Stochastic Homogenisation of Discrete Transport Problems

Lorenzo Portinale, Hausdorff Center for Mathematics (Bonn)

In collaboration with: P. Gladbach, and J. Maas

$$
\text { Gradient Flows face-to-face } 3
$$

Université Claude Bernard Lyon I, September 12th, 2023

hcm
HAUSDORFF CENTER FOR MATHEMATICS

Summary of today's talk.

(1) A general class of dynamical transport problems on \mathbb{R}^{d}.
(2) Multivariate flow-based problems on euclidean spaces.
(3) Flow-based problems on random graphs: discretisation of continuous problems.
(4) Stochastic homogenisation of transport problems on graphs.

(1/4) Dynamical transport problems in \mathbb{R}^{d}

Dynamical transport problems in $\mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$.
For a given measurable, Isc function $f: \mathbb{R}^{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}$, we are interested in

$$
C_{f}\left(\mu_{0}, \mu_{1}\right):=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\{\int_{0}^{1} \int_{\mathbb{R}^{d}} f\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t: \underbrace{\partial_{t} \mu_{t}+\nabla \cdot \xi_{t}=0}_{\text {continuity equation }}, \mu_{t=i}=\mu_{i}\}
$$

where $\mu_{0}, \mu_{1} \in \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$ are given initial and final measures, $\xi_{t}:=\mu_{t} v_{t}$ is the flux.

Figure: An evolution $\left(\mu_{t}\right)_{t} \subset \mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$ from μ_{0} to μ_{1} (edited from [Villani, 2009]).

Examples of transport problems (1).

$$
C_{f}\left(\mu_{0}, \mu_{1}\right):=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\{\int_{0}^{1} \int_{\mathbb{R}^{d}} f\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t: \underbrace{\partial_{t} \mu_{t}+\nabla \cdot \xi_{t}=0, \mu_{t=i}=\mu_{i}}_{\left(\mu_{t}, \xi_{t}\right)_{t} \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)}\}
$$

- $f(\mu, \xi)=|\xi|^{2} / \mu$ corresponds to the (2)-Wasserstein distance \mathbb{W}_{2} :

$$
\mathbb{W}_{2}\left(\mu_{0}, \mu_{1}\right)^{2}=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\left\{\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\left|\xi_{t}\right|^{2}}{\mu_{t}} \mathrm{~d} x \mathrm{~d} t:\left(\mu_{t}, \xi_{t}\right)_{t} \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)\right\}
$$

whose dynamical interpretation is due to [Benamou and Brenier, 2000].

Examples of transport problems (1).

$$
C_{f}\left(\mu_{0}, \mu_{1}\right):=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\{\int_{0}^{1} \int_{\mathbb{R}^{d}} f\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t: \underbrace{\partial_{t} \mu_{t}+\nabla \cdot \xi_{t}=0, \mu_{t=i}=\mu_{i}}_{\left(\mu_{t}, \xi_{t}\right) \in \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)}\}
$$

- $f(\mu, \xi)=|\xi|^{2} / \mu$ corresponds to the (2)-Wasserstein distance \mathbb{W}_{2} :

$$
\mathbb{W}_{2}\left(\mu_{0}, \mu_{1}\right)^{2}=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\left\{\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\left|\xi_{t}\right|^{2}}{\mu_{t}} \mathrm{~d} x \mathrm{~d} t:\left(\mu_{t}, \xi_{t}\right)_{t} \in \operatorname{CE}\left(\mu_{0}, \mu_{1}\right)\right\}
$$

whose dynamical interpretation is due to [Benamou and Brenier, 2000].

- More general: $f(\mu, \xi)=|\xi|^{p} / m(\mu)^{p-1}$ for $m: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$concave mobility:

$$
\mathbb{W}_{p, m}\left(\mu_{0}, \mu_{1}\right)^{p}:=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\left\{\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{\left|\xi_{t}\right|^{p}}{m\left(\mu_{t}\right)^{p-1}} \mathrm{~d} x \mathrm{~d} t:\left(\mu_{t}, \xi_{t}\right)_{t} \in \operatorname{CE}\left(\mu_{0}, \mu_{1}\right)\right\}
$$

are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .

Examples of transport problems (2).

$$
C_{f}\left(\mu_{0}, \mu_{1}\right):=\inf _{\left(\mu_{t}, \xi_{t}\right)_{t}}\{\int_{0}^{1} \int_{\mathbb{R}^{d}} f\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t: \underbrace{\partial_{t} \mu_{t}+\nabla \cdot \xi_{t}=0, \mu_{t=i}=\mu_{i}}_{\left(\mu_{t}, \xi_{t)} \in \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)\right.}\}
$$

- $f(\mu, \xi)=f(\xi)$ are flow-based problems (Beckmann problems). When f is convex:

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}} f\left(\xi_{t}\right) \mathrm{d} x \mathrm{~d} t \stackrel{\text { Jensen }}{\geq} \int_{\mathbb{R}^{d}} f(\underbrace{\int_{0}^{1} \xi_{t} \mathrm{~d} t}_{=: \bar{\xi}}) \mathrm{d} x=\int_{\mathbb{R}^{d}} f(\bar{\xi}) \mathrm{d} x,
$$

In this case, one has the equivalent static formulation:

$$
C_{f}\left(\mu_{0}, \mu_{1}\right)=\inf _{\bar{\xi}}\left\{\int_{\mathbb{R}^{d}} f(\bar{\xi}) \mathrm{d} x: \nabla \cdot \bar{\xi}=\mu_{0}-\mu_{1}\right\} .
$$

This includes $\mathbb{W}_{1}(f(\bar{\xi})=|\bar{\xi}|)$ and negative Sobolev distance $H^{-1}\left(f(\bar{\xi})=|\bar{\xi}|^{2}\right)$.

Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, ...
(2) Application to PDEs: theory of metric gradient flows.

$$
\partial_{t} \mu_{t}-\nabla \cdot\left(\mu_{t} \nabla\left(\operatorname{DE}\left(\mu_{t}\right)\right)\right)=0, \quad \mathrm{E}: \mathcal{M}_{+}\left(\mathbb{R}^{d}\right) \rightarrow[0,+\infty] .
$$

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

$$
\partial_{t} \mu_{t}=\Delta \mu_{t}, \quad \mathrm{E}(\mu)=\int_{\mathbb{R}^{d}} \log \left(\frac{\mathrm{~d} \mu}{\mathrm{~d} x}\right) \mathrm{d} \mu
$$

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory).
(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, ...
(2) Application to PDEs: theory of metric gradient flows.

$$
\partial_{t} \mu_{t}-\nabla \cdot\left(\mu_{t} \nabla\left(\operatorname{DE}\left(\mu_{t}\right)\right)\right)=0, \quad \mathrm{E}: \mathcal{M}_{+}\left(\mathbb{R}^{d}\right) \rightarrow[0,+\infty] .
$$

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

$$
\partial_{t} \mu_{t}=\Delta \mu_{t}, \quad \mathrm{E}(\mu)=\int_{\mathbb{R}^{d}} \log \left(\frac{\mathrm{~d} \mu}{\mathrm{~d} x}\right) \mathrm{d} \mu
$$

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory).
(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Discrete-to-continuum problem: the study of the convergence of (rescaled) discrete transport problems (and evolutions) towards a continuous one.

Discrete-to-continuum limits of transport problems: some literature.

(1) First convergence result [Gigli and Maas, 2013]: transport metrics associated to the cubic mesh on the torus \mathbb{T}^{d} converge to \mathbb{W}_{2} in the limit of vanishing mesh size.

(2) Geometric graphs on point clouds [García Trillos, 2020]: almost sure convergence of the discrete metrics to \mathbb{W}_{2}, but diverging degree.
(3) Finite volume partitions \mathcal{T} in \mathbb{R}^{d} [Gladbach, Kopfer, and Maas, 2020]: convergence of $\mathcal{W}_{\mathcal{T}}$ to \mathbb{W}_{2} as $\operatorname{size}(\mathcal{T}) \rightarrow 0$ is essentially equivalent to an isotropy condition.

Discrete-to-continuum limits of transport problems: some literature.

(4) Periodic homogenisation of transport problems [Gladbach, Kopfer, Maas, and P., 2020 \& 2023]: a complete characterisation of the limit costs in a periodic setting.

(5) Convergence of the gradient flows I: convergence of finite-volume discretisation of diffusions [Disser and Liero, 2015], [Forkert, Maas, and P., 2020] (quadratic) ; [Hraivoronska and Tse, 2023], [Hraivoronska, Schlichting, and Tse, 2023] (cosh).
(6) Convergence of the gradient flows II: generalised gradient-flow structures associated to jump processes and approximation of nonlocal-interaction equations [Esposito, Patacchini, Schlichting, and Slepčev, 2021], [Esposito, Patacchini, and Schlichting, 2023b], [Esposito, Heinze, and Schlichting, 2023a].
(2/4) Multivariate flow-based problems

Vector-valued flow-based problems in \mathbb{R}^{d}.

Subject of study: time-independent flow problems with target space $V=\mathbb{R}^{n}$.

Vector-valued flow-based problems in \mathbb{R}^{d}.

Subject of study: time-independent flow problems with target space $V=\mathbb{R}^{n}$.

- We fix a bounded, open, Lipschitz domain $U \subset \mathbb{R}^{d}$.
- We study variational problems which are divergence-constrained: for $\mu \in \mathcal{M}(\bar{U} ; V)$ with $\mu(\bar{U})=0$ (e.g. $\mu=\mu_{1}-\mu_{0}$), we consider vector fields

$$
\xi \in \mathcal{M}\left(\bar{U} ; V \otimes \mathbb{R}^{d}\right) \text { so that } \nabla \cdot \xi=\mu .
$$

- For a given measurable, Isc function $f: V \otimes \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}$, we define

$$
\mathbb{F}_{f}^{\mu}(\xi):= \begin{cases}\int_{\bar{U}} f\left(\frac{\mathrm{~d} \xi}{\mathrm{~d} x}\right) \mathrm{d} \mathscr{L}^{d}+\int_{\bar{U}} f^{\infty}\left(\frac{\mathrm{d} \xi}{\mathrm{~d}|\xi|}\right) \mathrm{d}|\xi|^{s}, & \text { if } \nabla \cdot \xi=\mu, \\ +\infty, & \text { otherwise },\end{cases}
$$

for $\xi \in \mathcal{M}\left(\bar{U} ; V \otimes \mathbb{R}^{d}\right)$, where $f^{\infty}(\xi)=\lim _{t \rightarrow \infty} \frac{f(t \xi)}{t}$ is the recess of f.

Vector-valued flow-based problems in \mathbb{R}^{d}.

Subject of study: time-independent flow problems with target space $V=\mathbb{R}^{n}$.

- We fix a bounded, open, Lipschitz domain $U \subset \mathbb{R}^{d}$.
- We study variational problems which are divergence-constrained: for $\mu \in \mathcal{M}(\bar{U} ; V)$ with $\mu(\bar{U})=0$ (e.g. $\mu=\mu_{1}-\mu_{0}$), we consider vector fields

$$
\xi \in \mathcal{M}\left(\bar{U} ; V \otimes \mathbb{R}^{d}\right) \text { so that } \nabla \cdot \xi=\mu .
$$

- For a given measurable, Isc function $f: V \otimes \mathbb{R}^{d} \rightarrow \mathbb{R} \cup\{+\infty\}$, we define

$$
\mathbb{F}_{f}^{\mu}(\xi):= \begin{cases}\int_{\bar{U}} f\left(\frac{\mathrm{~d} \xi}{\mathrm{~d} x}\right) \mathrm{d} \mathscr{L}^{d}+\int_{\bar{U}} f^{\infty}\left(\frac{\mathrm{d} \xi}{\mathrm{~d}|\xi|}\right) \mathrm{d}|\xi|^{s}, & \text { if } \nabla \cdot \xi=\mu, \\ +\infty, & \text { otherwise },\end{cases}
$$

for $\xi \in \mathcal{M}\left(\bar{U} ; V \otimes \mathbb{R}^{d}\right)$, where $f^{\infty}(\xi)=\lim _{t \rightarrow \infty} \frac{f(t \xi)}{t}$ is the recess of f.

Our goal/result: almost sure convergence of random, discretisation of \mathbb{F}_{f}^{μ} on graphs.

(3/4) Flow-based problems on random graphs

Discrete flow problems on random graphs.

Discrete framework: we study flow-based problems with random energy density on a random graph under the assumption of stationarity. We consider:

Discrete flow problems on random graphs.

Discrete framework: we study flow-based problems with random energy density on a random graph under the assumption of stationarity. We consider:
(1) a reference probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
(2) a measure-preserving group action $\left\{\tau_{z}: \Omega \rightarrow \Omega\right\}_{z \in \mathbb{Z}_{d}}$ on Ω, i.e. $\left(\tau_{z}\right)_{\#} \mathbb{P}=\mathbb{P}$.
(3) a stationary random graph, meaning $\omega \in \Omega \mapsto\left(\mathcal{X}_{\omega}, \mathcal{E}_{\omega}\right)$ (vertices, edges) satisfying

$$
\left(\mathcal{X}_{\tau_{z}(\omega)}, \mathcal{E}_{\tau_{z}(\omega)}\right)=\left(\mathcal{X}_{\omega}+z, \mathcal{E}_{\omega}+z\right), \quad \forall z \in \mathbb{Z}_{d} \quad \text { (aka periodic in law) }
$$

Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

$$
\omega \in \Omega \mapsto \mathrm{F}_{\omega}: V_{a}^{\mathcal{E}} \times \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R},
$$

where $V_{a}^{\mathcal{E}}:=\{J: \mathcal{E} \rightarrow V: J(x, y)=-J(y, x)\}$ (discrete flows), $\mathcal{B}\left(\mathbb{R}^{n}\right):=$ Borel sets.

Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

$$
\omega \in \Omega \mapsto \mathrm{F}_{\omega}: V_{a}^{\mathcal{E}} \times \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}
$$

where $V_{a}^{\mathcal{E}}:=\{J: \mathcal{E} \rightarrow V: J(x, y)=-J(y, x)\}$ (discrete flows), $\mathcal{B}\left(\mathbb{R}^{n}\right):=$ Borel sets.
Example: for given random conductances $\left(\omega_{x y}\right)_{x, y} \subset \mathbb{R}_{+}$, consider the discrete energies

$$
\mathrm{F}_{\omega}(J, A):=\sum_{[x, y] \cap A \neq \emptyset} \omega_{x y}\|J(x, y)\|_{V}^{p}, \quad J \in V_{a}^{\mathcal{E}}, \quad A \in \mathcal{B}\left(R^{n}\right), \quad p \geq 1
$$

Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

$$
\omega \in \Omega \mapsto \mathrm{F}_{\omega}: V_{a}^{\mathcal{E}} \times \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}
$$

where $V_{a}^{\mathcal{E}}:=\{J: \mathcal{E} \rightarrow V: J(x, y)=-J(y, x)\}$ (discrete flows), $\mathcal{B}\left(\mathbb{R}^{n}\right):=$ Borel sets.
Example: for given random conductances $\left(\omega_{x y}\right)_{x, y} \subset \mathbb{R}_{+}$, consider the discrete energies

$$
\mathrm{F}_{\omega}(J, A):=\sum_{[x, y] \cap A \neq \emptyset} \omega_{x y}\|J(x, y)\|_{V}^{p}, \quad J \in V_{a}^{\mathcal{E}}, \quad A \in \mathcal{B}\left(R^{n}\right), \quad p \geq 1
$$

(i) We assume locality in the first variable and σ-additivity in the second, i.e.

$$
\mathrm{F}_{\omega}(J, A)=\sum_{i=1}^{\infty} \mathrm{F}_{\omega}\left(J, A_{i}\right), \quad A=\bigcup_{i \in \mathbb{N}} A_{i}, \quad\left\{A_{i}\right\}_{i \in \mathbb{N}} \text { disjoint }, \quad J \in V_{a}^{\mathcal{E}}
$$

(ii) Stationarity: we assume that $\operatorname{Law}\left(\tau_{z} F\right)=\operatorname{Law}(F)$ for every $z \in \mathbb{Z}^{d}$, i.e.

$$
\left(\tau_{z} \mathrm{~F}\right)_{\omega}=\mathrm{F}_{\tau_{z} \omega}, \quad \text { where } \quad\left(\tau_{z} \mathrm{~F}\right)_{\omega}(J, A):=\mathrm{F}_{\omega}(J(\cdot+z), A-z)
$$

(4/4) Stochastic homogenisation of discrete transport problems

Main result: stochastic homogenisation in the linear growth case.
We can prove the sought approximation result under linear growth, namely

$$
\begin{aligned}
\mathrm{F}_{\omega}(J, A) & \geq c \sum_{[x, y] \cap A \neq \emptyset}\|J(x, y)\| v-c|A| \\
\left|F_{\omega}(J, A)-F_{\omega}\left(J^{\prime}, A\right)\right| & \leq c \sum_{[x, y] \subset B_{R}(A)}\left\|J(x, y)-J^{\prime}(x, y)\right\| v .
\end{aligned}
$$

Main result: stochastic homogenisation in the linear growth case.

We can prove the sought approximation result under linear growth, namely

$$
\begin{aligned}
F_{\omega}(J, A) & \geq c \sum_{[x, y] \cap A \neq \emptyset}\|J(x, y)\| v-c|A|, \\
\left|F_{\omega}(J, A)-F_{\omega}\left(J^{\prime}, A\right)\right| & \leq c \sum_{[x, y] \subset B_{R}(A)}\left\|J(x, y)-J^{\prime}(x, y)\right\| v .
\end{aligned}
$$

Rescaling: for $\varepsilon>0$, we define $\mathcal{E}_{\varepsilon}:=\varepsilon \mathcal{E}$ and rescaled energies $F_{\omega, \varepsilon}: V_{a}^{\mathcal{E}_{\varepsilon}} \times \mathcal{B}\left(\mathbb{R}^{n}\right)$ as

$$
F_{\omega, \varepsilon}(J, A):=\varepsilon^{d} F_{\omega}\left(\frac{J(\varepsilon \cdot, \cdot)}{\varepsilon^{d-1}}, \frac{1}{\varepsilon} A\right), \quad J \in V_{a}^{\varepsilon_{\varepsilon}}, A \in \mathcal{B}\left(\mathbb{R}^{n}\right) .
$$

Constrained functionals: in the same spirit as in the continuous setting, we set

$$
\mathrm{F}_{\omega, \varepsilon}^{m}(J):= \begin{cases}\mathrm{F}_{\omega, \varepsilon}(J, \bar{U}), & \text { if Div } J=m, \\ +\infty, & \text { otherwise },\end{cases}
$$

for any given $m \in \mathcal{M}_{0}\left(\mathbb{Z}_{\varepsilon}^{d} \cap \bar{U}\right)$ (i.e. m has zero mass in $\left.\bar{U}\right)$. Here: $\operatorname{Div} J(x)=\sum_{y \sim x} J(x, y)$.

Statement of the main result.

Theorem (Gladbach, Maas, and P., 2023+ ; for simplicity: $\mathcal{X}=\mathbb{Z}^{d}$)
Assume that $m_{\varepsilon} \rightarrow \mu \in \mathcal{M}(\bar{U} ; V) \mathbb{P}$-almost-surely. Then, \mathbb{P}-almost surely, under the assumptions mentioned above, the discrete constrained functionals $F_{\omega, \varepsilon}^{m_{\varepsilon}} \Gamma$-convergence as $\varepsilon \rightarrow 0$ (wrt the weak topology) to $\mathbb{F}_{\omega, \text { hom }}$, where

$$
\mathbb{F}_{\omega, \text { hom }}(\xi):= \begin{cases}\int_{\bar{U}} f_{\omega, \text { hom }}\left(\frac{\mathrm{d} \xi}{\mathrm{~d} x}\right) \mathrm{d} \mathscr{L}^{d}+\int_{\bar{U}} f_{\omega, \text { hom }}^{\infty}\left(\frac{\mathrm{d} \xi}{\mathrm{~d}|\xi|}\right) \mathrm{d}|\xi|^{s}, & \text { if } \nabla \cdot \xi=\mu \\ +\infty, & \text { otherwise },\end{cases}
$$

where $f_{\omega, \text { hom }}: V \otimes \mathbb{R}^{d} \rightarrow \mathbb{R}$ is lower semicontinuous, with linear growth, and div-quasiconvex. Moreover, if in addition one assumes ergodicity, then the $f_{\omega, \text { hom }}=f_{\text {hom }}$ does not depend on ω (the limit is deterministic).

Statement of the main result.

Theorem (Gladbach, Maas, and P., 2023+ ; for simplicity: $\mathcal{X}=\mathbb{Z}^{d}$)

Assume that $m_{\varepsilon} \rightarrow \mu \in \mathcal{M}(\bar{U} ; V) \mathbb{P}$-almost-surely. Then, \mathbb{P}-almost surely, under the assumptions mentioned above, the discrete constrained functionals $F_{\omega, \varepsilon}^{m_{\varepsilon}} \Gamma$-convergence as $\varepsilon \rightarrow 0$ (wrt the weak topology) to $\mathbb{F}_{\omega, \text { hom }}$, where

$$
\mathbb{F}_{\omega, \text { hom }}(\xi):= \begin{cases}\int_{\bar{U}} f_{\omega, \operatorname{hom}}\left(\frac{\mathrm{d} \xi}{\mathrm{~d} x}\right) \mathrm{d} \mathscr{L}^{d}+\int_{\bar{U}} f_{\omega, \text { hom }}^{\infty}\left(\frac{\mathrm{d} \xi}{\mathrm{~d}|\xi|}\right) \mathrm{d}|\xi|^{s}, & \text { if } \nabla \cdot \xi=\mu \\ +\infty, & \text { otherwise }\end{cases}
$$

where $f_{\omega, \text { hom }}: V \otimes \mathbb{R}^{d} \rightarrow \mathbb{R}$ is lower semicontinuous, with linear growth, and div-quasiconvex. Moreover, if in addition one assumes ergodicity, then the $f_{\omega, \text { hom }}=f_{\text {hom }}$ does not depend on ω (the limit is deterministic).

A function $f: V \otimes \mathbb{R}^{d} \rightarrow \mathbb{R}$ is said to be div-quasiconvex if for every cube $Q \subset \mathbb{R}^{d}$,

$$
f(\xi) \leq f_{Q} f(\xi+h(x)) \mathrm{d} x: \forall h \in C_{c}^{\infty}(Q) \quad \text { with } \quad \nabla \cdot h=0
$$

Generalisation of quasiconvexity by Morrey [1952] (weaker than convexity if $n>1$).

Multi-cell formula in the stochastic setting: computing $f_{\omega, \text { hom }}$.

The limit density $f_{\omega \text {,hom }}$ can be computed as limit of cell problems on on large cubes. In particular, for every $\xi \in V \otimes \mathbb{R}^{d}$ and $A \subset \mathbb{R}^{d}$, we have define the cell problem

$$
f_{\omega}(\xi, A)=\inf \left\{\mathrm{F}_{\omega}(J, A): J \in \operatorname{Rep}(\xi, A)\right\}
$$

where the set of representatives of ξ on A is given by

$$
\operatorname{Rep}(\xi, A):=\left\{J \in V_{a}^{\mathcal{E}}: \operatorname{Div} J=0 \quad \text { and } \quad " J=\xi \prime \text { on } \partial A\right\}
$$

Then the homogenized energy density can be computed by taking the limit

$$
\begin{equation*}
f_{\omega, \text { hom }}(\xi):=\lim _{N \rightarrow \infty} \frac{f_{\omega}(\xi, N Q)}{|N Q|} \tag{1}
\end{equation*}
$$

Multi-cell formula in the stochastic setting: computing $f_{\omega, \text { hom }}$.

The limit density $f_{\omega, \text { hom }}$ can be computed as limit of cell problems on on large cubes. In particular, for every $\xi \in V \otimes \mathbb{R}^{d}$ and $A \subset \mathbb{R}^{d}$, we have define the cell problem

$$
f_{\omega}(\xi, A)=\inf \left\{\mathrm{F}_{\omega}(J, A): J \in \operatorname{Rep}(\xi, A)\right\}
$$

where the set of representatives of ξ on A is given by

$$
\operatorname{Rep}(\xi, A):=\left\{J \in V_{a}^{\mathcal{E}}: \operatorname{Div} J=0 \quad \text { and } \quad " J=\xi \prime \text { on } \partial A\right\}
$$

Then the homogenized energy density can be computed by taking the limit

$$
\begin{equation*}
f_{\omega, \text { hom }}(\xi):=\lim _{N \rightarrow \infty} \frac{f_{\omega}(\xi, N Q)}{|N Q|} \tag{1}
\end{equation*}
$$

The existence (\mathbb{P}-almost surely) of the limit in (1) follows by stationarity, as application of the subadditive ergodic theorem [Akcoglu-Krengel '81; Dal-Maso Modica '86].

$$
f_{\omega}(\xi, A) \leq \sum_{i \in \mathbb{N}} f_{\omega}\left(\xi, A_{i}\right), \quad A=\bigcup_{i \in \mathbb{N}}, \quad\left\{A_{i}\right\}_{i \in \mathbb{N}} \text { disjoint }, \quad \xi \in V \otimes \mathbb{R}^{d}
$$

Open problems/future directions.

- Full generality: beyond the linear growth and the flow-based (i.e. $f=f(\mu, \xi)$).
- Discrete-to-continuum limits of (generalised) gradient flows.
- Extend the analysis performed in Euclidean setting to Riemannian manifolds.

Open problems/future directions.

- Full generality: beyond the linear growth and the flow-based (i.e. $f=f(\mu, \xi)$).
- Discrete-to-continuum limits of (generalised) gradient flows.
- Extend the analysis performed in Euclidean setting to Riemannian manifolds.

Thank you!

Open problems/future directions.

- Full generality: beyond the linear growth and the flow-based (i.e. $f=f(\mu, \xi)$).
- Discrete-to-continuum limits of (generalised) gradient flows.
- Extend the analysis performed in Euclidean setting to Riemannian manifolds.

Thank you!

Sketch of the proof

Liminf: for $J_{\varepsilon} \rightarrow \nu$, $\operatorname{Div} J_{\varepsilon}=m_{\varepsilon} \rightarrow \mu$, we must show

$$
\infty>\liminf _{\varepsilon \rightarrow 0} F_{\omega, \varepsilon}\left(J_{\varepsilon}, \bar{U}\right) \geq \mathbb{F}_{\omega, \operatorname{hom}}(\nu, \bar{U})=\int_{\bar{U}} f_{\omega, \operatorname{hom}}\left(\frac{\mathrm{d} \nu}{\mathrm{~d} x}\right) \mathrm{d} \mathscr{L}^{d}+\int_{\bar{U}} f_{\omega, \text { hom }}^{\infty}\left(\frac{\mathrm{d} \nu}{\mathrm{~d}|\nu|}\right) \mathrm{d}|\nu|^{s} .
$$

The key tool is the blow-up technique á la Fonseca-Müller: define the measures

$$
\sigma_{\varepsilon}:=F_{\varepsilon}\left(J_{\varepsilon}, \cdot\right) \rightarrow \sigma \in \mathcal{M}_{+}(\bar{U}) \quad \Longrightarrow \quad \sigma(\bar{U})=\lim _{\varepsilon \rightarrow 0} \sigma_{\varepsilon}(\bar{U})=\liminf _{\varepsilon \rightarrow 0} F_{\omega, \varepsilon}\left(J_{\varepsilon}, \bar{U}\right) .
$$

Writing the Radon-Nykodym decomposition of σ and ν, the liminf reduces to show

$$
\begin{align*}
f_{\omega, \text { hom }}\left(\frac{\mathrm{d} \nu}{\mathrm{~d} x}\right) & \leq \frac{\mathrm{d} \sigma}{\mathrm{~d} x} & & \mathscr{L}^{\text {d }}-\text { a.e. } \tag{AC}\\
f_{\omega, \text { hom }}^{\infty}\left(\frac{\mathrm{d} \nu}{\mathrm{~d}|\nu|}\right) & \leq \frac{\mathrm{d} \sigma}{\mathrm{~d}|\sigma|} & & |\nu|^{s}-\text { a.e. } \tag{S}
\end{align*}
$$

For example, in the (AC) case, one observe that

$$
\frac{\mathrm{d} \sigma}{\mathrm{dx}}\left(x_{0}\right)=\lim _{\delta \rightarrow 0} \frac{\sigma\left(Q_{\delta}\right)}{\left|Q_{\delta}\right|}=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \frac{F_{\omega}\left(\tilde{J}_{\varepsilon}, Q_{\delta / \varepsilon}\right)}{\left|Q_{\delta / \varepsilon}\right|} \text {, where } \tilde{J}_{\varepsilon}=\frac{J_{\varepsilon}(\varepsilon \cdot)}{\varepsilon^{d-1}} .
$$

In this case, $\tilde{J}_{\varepsilon} \approx \frac{\mathrm{d} \nu}{\mathrm{d} x}\left(x_{0}\right) \mathscr{L}^{d}$ (tangent measure) and Div $\tilde{J}_{\varepsilon} \approx 0$ - need correction.

The role of isotropy in the periodic setting

Theorem (multidimensional): \mathcal{W}_{θ} converges as $\varepsilon \rightarrow 0$ to $\mathbb{W}_{\text {hom }}$, where

$$
\mathbb{W}_{\text {hom }}^{2}\left(\mu_{0}, \mu_{1}\right)=\left\{\int_{0}^{1} \int_{\mathbb{T}^{d}} f_{\text {hom }}\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t:\left(\mu_{t}, \xi_{t}\right)_{t} \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)\right\}, \quad \text { where }
$$

- $\mathbb{W}_{\text {hom }}=\mathbb{W}_{2}$ if and only if the mesh is isotropic: in the periodic setting, it reads

$$
\frac{1}{2} \sum_{y \sim x} d_{x y} \mathscr{H}^{d-1}\left(\partial K_{x} \cap \partial K_{y}\right) n_{x y} \otimes n_{x y}=\left|K_{x}\right| \text { id }, \quad \forall x \in \mathcal{X}
$$

The role of isotropy in the periodic setting

Theorem (multidimensional): \mathcal{W}_{θ} converges as $\varepsilon \rightarrow 0$ to $\mathbb{W}_{\text {hom }}$, where

$$
\mathbb{W}_{\text {hom }}^{2}\left(\mu_{0}, \mu_{1}\right)=\left\{\int_{0}^{1} \int_{\mathbb{T}^{d}} f_{\text {hom }}\left(\mu_{t}, \xi_{t}\right) \mathrm{d} x \mathrm{~d} t:\left(\mu_{t}, \xi_{t}\right)_{t} \in \mathrm{CE}\left(\mu_{0}, \mu_{1}\right)\right\}, \quad \text { where }
$$

- $f_{\text {hom }}(\mu, \xi)=\frac{\|\xi\|_{\text {hom }}^{2}}{\mu} \leq \frac{|\xi|^{2}}{\mu}$, where $\|\cdot\|_{\text {hom }}$ is a norm (possibly not Riemannianian!)

Figure: Strongly oscillating measures on the graph scale can be cheaper.

