{*}}{2} q^{\frac{1}{2}\left(\nu+\nu^{\prime}\right)}\left(e^{-\mu^{\prime}} q^{2 s-2 M}+e^{\mu^{\prime}} q^{-2 s+2 M}\right)\left|\Psi_{s p,+}^{M}\left(\bar{u}, m_{0}\right)\right\rangle$
where the set \bar{u} satisfies the Bethe equations:
$\prod_{j=1, j \neq i}^{M}\left(\frac{b\left(u_{i} /\left(q u_{j}\right)\right) b\left(u_{i} u_{j}\right)}{b\left(q u_{i} / u_{j}\right) b\left(q^{2} u_{i} u_{j}\right)}\right)=\frac{\left(q e^{-\mu} u_{i}+q^{-1} e^{-\mu^{\prime}} u_{i}^{-1}\right)\left(q e^{\mu^{\prime}} u_{i}+q^{-1} e^{-\mu} u_{i}^{-1}\right) b\left(q^{\frac{1}{2}-s} v u_{i}\right) b\left(q^{\frac{1}{2}-s} v^{-1} u_{i}\right)}{\left(e^{-\mu} u_{i}+e^{\mu^{\prime}} u_{i}^{-1}\right)\left(e^{-\mu^{\prime}} u_{i}+e^{-\mu} u_{i}^{-1}\right) b\left(q^{s+\frac{1}{2}} v u_{i}\right) b\left(q^{s+\frac{1}{2}} v^{-1} u_{i}\right)}$
for $i=1, \ldots, M$.

Diagonal case

$$
\mathrm{I}\left(\kappa, \kappa^{*}, 0,0\right)=\kappa \mathrm{A}+\kappa^{*} \mathrm{~A}^{*}
$$

$\mathbf{A}=\mathbb{A}^{-}(u, m)+\frac{\left(q u \bar{\eta}(u)+q^{-1} u^{-1} \bar{\eta}\left(u^{-1}\right)\right)}{\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}$

$$
\mathbb{A}^{-}(u, m)=\frac{u^{-1}}{\left(u^{2}-u^{-2}\right)}\left(\frac{1}{\left(q u^{2}-q^{-1} u^{-2}\right)} \mathscr{A}^{-}(u, m)+\frac{1}{\left(q^{2} u^{2}-q^{-2} u^{-2}\right)} \mathscr{D}^{-}(u, m)\right)
$$

$$
\mathrm{A}^{*}=\tilde{\mathbb{A}}^{-}(u, m)+\frac{\left(q u \bar{\eta}\left(u^{-1}\right)+q^{-1} u^{-1} \bar{\eta}(u)\right)}{\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}
$$

$$
\begin{aligned}
& \tilde{\mathbb{A}}^{-}(u, m)=\frac{u^{-1}}{\left(u^{2}-u^{-2}\right)}\left(\frac{\gamma^{-}\left(q^{-1} u^{-2}, m\right)}{\left(q u^{2}-q^{-1} u^{-2}\right) \gamma^{-}(1, m+1)} \mathscr{A}^{-}(u, m)+\frac{\gamma^{-}\left(q u^{2}, m\right)}{\left(q^{2} u^{2}-q^{-2} u^{-2}\right) \gamma^{-}(1, m+1)} \mathscr{D}^{-}(u, m)\right. \\
&\left.+\frac{\alpha q^{-m-1}}{\gamma^{-}(1, m)} \mathscr{B}^{-}(u, m)-\frac{\beta q^{m-1}}{\gamma^{-}(1, m)} \mathscr{C}^{-}(u, m)\right)
\end{aligned}
$$

Diagonal case

\checkmark Combining the possibilities, we may write:

$$
\begin{aligned}
\kappa \mathrm{A}+\kappa^{*} \mathrm{~A}^{*}= & \frac{u^{\epsilon}\left(\alpha u^{\epsilon}\left(\kappa u+\kappa^{*} u^{-1}\right)-\beta q^{-(2 m+2) \epsilon} u^{-\epsilon}\left(\kappa^{*} u+\kappa u^{-1}\right)\right)}{\left(u^{2}-u^{-2}\right)\left(q u^{2}-q^{-1} u^{-2}\right)\left(\alpha-\beta q^{-(2 m+2) \epsilon}\right)} \mathscr{A}^{\epsilon}(u, m) \\
& +\frac{q^{-\epsilon} u^{\epsilon}\left(\alpha u^{-\epsilon}\left(q \kappa^{*} u+q^{-1} \kappa u^{-1}\right)-\beta q^{-2 m \epsilon} u^{\epsilon}\left(q \kappa u+q^{-1} \kappa^{*} u^{-1}\right)\right)}{\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\left(\alpha-\beta q^{-(2 m+2) \epsilon}\right)} \mathscr{D}^{\epsilon}(u, m) \\
& -\frac{\epsilon \alpha q^{\epsilon} \kappa^{\frac{\epsilon+1}{2}} \kappa^{* \frac{1-\epsilon}{2}} u^{\epsilon}}{\left(u^{2}-u^{-2}\right)\left(\alpha-\beta q^{-2 m \epsilon}\right)} \mathscr{B}^{\epsilon}(u, m)+\frac{\epsilon \beta \kappa^{\frac{\epsilon+1}{2}} \kappa^{* \frac{1-\epsilon}{2}} q^{-(2 m-1) \epsilon} u^{\epsilon}}{\left(u^{2}-u^{-2}\right)\left(\alpha-\beta q^{-2 m \epsilon}\right)} \mathscr{C}^{\epsilon}(u, m) \\
& +\frac{\left(q+q^{-1}\right)^{2}}{\rho\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}\left(\eta \kappa^{*}+\eta^{*} \kappa+\left(\eta \kappa+\eta^{*} \kappa^{*}\right)\left(\frac{q u^{2}+q^{-1} u^{-2}}{q+q^{-1}}\right)\right)
\end{aligned}
$$

\checkmark Using the gauge freedom, we set $\beta=0$.

Diagonal case

Bethe vector:

$$
\begin{aligned}
\left|\Psi_{d, \epsilon}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle & =\bar{\pi}\left(B^{\epsilon}\left(\bar{u}, m_{0}, 2 s\right)\right)\left|\Omega^{\epsilon}\right\rangle \\
\left|\Psi_{d, \epsilon}^{2 s}\left(\left\{u, \bar{u}_{i}\right\}, m_{0}\right)\right\rangle & =\bar{\pi}\left(B^{\epsilon}\left(\left\{u, \bar{u}_{i}\right\}, m_{0}, 2 s\right)\right)\left|\Omega^{\epsilon}\right\rangle
\end{aligned}
$$

Diagonal case

Bethe vector:

Lemma 3.5. For $M=2 s$ and generic $\left\{u, u_{i}\right\}$, one has:
(3.70)

$$
\begin{aligned}
& \bar{\pi}\left(\mathscr{B}^{\epsilon}\left(u, m_{0}+4 s\right)\right)\left|\Psi_{d, \epsilon}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle= \\
& \quad \delta_{d} \frac{u^{-\epsilon} b\left(u^{2}\right) \prod_{k=0}^{2 s} b\left(q^{1 / 2+k-s} v u\right) b\left(q^{1 / 2+k-s} v^{-1} u\right)}{\prod_{i=1}^{2 s} b\left(u u_{i}^{-1}\right) b\left(q^{-1} u^{-1} u_{i}^{-1}\right)}\left|\Psi_{d, \epsilon}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle \\
& \quad-\delta_{d} \sum_{i=1}^{2 s} \frac{u_{i}^{-\epsilon} b\left(u_{i}^{2}\right) \prod_{k=0}^{2 s} b\left(q^{1 / 2+k-s} v u_{i}\right) b\left(q^{1 / 2+k-s} v^{-1} u_{i}\right)}{b\left(u u_{i}^{-1}\right) b\left(q^{-1} u^{-1} u_{i}^{-1}\right) \prod_{j=1, j \neq i}^{2 s} b\left(u_{i} u_{j}^{-1}\right) b\left(q^{-1} u_{i}^{-1} u_{j}^{-1}\right)}\left|\Psi_{d, \epsilon}^{2 s}\left(\left\{u, \bar{u}_{i}\right\}, m_{0}\right)\right\rangle
\end{aligned}
$$

where we denote
(3.71)

$$
\delta_{d}=-\frac{\epsilon(-1)^{2 s+1}}{2} e^{-\mu(1-\epsilon) / 2-\mu^{\prime}(1+\epsilon) / 2} q^{\left(\nu+\nu^{\prime}\right) / 2-\epsilon(2 s+2)} .
$$

Diagonal case

Solution

Proposition 3.3. For $\epsilon= \pm 1$, one has:
(3.72)

$$
\bar{\pi}\left(I\left(\kappa, \kappa^{*}, 0,0\right)\right)\left|\Psi_{d, \epsilon}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle=\Lambda_{d, \epsilon}^{2 s}\left|\Psi_{d, \epsilon}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle
$$

with
(3.73) $\Lambda_{d,+}^{2 s}=\kappa^{*} \theta_{2 s}^{*}+\kappa e^{\mu-\mu^{\prime}} b\left(\left(v^{2}+v^{-2}\right)[2 s]_{q}+2 e^{\mu^{\prime}} \cosh (\mu)-q \sum_{j=1}^{2 s}\left(q u_{j}^{2}+q^{-1} u_{j}^{-2}\right)\right)$,
(3.74) $\quad \Lambda_{d,-}^{2 s}=\kappa \theta_{2 s}+\kappa^{*} e^{\mu^{\prime}-\mu} c^{*}\left(\left(v^{2}+v^{-2}\right)[2 s]_{q}+2 e^{\mu} \cosh \left(\mu^{\prime}\right)-q^{-1} \sum_{j=1}^{2 s}\left(q u_{j}^{2}+q^{-1} u_{j}^{-2}\right)\right)$
where the set \bar{u} satisfies the (inhomogeneous) Bethe equations:

$$
\begin{aligned}
& \frac{b\left(u_{i}^{2}\right)}{b\left(q u_{i}^{2}\right)}\left(\kappa u_{i}+\kappa^{*} u_{i}^{-1}\right) \prod_{j=1, j \neq i}^{2 s} f\left(u_{i}, u_{j}\right) \Lambda_{1}^{\epsilon}\left(u_{i}\right)-q^{-\epsilon} u_{i}^{-2 \epsilon}\left(q \kappa^{*} u_{i}+q^{-1} \kappa u_{i}^{-1}\right) \prod_{j=1, j \neq i}^{2 s} h\left(u_{i}, u_{j}\right) \Lambda_{2}^{\epsilon}\left(u_{i}\right) \\
&+(-1)^{2 s} \epsilon\left(q-q^{-1}\right)^{-1} q^{\epsilon} \kappa^{(1+\epsilon) / 2} \kappa^{*(1-\epsilon) / 2} \delta_{d} \frac{u_{i}^{-2 \epsilon} b\left(u_{i}^{2}\right) \prod_{k=0}^{2 s} b\left(q^{1 / 2+k-s} v u_{i}\right) b\left(q^{1 / 2+k-s} v^{-1} u_{i}\right)}{\prod_{j=1, j \neq i}^{2 s} b\left(u_{i} u_{j}^{-1}\right) b\left(q u_{i} u_{j}\right)}=0
\end{aligned}
$$

Generic case

$$
\begin{aligned}
{\left[\mathrm{A}^{*}, \mathrm{~A}\right]_{q}=} & -\frac{\alpha \beta \rho \chi^{-1} q^{-\epsilon(m+1)} u^{\epsilon}}{\alpha-q^{-2 \epsilon(m+1)} \beta}\left(\frac{1}{q u^{2}-q^{-1} u^{-2}} \mathscr{A}^{\epsilon}(u, m)-\frac{1}{u^{2}-u^{-2}} \mathscr{D}^{\epsilon}(u, m)\right) \\
& +\frac{\rho \chi^{-1} u^{\epsilon}}{\left(\alpha-q^{-2 \epsilon m} \beta\right)\left(u^{2}-u^{-2}\right)}\left(\alpha^{2} q^{\epsilon(m+2)} \mathscr{B}^{\epsilon}(u, m)-\beta^{2} q^{\epsilon(-3 m+2)} \mathscr{C}^{\epsilon}(u, m)\right) \\
& -\left(\rho \frac{q u^{2}+q^{-1} u^{-2}}{q^{2}-q^{-2}}+\frac{\omega}{q-q^{-1}}\right), \\
{\left[\mathrm{A}, \mathrm{~A}^{*}\right]_{q}=} & \frac{\chi q^{-\epsilon(m+1)} u^{\epsilon}}{\alpha-q^{-2 \epsilon(m+1) \beta}}\left(\frac{1}{q u^{2}-q^{-1} u^{-2}} \mathscr{A}^{\epsilon}(u, m)-\frac{1}{u^{2}-u^{-2}} \mathscr{D}^{\epsilon}(u, m)\right) \\
& -\frac{\chi e^{-m \epsilon} u^{\epsilon}}{\left(\alpha-q^{-2 \epsilon m} \beta\right)\left(u^{2}-u^{-2}\right)}\left(\mathscr{B}^{\epsilon}(u, m)-\mathscr{C}^{\epsilon}(u, m)\right) \\
& -\left(\rho \frac{q u^{2}+q^{-1} u^{-2}}{q^{2}-q^{-2}}+\frac{\omega}{q-q^{-1}}\right) .
\end{aligned}
$$

Leonard pairs from Bethe states

\checkmark We have seen, for example, that:

$$
\pi(\mathrm{A})\left|\Psi_{-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle=\theta_{M}\left|\Psi_{-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle
$$

\checkmark As the spectrum of A is non-degenerate, if there is a solution of the BAE associated with θ_{M}, it follows that $\left|\Psi^{M}\left(\bar{u}, m_{0}\right)\right\rangle$ and $\left|\theta_{M}\right\rangle$ must be proportional to each other.
\checkmark The proportionality factor can be computed recalling that the B-operator is expressed in terms of $\mathrm{A}, \mathrm{A}^{*}$ and q[] 's.

Leonard pairs from Bethe states

Hypothesis 1. For each integer M (resp. N) with $0 \leq M, N \leq 2 s$, there exists at least one set of non trivial

 admissible Bethe roots $S_{-}^{M(h)}=\left\{u_{1}, \ldots, u_{M}\right\}$ (resp. $S_{+}^{* N(h)}=\left\{w_{1}, \ldots, w_{N}\right\}$) such that$$
(3.18) \quad E_{-}^{M}\left(u_{i}, \bar{u}_{i}\right)=0 \quad \text { for } \quad \bar{u}=S_{-}^{M(h)}, \quad\left(\text { resp. } \quad E_{+}^{N}\left(w_{i}, \bar{w}_{i}\right)=0 \quad \text { for } \quad \bar{w}=S_{+}^{* N(h)}\right) .
$$

Lemma 3.5. Assume Hypothesis 1. The following relations hold:

(3.19)	$\left\|\theta_{M}\right\rangle$	$=\mathcal{N}_{M}(\bar{u})\left\|\Psi_{-}^{M}\left(\bar{u}, m_{0}\right)\right\rangle$	for $\bar{u}=S_{-}^{M(h)}$,
(3.20)	$\left\|\theta_{N}^{*}\right\rangle$	$=\mathcal{N}_{N}^{*}(\bar{w})\left\|\Psi_{+}^{N}\left(\bar{w}, m_{0}\right)\right\rangle$	for $\bar{w}=S_{+}^{* N(h)}$

with
(3.21)

$$
\mathcal{N}_{M}(\bar{u})=\prod_{k=1}^{M}\left(q u_{k} b\left(u_{k}^{2}\right) A_{k, k-1}^{*}\right)^{-1}, \quad \mathcal{N}_{N}^{*}(\bar{w})=\prod_{k=1}^{N}\left(-q^{-1} w_{k}^{-1} b\left(w_{k}^{2}\right) A_{k, k-1}\right)^{-1}
$$

Lemma 3.6. Assume Hypothesis 1. The following relations hold:

$$
\begin{array}{ll}
\left.\begin{array}{ll}
(3.23) & \left\langle\theta_{M}\right|
\end{array}\right)=\tilde{\mathcal{N}}_{M}(\bar{v})\left\langle\Psi_{-}^{M}\left(\bar{v}, m_{0}\right)\right| & \text { for } \bar{v}=S_{-}^{M(h)}, \\
(3.24) & \left\langle\theta_{N}^{*}\right|=\tilde{\mathcal{N}}_{N}^{*}(\bar{y})\left\langle\Psi_{+}^{N}\left(\bar{y}, m_{0}\right)\right| \\
\text { with } & \text { for } \bar{y}=S_{+}^{* N(h)} \\
(3.25) \quad \tilde{\mathcal{N}}_{M}(\bar{v})=\prod_{k=1}^{M}\left(q^{-1} v_{k} b\left(v_{k}^{2}\right) \tilde{A}_{k, k-1}^{*}\right)^{-1}, \quad \tilde{\mathcal{N}}_{N}^{*}(\bar{y})=\prod_{k=1}^{N}\left(-q y_{k}^{-1} b\left(y_{k}^{2}\right) \tilde{A}_{k, k-1}\right)^{-1} \\
\text { and } \tilde{\mathcal{N}}_{0}(.)=\tilde{\mathcal{N}}_{0}^{*}(.)=1 .
\end{array}
$$

Leonard pairs from Bethe states - inhomogeneous

Lemma 3.7. Assume Hypothesis 2. The following relations hold:
(3.31)
(3.32)

$$
\begin{aligned}
\left|\theta_{M}\right\rangle & =\mathcal{N}_{M}^{(i)}\left(\bar{u}^{\prime}\right)\left|\Psi_{+}^{2 s}\left(\bar{u}^{\prime}, m_{0}\right)\right\rangle \quad \text { for } \quad \bar{u}^{\prime}=S_{+}^{M(i)}, \\
\left|\theta_{N}^{*}\right\rangle & =\mathcal{N}_{N}^{*(i)}\left(\bar{w}^{\prime}\right)\left|\Psi_{-}^{2 s}\left(\bar{w}^{\prime}, m_{0}\right)\right\rangle \quad \text { for } \quad \bar{w}^{\prime}=S_{-}^{* N(i)}
\end{aligned}
$$

with
(3.33)

$$
\mathcal{N}_{M}^{(i)}\left(\bar{u}^{\prime}\right)=\mathcal{N}_{2 s}^{*}\left(\bar{u}^{\prime}\right)\left(P^{-1}\right)_{2 s, M}, \quad \mathcal{N}_{N}^{*(i)}\left(\bar{w}^{\prime}\right)=\mathcal{N}_{2 s}\left(\bar{w}^{\prime}\right) P_{2 s, N}
$$

Lemma 3.8. Assume Hypothesis 3. The following relations hold:

$$
\begin{aligned}
\left\langle\theta_{M}\right| & =\tilde{\mathcal{N}}_{M}^{(i)}\left(\bar{v}^{\prime}\right)\left\langle\Psi_{+}^{2 s}\left(\bar{v}^{\prime}, m_{0}\right)\right| \quad \text { for } \quad \bar{v}^{\prime}=d S_{+}^{M(i)} \\
\left\langle\theta_{N}^{*}\right| & =\tilde{\mathcal{N}}_{N}^{*(i)}\left(\bar{y}^{\prime}\right)\left\langle\Psi_{-}^{2 s}\left(\bar{y}^{\prime}, m_{0}\right)\right| \quad \text { for } \quad \bar{y}^{\prime}=d S_{-}^{* N(i)}
\end{aligned}
$$

(3.43)
with
(3.44)

$$
\tilde{\mathcal{N}}_{M}^{(i)}\left(\bar{v}^{\prime}\right)=\tilde{\mathcal{N}}_{2 s}^{*}\left(\bar{v}^{\prime}\right) P_{M, 2 s} \frac{\xi_{M}}{\xi_{2 s}^{*}}, \quad \tilde{\mathcal{N}}_{N}^{*(i)}\left(\bar{y}^{\prime}\right)=\tilde{\mathcal{N}}_{2 s}\left(\bar{y}^{\prime}\right)\left(P^{-1}\right)_{N, 2 s} \frac{\xi_{N}^{*}}{\xi_{2 s}}
$$

Leonard pairs from Bethe states

Given a Leonard pair, the transition matrix between two eigenbasis is given by, Zhedanov 91 + Terwilliger 04

$$
\left|\theta_{N}^{*}\right\rangle=\sum_{M=0}^{2 s} P_{M N}\left|\theta_{M}\right\rangle \quad \text { and } \quad\left|\theta_{M}\right\rangle=\sum_{N=0}^{2 s}\left(P^{-1}\right)_{N M}\left|\theta_{N}^{*}\right\rangle
$$

$$
\left\langle\theta_{N}^{*}\right|=\sum_{M=0}^{2 s} \frac{\xi_{N}^{*}}{\xi_{M}} P_{N M}^{-1}\left\langle\theta_{M}\right| \quad \text { and } \quad\left\langle\theta_{M}\right|=\sum_{N=0}^{2 s} \frac{\xi_{M}}{\xi_{N}^{*}} P_{M N}\left\langle\theta_{N}^{*}\right\rangle
$$

$$
P_{M N}=\left\langle\theta_{M} \mid \theta_{N}^{*}\right\rangle /\left\langle\theta_{M} \mid \theta_{M}\right\rangle \quad \text { and } \quad\left(P^{-1}\right)_{N M}=\left\langle\theta_{N}^{*} \mid \theta_{M}\right\rangle /\left\langle\theta_{N}^{*} \mid \theta_{N}^{*}\right\rangle
$$

$$
R_{M}\left(\theta_{N}^{*}\right)={ }_{4} \phi_{3}\left[\begin{array}{c}
q^{-2 M}, \frac{\mathrm{~b}}{\mathrm{c}} q^{2 M}, q^{-2 N}, \frac{\mathrm{~b}^{*}}{\mathrm{c}^{*}} q^{2 N} \\
-\frac{\mathrm{b}}{\mathrm{c}^{*}} q^{2 s+1} \zeta^{2},-\frac{\mathrm{b}^{*}}{\mathrm{c}} q^{2 s+1} \zeta^{-2}, q^{-4 s} ; q^{2}, q^{2}
\end{array}\right]
$$

$$
\begin{aligned}
R_{M}\left(\theta_{N}^{*}\right) & =\frac{\left\langle\theta_{M} \mid \theta_{N}^{*}\right\rangle}{\left\langle\theta_{0} \mid \theta_{N}^{*}\right\rangle} \frac{\left\langle\theta_{0} \mid \theta_{0}\right\rangle}{\left\langle\theta_{M} \mid \theta_{M}\right\rangle} \\
& =\frac{\left\langle\theta_{N}^{*} \mid \theta_{M}\right\rangle}{\left\langle\theta_{0}^{*} \mid \theta_{M}\right\rangle} \frac{\left\langle\theta_{0}^{*} \mid \theta_{0}^{*}\right\rangle}{\left\langle\theta_{N}^{*} \mid \theta_{N}^{*}\right\rangle}
\end{aligned}
$$

Leonard pairs from Bethe states

\checkmark It follows:

$$
R_{M}\left(\theta_{N}^{*}\right)=\mathcal{N}_{M}^{(i)}(\bar{u})^{-1} \frac{\left\langle\Psi^{M}\left(\bar{v}, m_{0}\right) \mid \Psi^{2 s}\left(\bar{w}, m_{0}\right)\right\rangle}{\left\langle\Omega^{-} \mid \Psi^{2 s}\left(\bar{w}, m_{0}\right)\right\rangle} \frac{\left\langle\Omega^{-} \mid \Omega^{-}\right\rangle}{\left\langle\Psi^{M}\left(\bar{v}, m_{0}\right) \mid \Psi_{+}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle}
$$

$$
R_{M}\left(\theta_{N}^{*}\right)=\tilde{\mathcal{N}}_{N}^{*}\left(\bar{y}^{\prime}\right)^{-1} \frac{\left\langle\Psi^{2 s}\left(\bar{y}^{\prime}, m_{0}\right) \mid \Psi_{+}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle}{\left\langle\Omega^{+} \mid \Psi_{+}^{2 s}\left(\bar{u}, m_{0}\right)\right\rangle} \frac{\left\langle\Omega^{+} \mid \Omega^{+}\right\rangle}{\left\langle\Psi_{-}^{2 s}\left(\bar{y}^{\prime}, m_{0}\right) \mid \Psi_{-}^{2 s}\left(\bar{y}, m_{0}\right)\right\rangle}
$$

\checkmark Intriguing connection between orthogonal polynomials and integrable systems!

Ongoing work and perspectives

Can we express these quantities in a determinant form? This is expected from integrable systems:

Ongoing work and perspectives

Generalization to q-Onsager using tridiagonal pairs?

$$
\begin{aligned}
{\left[\mathrm{A},\left[\mathrm{~A},\left[\mathrm{~A}, \mathrm{~A}^{*}\right]_{q}\right]_{q^{-1}}\right] } & =\rho\left[\mathrm{A}, \mathrm{~A}^{*}\right] \\
{\left[\mathrm{A}^{*},\left[\mathrm{~A}^{*},\left[\mathrm{~A}^{*}, \mathrm{~A}\right]_{q} \mathrm{q}_{-1-1}\right]\right.} & =\rho\left[\mathrm{A}^{*}, \mathrm{~A}\right]
\end{aligned}
$$

Bethe states can be built! (spin-s XXZ)
R Ratios of scalar products of Bethe states are multivariable analogs of q-Racah?

Ongoing work and perspectives

Play with homogeneous/inhomogeneous TQ.

- Homogeneous Q: Askey-Wilson polynomial
- New difference equations?
- What is the inhomogeneous Q-polynomial?
- New families of polynomials?

Ongoing work and perspectives

Applications to free fermions?

Thank you!

Merci!

Baxter TQ equation

\checkmark Symmetry of Bethe equations:

$u_{i} \longleftrightarrow \pm q^{-1} u_{i}^{-1}$,	$u_{i} \longleftrightarrow-u_{i}$
$u_{j} \longleftrightarrow \pm q^{-1} u_{j}^{-1}$,	$u_{j} \longleftrightarrow-u_{j}$

Nice to use big-U :

$$
U_{i}=\frac{q u_{i}^{2}+q^{-1} u_{i}^{-2}}{q+q^{-1}} \quad \text { with } \quad i=1, \ldots, M
$$

Baxter TQ equation

Consider again the special case. Rewrite the solution in terms of a TQ equation:

Proposition 4.1. The eigenvalues $\Lambda_{s p,+}^{* M}$ of the Heun-Askey-Wilson operator $\bar{\pi}\left(I\left(0, \kappa^{*}, 0,0\right)\right)$ are given by the homogeneous Baxter T-Q relation

$$
\left(\left(u^{2}-u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\right) \Lambda_{s p,+}^{* M} Q_{M}(U)=\kappa^{*} u \Lambda_{2}^{+}(u) T_{+} Q_{M}(U)+\kappa^{*} u \Lambda_{1}^{+}(u) \frac{\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}{\left(q u^{2}-q^{-1} u^{-2}\right)} T_{-} Q_{M}(U)
$$

$$
+\kappa^{*} \frac{\left(q+q^{-1}\right)^{2}}{\rho}\left(\eta+\eta^{*} U\right) Q_{M}(U)
$$

with (3.3.3), (3.3.5), (3.36).

$$
Q_{M}(U)=\prod_{j=1}^{M}\left(U-U_{j}\right)
$$

$$
T_{ \pm}\left(f\left(u^{2}\right)\right)=f\left(q^{ \pm 2} u^{2}\right)
$$

Baxter TQ equation

For the diagonal case, we have an inhomogeneous term:

Proposition 4.3. The eigenvalues $\Lambda_{d,+}^{2 s}$ of the Heun-Askey-Wilson operator $\bar{\pi}\left(I\left(\kappa, \kappa^{*}, 0,0\right)\right)$ are given by the inhomogeneous Baxter T-Q relation
(4.7)

$$
\begin{aligned}
\left(\left(u^{2}-\right.\right. & \left.\left.u^{-2}\right)\left(q^{2} u^{2}-q^{-2} u^{-2}\right)\right) \Lambda_{d,+}^{2 s} Q_{2 s}(U)= \\
& =u \Delta_{d}\left(q^{-1} u^{-1}\right) \Lambda_{2}^{+}(u) T_{+} Q_{2 s}(U)+u \Delta_{d}(u) \Lambda_{1}^{+}(u) \frac{\left(q^{2} u^{2}-q^{-2} u^{-2}\right)}{\left(q u^{2}-q^{-1} u^{-2}\right)} T_{-} Q_{2 s}(U) \\
& +\frac{\left(q+q^{-1}\right)^{2}}{\rho}\left(\kappa \eta^{*}+\kappa^{*} \eta+\left(\kappa \eta+\kappa^{*} \eta^{*}\right) U\right) Q_{2 s}(U)+\kappa q \delta_{d}(-1)^{2 s+1} \frac{\left(U^{2}-1\right)}{\left(q+q^{-1}\right)^{2 s-2}} H(U)
\end{aligned}
$$

with (3.3.3), (3.35), (3.36), (3.71), (3.76) and (D.5).

$$
\prod_{l=0}^{2 s} b\left(q^{1 / 2+k-s} v u\right) b\left(q^{1 / 2+k-s} v^{-1} u\right)=H(U)
$$

Baxter TQ equation

By using a realization of the AW algebra in terms of q-difference operators, one can identify the Baxter Q-polynomial with the Askey-Wilson polynomial:

Proposition 4.5. For the special case $\kappa=\kappa_{ \pm}=0$, the Q-polynomial (4.2) of Proposition 4.1 is given by

$$
\begin{equation*}
Q_{M}(Z)=\frac{\left(\mathfrak{a b} ; q^{2}\right)_{M}\left(\mathfrak{a c} ; q^{2}\right)_{M}\left(\mathfrak{a d} ; q^{2}\right)_{M}\left(\mathfrak{a b c d} q^{-2} ; q^{2}\right)_{M}}{\left(q+q^{-1}\right)^{M} \mathfrak{a}^{M}\left(\mathfrak{a b c d} q^{-2} ; q^{4}\right)_{M}\left(\mathfrak{a b c d} ; q^{4}\right)_{M}} P_{M}\left(z+z^{-1} ; \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}\right) \tag{4.24}
\end{equation*}
$$

with
(4.25)

$$
\mathfrak{a}=-q e^{-\mu+\mu^{\prime}}, \quad \mathfrak{b}=-q e^{\mu+\mu^{\prime}}
$$

$$
\mathfrak{c}=q^{-2 s} v^{2}
$$

$$
\mathfrak{d}=q^{-2 s} v^{-2}
$$

\checkmark rare example of explicit solution of the TQ eq.

