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Summary of today’s talk.

(1) A general class of dynamical transport problems on Rd .

(2) Multivariate flow-based problems on euclidean spaces.

(3) Flow-based problems on random graphs: discretisation of continuous problems.

(4) Stochastic homogenisation of transport problems on graphs.
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(1/4) Dynamical transport problems in Rd
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Dynamical transport problems in M+(Rd).

For a given measurable, lsc function f : R+ × Rd → R ∪ {+∞}, we are interested in

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸
continuity equation

, µt=i = µi


where µ0, µ1 ∈ M+(Rd) are given initial and final measures, ξt := µtvt is the flux.

Figure: An evolution (µt)t ⊂ M+(Rd ) from µ0 to µ1 (edited from [Villani, 2009]).
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Examples of transport problems (1).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = |ξ|2/µ corresponds to the (2)-Wasserstein distance W2 :

W2(µ0, µ1)
2 = inf

(µt ,ξt )t

{� 1

0

�
Rd

|ξt |2

µt
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
whose dynamical interpretation is due to [Benamou and Brenier, 2000].

◦ More general: f (µ, ξ) = |ξ|p/m(µ)p−1 for m : R+ → R+ concave mobility:

Wp,m(µ0, µ1)
p := inf

(µt ,ξt )t

{� 1

0

�
Rd

|ξt |p

m(µt)p−1
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .
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Examples of transport problems (2).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = f (ξ) are flow-based problems (Beckmann problems). When f is convex:

� 1

0

�
Rd

f (ξt)dx dt
Jensen

≥
�
Rd

f

( � 1

0

ξt dt︸ ︷︷ ︸
=:ξ̄

)
dx =

�
Rd

f (ξ̄)dx ,

In this case, one has the equivalent static formulation:

Cf (µ0, µ1) = inf
ξ̄

{�
Rd

f (ξ̄)dx : ∇ · ξ̄ = µ0 − µ1

}
.

This includes W1 (f (ξ̄) = |ξ̄|) and negative Sobolev distance H−1 (f (ξ̄) = |ξ̄|2).
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Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, . . .

(2) Application to PDEs: theory of metric gradient flows.

∂tµt −∇ · (µt∇(DE(µt))) = 0, E : M+(Rd) → [0,+∞].

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

∂tµt = ∆µt , E(µ) =

�
Rd

log
( dµ

dx

)
dµ.

(3) Surprising connections with the Riemannian geometry (Lott–Villani–Sturm theory).

(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Discrete-to-continuum problem: the study of the convergence of (rescaled) discrete

transport problems (and evolutions) towards a continuous one.
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Discrete-to-continuum limits of transport problems: some literature.

(1) First convergence result [Gigli and Maas, 2013]: transport metrics associated to

the cubic mesh on the torus Td converge to W2 in the limit of vanishing mesh size.

(2) Geometric graphs on point clouds [Garćıa Trillos, 2020]: almost sure convergence

of the discrete metrics to W2, but diverging degree.

(3) Finite volume partitions T in Rd [Gladbach, Kopfer, and Maas, 2020]: convergence

of WT to W2 as size(T ) → 0 is essentially equivalent to an isotropy condition.
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Discrete-to-continuum limits of transport problems: some literature.

(4) Periodic homogenisation of transport problems [Gladbach, Kopfer, Maas, and P.,

2020 & 2023]: a complete characterisation of the limit costs in a periodic setting.

(5) Convergence of the gradient flows I: convergence of finite-volume discretisation of

diffusions [Disser and Liero, 2015], [Forkert, Maas, and P., 2020] (quadratic) ;

[Hraivoronska and Tse, 2023], [Hraivoronska, Schlichting, and Tse, 2023] (cosh).

(6) Convergence of the gradient flows II: generalised gradient-flow structures

associated to jump processes and approximation of nonlocal-interaction equations

[Esposito, Patacchini, Schlichting, and Slepčev, 2021], [Esposito, Patacchini, and

Schlichting, 2023b], [Esposito, Heinze, and Schlichting, 2023a].
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(2/4) Multivariate flow-based problems
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Vector-valued flow-based problems in Rd .

Subject of study: time-independent flow problems with target space V = Rn.

◦ We fix a bounded, open, Lipschitz domain U ⊂ Rd .

◦ We study variational problems which are divergence-constrained: for µ ∈ M(U;V )

with µ(U) = 0 (e.g. µ = µ1 − µ0), we consider vector fields

ξ ∈ M(U;V ⊗ Rd) so that ∇ · ξ = µ .

◦ For a given measurable, lsc function f : V ⊗ Rd → R ∪ {+∞}, we define

Fµ
f (ξ) :=


�
U

f
( dξ

dx

)
dL d +

�
U

f ∞
( dξ

d|ξ|

)
d|ξ|s , if ∇ · ξ = µ ,

+∞ , otherwise,

for ξ ∈ M(U;V ⊗ Rd), where f ∞(ξ) = lim
t→∞

f (tξ)

t
is the recess of f .

Our goal/result: almost sure convergence of random, discretisation of Fµ
f on graphs.
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(3/4) Flow-based problems on random graphs
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Discrete flow problems on random graphs.

Discrete framework: we study flow-based problems with random energy density on a

random graph under the assumption of stationarity. We consider:

(1) a reference probability space (Ω,F ,P).

(2) a measure-preserving group action {τz : Ω → Ω}z∈Zd on Ω, i.e. (τz)#P = P.

(3) a stationary random graph, meaning ω ∈ Ω 7→ (Xω, Eω) (vertices, edges) satisfying

(Xτz (ω), Eτz (ω)) = (Xω + z , Eω + z) , ∀z ∈ Zd (aka periodic in law) .
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Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

ω ∈ Ω 7→ Fω : V E
a × B(Rn) → R ,

where V E
a := {J : E → V : J(x , y) = −J(y , x)} (discrete flows), B(Rn) :=Borel sets.

Example: for given random conductances (ωxy )x,y ⊂ R+, consider the discrete energies

Fω(J,A) :=
∑

[x,y ]∩A̸=∅

ωxy∥J(x , y)∥pV , J ∈ V E
a , A ∈ B(Rn) , p ≥ 1 .

(i) We assume locality in the first variable and σ-additivity in the second, i.e.

Fω(J,A) =
∞∑
i=1

Fω(J,Ai ) , A =
⋃
i∈N

Ai , {Ai}i∈N disjoint , J ∈ V E
a .

(ii) Stationarity: we assume that Law(τzF ) = Law(F ) for every z ∈ Zd , i.e.

(τzF)ω = Fτzω , where (τzF)ω(J,A) := Fω(J(·+ z),A− z) .
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(4/4) Stochastic homogenisation of discrete

transport problems
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Main result: stochastic homogenisation in the linear growth case.

We can prove the sought approximation result under linear growth, namely

Fω(J,A) ≥ c
∑

[x,y ]∩A ̸=∅

∥J(x , y)∥V − c|A| ,

∣∣Fω(J,A)− Fω(J
′,A)

∣∣ ≤ C
∑

[x,y ]⊂BR (A)

∥J(x , y)− J ′(x , y)∥V .

Rescaling: for ε > 0, we define Eε := εE and rescaled energies Fω,ε : V Eε
a × B(Rn) as

Fω,ε(J,A) := εdFω

(
J(ε·, ε·)
εd−1

,
1

ε
A

)
, J ∈ V Eε

a , A ∈ B(Rn) .

Constrained functionals: in the same spirit as in the continuous setting, we set

Fm
ω,ε(J) :=

Fω,ε(J,U) , if Div J = m ,

+∞ , otherwise,

for any given m ∈ M0(Zd
ε ∩U) (i.e. m has zero mass in U). Here: DivJ(x) =

∑
y∼x

J(x , y).
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Statement of the main result.

Theorem (Gladbach, Maas, and P., 2023+ ; for simplicity: X = Zd)

Assume that mε → µ ∈ M(U;V ) P-almost-surely. Then, P-almost surely, under the

assumptions mentioned above, the discrete constrained functionals Fmε
ω,ε Γ-convergence

as ε → 0 (wrt the weak topology) to Fω,hom, where

Fω,hom(ξ) :=


�
U

fω,hom

( dξ

dx

)
dL d +

�
U

f ∞ω,hom

( dξ

d|ξ|

)
d|ξ|s , if ∇ · ξ = µ ,

+∞ , otherwise,

where fω,hom : V ⊗ Rd → R is lower semicontinuous, with linear growth, and

div-quasiconvex. Moreover, if in addition one assumes ergodicity, then the fω,hom = fhom

does not depend on ω (the limit is deterministic).

A function f : V ⊗ Rd → R is said to be div-quasiconvex if for every cube Q ⊂ Rd ,

f (ξ) ≤
 
Q

f (ξ + h(x)) dx : ∀h ∈ C∞
c (Q) with ∇ · h = 0 .

Generalisation of quasiconvexity by Morrey [1952] (weaker than convexity if n > 1).
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Multi-cell formula in the stochastic setting: computing fω,hom.

The limit density fω,hom can be computed as limit of cell problems on on large cubes. In

particular, for every ξ ∈ V ⊗ Rd and A ⊂ Rd , we have define the cell problem

fω(ξ,A) = inf {Fω(J,A) : J ∈ Rep(ξ,A)} ,

where the set of representatives of ξ on A is given by

Rep(ξ,A) :=
{
J ∈ V E

a : DivJ = 0 and ”J = ξ” on ∂A
}

.

Then the homogenized energy density can be computed by taking the limit

fω,hom(ξ) := lim
N→∞

fω(ξ,NQ)

|NQ| . (1)

The existence (P-almost surely) of the limit in (1) follows by stationarity, as application

of the subadditive ergodic theorem [Akcoglu-Krengel ’81; Dal-Maso Modica ’86].

fω(ξ,A) ≤
∑
i∈N

fω(ξ,Ai ) , A =
⋃
i∈N

, {Ai}i∈N disjoint , ξ ∈ V ⊗ Rd .
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Open problems/future directions.

◦ Full generality: beyond the linear growth and the flow-based (i.e. f = f (µ, ξ)).

◦ Discrete-to-continuum limits of (generalised) gradient flows.

◦ Extend the analysis performed in Euclidean setting to Riemannian manifolds.

Thank you!
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Sketch of the proof

Liminf: for Jε → ν, DivJε = mε → µ, we must show

∞ > lim inf
ε→0

Fω,ε(Jε,U) ≥ Fω,hom(ν,U) =

�
U

fω,hom

( dν

dx

)
dL d +

�
U

f ∞ω,hom

( dν

d|ν|

)
d|ν|s .

The key tool is the blow-up technique á la Fonseca–Müller: define the measures

σε := Fε(Jε, ·) → σ ∈ M+(U) =⇒ σ(U) = lim
ε→0

σε(U) = lim inf
ε→0

Fω,ε(Jε,U) .

Writing the Radon–Nykodym decomposition of σ and ν, the liminf reduces to show

fω,hom

( dν

dx

)
≤ dσ

dx
L d − a.e. , (AC)

f ∞ω,hom

( dν

d|ν|

)
≤ dσ

d|σ| |ν|s − a.e. . (S)

For example, in the (AC) case, one observe that

dσ

dx
(x0) = lim

δ→0

σ(Qδ)

|Qδ|
= lim

δ→0
lim
ε→0

Fω(J̃ε,Qδ/ε)∣∣Qδ/ε

∣∣ , where J̃ε =
Jε(ε·)
εd−1

.

In this case, J̃ε ≈ dν
dx

(x0)L
d (tangent measure) and DivJ̃ε ≈ 0 — need correction.
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε → 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ Whom = W2 if and only if the mesh is isotropic: in the periodic setting, it reads

1

2

∑
y∼x

dxyH
d−1(∂Kx ∩ ∂Ky )nxy ⊗ nxy = |Kx |id, ∀x ∈ X .
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε → 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ fhom(µ, ξ) =
∥ξ∥2hom

µ
≤ |ξ|2

µ
, where ∥ · ∥hom is a norm (possibly not Riemannianian!)

Figure: Strongly oscillating measures on the graph scale can be cheaper.
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