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Nonlinear diffusion equations

Nonlinear diffusion partial differential equations with a
Wasserstein gradient flow structure have received rapidly
growing attention.

Well-known examples are

porous medium equation

fast diffusion equation

lubrication equations describing thin viscous films
fluid-type quantum models for semiconductors

Apart from their obvious relevance in theoretical physics and
engineering applications, they are of great interest in
mathematical analysis:

behaviour of their solutions is very rich
open questions on qualitative properties of the solutions
accurate and efficient numerical solution is challenging



Motivation: structure-preserving discretisations

When it comes to solving nonlinear diffusion equations
numerically, it is natural to ask for schemes which preserve
certain properties at a discrete level:

positivity-preserving
mass-preserving
energy-dissipating

gradient-flow structure



Large numerics literature (non-exhaustive list)

Many(!) approaches tackling nonlinear diffusions numerically,
FEM, in part. Cahn-Hilliard, Allen-Cahn, ... [Elliott '86-],
[Barrett], [Garcke], [Styles] & co-workers
Particle methods based on suitable regularizations of the
flux of the continuity equation [Degond-Mustieles '90],
[Russo '90], [Lions-Mas-Gallic '01], [Mas-Gallic '02]
discrete self-similar solutions for PME [Budd et al. '98, ...]
high-resolution schemes for nonlinear convection-diffusion
problems [Kurganov-Tadmor '00].
high-order relaxation schemes [Cavalli et al. '07]

FV methods preserving decay of energy at semi-discrete
level (non-negativity, mass conservation)
[Bessemoulin-Chatard-Filbet '12], [Cances-Guichard '16],
[Carrillo et al. '15].

blob methods [Carrillo et al. '17a,"17b]



Class of nonlinear diffusion equations

In this talk consider the following class of equations

Op=AP(p)+ V- (pVV) on Roy x RY,
p(,0) = p’ on R.

where P(r) = rh/(r) — h(r) for all r > 0 with some
non-negative and convex h € C'(Rxg) N C*°(Rxp), and a
non-negative potential V' € C?(R?).
This encompasses large class of diffusion equations, e.g.
P(r) = r: heat equation
P(r) =r™,m > 1: porous medium equation
P(r) =r™,m < 1: fast diffusion equation



Lagrangian formulation

Equation can be written as a transport equation,
Op+ V- (pvip]) =0,

with a velocity field v that depends on the solution p itself,
vlp] = =V (W (p) +V).

further evolution equations can be written in this form,
e.g. non-local aggregation equations [Ambrosio et al. '08],
Keller-Segel type models [Blanchet et al. '08], fourth-order
thin film equations [Otto '98] or quantum diffusion equations
[Gianazza et al. '09].



Variational structure: Wasserstein gradient flow

A celebrated results is (see [Otto '98] or [Ambrosio et al.'01])
that this problem is a for the relative Renyi
entropy functional

&) = [ | [bo@) + Vi)p(o)] o

with respect to the L?-Wasserstein metric on the space
P3°(RY) of probability densities on R with finite second
moment.

An important consequence (see [JKO 98], [Ambrosio

et al. '08]) is that the unique flow can be obtained as the limit
for 7 N\ 0 of the time-discrete

: e . 1 .
pi = argmin £ (pi gt ), Ex(p. ) = 5= Walp, p) + E(p).
PEP3(RY) T



Numerical scheme based on minimizing movements

The
( : n—1 ~ 1 ~\ 2
pr = argmin E-(p;p2 =), Exlp, p) i= 5-Walp, )" + E(p).
pGPSC(Rd) T

has originally been used as a tool for the analysis of the
equations.

can it be the basis for a practical,
to approximate solutions of the nonlinear

diffusion equations?



Related results in the literature

The
has been tackled by different methods:

using pseudo-inverse distributions in one dimension, e.g.
in [Carrillo-Toscani '05], [Blanchet-Calvez-Carrillo '08],
[Carrillo-Moll '09], [Westdickenberg-Wilkening '10]
solving for the optimal map in a minimizing movement
step [Benamou et al. '15], [Junge et al. '15]

methods in one dimension for higher-order, drift diffusion
and Fokker—Planck equations in [Diiring et al. '10],
[Matthes-Osberger '14,'15a,'15b]

and many more...

~ remains challenging in higher space dimensions

Developing a structure-preserving algorithm based on
minimizing movement scheme in multiple space dimensions



Lagrangian formulation

Let p be a smooth positive solution of the transport equation,
and p a reference density, i.e. a probability density supported
on some compact set K C R?%. Let G4p denote the
push-forward of p under a map G: K — R¢.

Now, let G°: K — R? be a given map such that G%p = p°.
Further, let G: [0,T] x R — R? be the associated
to the transport

ath = V[pt] e} Gt, G(O, ) = GO,

where p; := p(t,-) and G; := G(¢t,-): R? — R%.
Then, one can show that at any ¢ € [0, 77,

pe = (Ge)yp

~ solution G is a for the solution p



Evolution equation for G and L? gradient flow

We can now insert p; = (G;)4p for p in the expression for the
velocity, v[p] = =V (I (p) + V), and obtain an evolution
equation for G:

8,G, = —V [h’ (det%et)] 0Gy —VV oGy

Moreover (see [Evans et al. '05], [Carrillo/Moll '09],

[Carrillo/Lisini '10]), this is also a , namely for
the functional
~ (det DG
B(GIp) = £(Gym) = [ |i(“29) +vec]pa,
K

with R(s) := sh(s™1) on the Hilbert space L2(K — R%;p) of

square integrable maps from K to R%.

~ related approach in [Carrillo-Moll '09], [Carrillo et al. '16]
who discretise the above equation by FD/FEM



Minimizing movement scheme for L? gradient flow

[Ambrosio, Lisini and Savaré '06] proved that the gradient flow
for

B(GIp) = £(Gym) = [ |(“52F) +v o6 pa,

is globally well-defined, and can again be approximated by the

G?:= argmin E. (GG,
GeL2(K—>Rd )
B(GiG) = - [ G~ GIF dp-+ B(GIp)

~> in the following we present a
where we adapt this minimizing movement scheme for a
numerical algorithm



|dea of the discretize-then-optimize algorithm in 2d

For simplicity; restrict ourselves to 2d in the following

Spatial discretisation: triangulation in R?

ansatz space A4 for GG: on each triangle A,, C K, let
G(w) = A,w + by, for some matrix A, € R**? and some
vector b,, € R?

this affine ansatz for GG corresponds to piecewise constant
ansatz for its derivatives g := DG

— density function p is piecewise constant

define inductively discrete maps G € Az by solution of
the minimisation problems

G : = argmin Eg (G; G%_l),
GeAs

. . 1 . _
with B (G: G*) = |G = G'[2a(ucz,) + BAGIA)



Discrete maps in 2d

reference triangulation (fixed) triangulation related to G'g (changes in time)
Wm,2 _\
o™ Wm,1 Gm,2 _\
R [~ Gma
S T'm'
wm.0 (0,1) qm s
Gm,0
(0,0) (1,0)

standard triangle
We introduce the linear interpolation maps
T'm: A2 — K7 rm(é) = Wm,0 + Z?:l(wm,j - Wm,O)gjv and
2
dm - Az — RQ? %n(é) = Gm,O + Ej:l(Gm,j - Gm,O)gj
~ the affine map equals to G,,,(w) = g o7}



Derivation of the discrete minimisation problem

We introduce the linear interpolation maps
2
P AN = K, 10 (€) = wino + > j=1(@Wmj — wim0)&;, and

qm - Az — RQ? Qm(é) - Gm,O + Z?:l(Gm,j - Gm,O)fj
~ the affine map equals to G,,,(w) = g o7}

We have

det Dg,,  det Q%[G]
det A,, = =
¢ det Dy 2|A)]

where QZ[G] := (GmJ — Gm,o‘Gm,z — Gm,o)

~~ we can express the maps via the coordinates of the
triangulation



Derivation of the discrete minimisation problem Il

Substitution of the special form G(w) = A,,w + by, produces
E(Gpy) = Yoa,eq 15 [HE(G) + V5G]
with internal energy H% (G) := h (detAm> —=h (dEtQ%G]>

-=m m
P 205

and potential energy
= JEAm V(Anpw+ by) dw = f, V(rm(w)) dw.
Further, we can show

|G — G*Hm (Kipy) — =[x |G = G*Ppy dw =3 ., W3L%(G, GY)
where

LG, G*) = £, [|G(w) = G*(w)[? dw = £, [Irm(w) — 77 (w)[1? dw
= é ZogzngQ(Gm,z G ,z) ) (Gm,j - Gi‘n,j)



Practical algorithm for finding minimizers

Now we can compute the discrete Euler-Lagrange
equations (for each node in the triangulation)
outer (time stepping) and inner (Newton) iteration
initialising G := G» with G™!, the solution at
previous time step, define inductively

GG .= g6 1 5G(s+1)7
where the update §G*Y is the solution to
H[G(S)]éG(SH) _ —Z[G(S); Gn—l]'

if norm of 6G**1 drops below given stopping criterion,
define G™ := GGt as approximate solution in the nth
time step.

effort of each inner iteration step is essentially determined
by the effort to invert the Hessian matrix H



Numerical example: porous medium equation

porous medium equation

Oyu = div (uV( m m_1>> = Au™

U
m— 1

Behaviour in the long-time limit ¢ — oo:

1

* _ y—da —« . _
ut(t,z) =t B(t"*z) with a——d+(m—1)’

where B is the Barenblatt profile



Numerical example: porous medium equation

Evolution of the support of the Barenblatt profile (m = 3):

— good agreement between analytical and numerical solution,
at least visually



Numerical example: porous medium equation

energy

107"
time

Decay of the energy of the discrete solution in comparison with

the analytical decay ¢=2/3 of the Barenblatt solution (left).

Numerical convergence for fixed ratio 7/h% = 0.4 (right).



Numerical analysis: overview of results

sequence of fully discrete minimization problems is
well-posed, we obtain sequence (Gf)n=o.1... for each
sufficiently fine discretization H.

induced densities pm converge weakly to an absolutely
continuous limit trajectory p

fluxes pgve converge weakly to a limit of the form pv

identification of the limit velocity v, however, is only
possible under strong additional hypotheses

for d = 2, we prove numerical consistency, i.e. if G is a
smooth solution, then its restriction to the mesh H
satisfies fully discrete Euler—Lagrange equations
associated to the minimizing movement scheme, with a
quantifiable error that vanishes in suitable continuous
limit (requires certain assumptions on triangulation)



Numerical example: porous medium equation

A few more numerical results...



Summary & Outlook

variational numerical scheme for non-linear diffusion
equations that respects their gradient flow structure

applicable to a wide range of nonlinear diffusion problems

dissipates energy ‘as fast as possible’ — just like the
original gradient flow

built-in conservation of mass and non-negativity

efficient solution also for two-dimensional problems

modified scheme with improved convergence analysis

MERCI BEAUCOUP!



