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Summary of today's talk.

(1) A general class of dynamical transport problems on RY.
(2) Multivariate flow-based problems on euclidean spaces.
(3) Flow-based problems on random graphs: discretisation of continuous problems.

(4) Stochastic homogenisation of transport problems on graphs.
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(1/4) Dynamical transport problems in R?
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Dynamical transport problems in M (R9).

For a given measurable, Isc function f : R™ x RY 5 RU {+0o0}, we are interested in

1
Cruos ) = inf 3 [ [ Funsaxde 0tV 6 =0, i =
(1e,€8)t o JRrd —_— ——————

continuity equation

where o, p1 € M+(Rd) are given initial and final measures, &; := pu:Vv; is the flux.

Figure: An evolution (u¢)r C M4 (R?) from pg to py (edited from [Villani, 2009]).
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Examples of transport problems (1).

1
Cr(po, pa) :=  inf / /d fpe, &) dxdt @ Oepe +V - & =0, pre—i = i
0 R

(he,E¢)e
(1t,€¢)t €ECE(o,11)

o f(u, &) = |€°/p corresponds to the (2)-Wasserstein distance W, :

2
Wg(po,yl = inf {// |€t| dxdt : (Mt,ft)tGCE(yo,ul)}
Rd

(1e,€8)e Mt

whose dynamical interpretation is due to [Benamou and Brenier, 2000].
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Examples of transport problems (1).

1
Cr(po, pa) :=  inf / /d fpe, &) dxdt @ Oepe +V - & =0, pre—i = i
0 R

(he,E¢)e
(1t,€¢)t €ECE(o,11)

o f(u, &) = |€°/p corresponds to the (2)-Wasserstein distance W, :

2
Wg(po,ﬂl = inf {// |€t| dxdt : (Mt,fr)tGCE(po,ul)}
Rd

(1e,€8)e Mt

whose dynamical interpretation is due to [Benamou and Brenier, 2000].

o More general: f(u,&) = |€|P/m(u)P~* for m: RT™ — R™ concave mobility:

WP>m(MO7M1)p: inf {/ /I;d m(f:)lg 1 dxdt : (/’Ll‘?gf)f € CE(NOaHI)}

(kt,Ee)e

are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .
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Examples of transport problems (2).

1
Ciuospn) = inf 3 [ [ Funs)axde 0tV 6 =0, wei=
0 R

He 6t
(1t,€¢) ¢ €CE(po,11)

o f(u,&) = f(&) are flow-based problems (Beckmann problems). When f is convex:

/:/Rd Fle)dxde 2" /}Rdf(éﬁig dx:/Rd f(€) dx,

—Z
In this case, one has the equivalent static formulation:

Cf(uo,m):in_f{/ f(&)dx : V~€_=uo—u1}~
3 R

This includes Wi (f(€) = |€]) and negative Sobolev distance H™! (f(&) = |€]?).
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Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.
Oepue — V - (e V(DE(pe))) =0,  E: My (RY) — [0, +00].

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy
_ _ du
Orpre = Ape,  E(p) = /Rd log ( dx) du.

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory).

(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Lorenzo Portinale (HCM Bonn) Lyon, September 12th, 2023 5/15



Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, ...

(2) Application to PDEs: theory of metric gradient flows.
Oepue — V - (e V(DE(pe))) =0,  E: My (RY) — [0, +00].

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy
Orpre = Ape,  E(p) = /R log ( o ) du.

(3) Surprising connections with the Riemannian geometry (Lott-Villani-Sturm theory).

(4) [Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.

Discrete-to-continuum problem: the study of the convergence of (rescaled) discrete
transport problems (and evolutions) towards a continuous one.
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Discrete-to-continuum limits of transport problems: some literature.

(1) First convergence result [Gigli and Maas, 2013]: transport metrics associated to
the cubic mesh on the torus T9 converge to W in the limit of vanishing mesh size.

https: //en.wikipedia.org/wiki/Torus

(2) Geometric graphs on point clouds [Garcia Trillos, 2020]: almost sure convergence
of the discrete metrics to W, but diverging degree.

(3) Finite volume partitions 7 in R [Gladbach, Kopfer, and Maas, 2020]: convergence
of Wr to W, as size(7) — 0 is essentially equivalent to an isotropy condition.
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Discrete-to-continuum limits of transport problems: some literature.

(4) Periodic homogenisation of transport problems [Gladbach, Kopfer, Maas, and P.,
2020 & 2023]: a complete characterisation of the limit costs in a periodic setting.

(5) Convergence of the gradient flows I: convergence of finite-volume discretisation of
diffusions [Disser and Liero, 2015], [Forkert, Maas, and P., 2020] (quadratic) ;
[Hraivoronska and Tse, 2023], [Hraivoronska, Schlichting, and Tse, 2023] (cosh).

(6) Convergence of the gradient flows Il: generalised gradient-flow structures
associated to jump processes and approximation of nonlocal-interaction equations
[Esposito, Patacchini, Schlichting, and Slep&ev, 2021], [Esposito, Patacchini, and
Schlichting, 2023b], [Esposito, Heinze, and Schlichting, 2023a].
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(2/4) Multivariate flow-based problems
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Vector-valued flow-based problems in R,

Subject of study: time-independent flow problems with target space V = R".
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Vector-valued flow-based problems in R,

Subject of study: time-independent flow problems with target space V = R".
o We fix a bounded, open, Lipschitz domain U C R¥.

o We study variational problems which are divergence-constrained: for 1 € M(U; V)
with (U) =0 (e.g. i = p1 — o), we consider vector fields

e MU;VORY) sothat V-£=pu.
o For a given measurable, Isc function f : V ® RY 5 RU {+oc}, we define

F (€)= /f(ji)dgd /Ufoo(d|g|)d‘§|’ fV-E=p,

+o0, otherwise,

for ¢ € M(U; V @ RY), where (&) = I|m f(:f) is the recess of f.
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Vector-valued flow-based problems in R,

Subject of study: time-independent flow problems with target space V = R".
o We fix a bounded, open, Lipschitz domain U C R¥.

o We study variational problems which are divergence-constrained: for 1 € M(U; V)
with (U) =0 (e.g. i = p1 — o), we consider vector fields

e MU;VORY) sothat V-£=pu.
o For a given measurable, Isc function f : V ® RY 5 RU {+oc}, we define

F (€)= /f(ji)dgd /Ufoo(d|g|)d‘§|’ fV-E=p,

+o0, otherwise,

for ¢ € M(U; V @ RY), where (&) = I|m f(:f) is the recess of f.

Our goal/result: almost sure convergence of random, discretisation of F¥ on graphs.
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(3/4) Flow-based problems on random graphs
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Discrete flow problems on random graphs.

Discrete framework: we study flow-based problems with random energy density on a
random graph under the assumption of stationarity. We consider:
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Discrete flow problems on random graphs.
Discrete framework: we study flow-based problems with random energy density on a
random graph under the assumption of stationarity. We consider:

(1) a reference probability space (2, F,P).
(2) a measure-preserving group action {7; : Q — Q},cz, on Q, i.e. (77)xP =P.

(3) a stationary random graph, meaning w € Q — (X.,, &) (vertices, edges) satisfying

(X () En(w)) = (Mo + 2,80 +2), Vz€Zg (aka periodic in law).

& O

/l%////
7 /-i- . -

\\\\\\\\\\\\\\

///////
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T
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Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional
weQ—F,: VExBR") =R,

where V& :={J:E =V : J(x,y) = —J(y,x)} (discrete flows), B(R") :=Borel sets.
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Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

weQ—F,: VExBR") =R,
where V& :={J:E =V : J(x,y) = —J(y,x)} (discrete flows), B(R") :=Borel sets.
Example: for given random conductances (wxy)x,, C R4, consider the discrete energies

Fu(£LA) = > wolldoy)lf,, JeVs, AeB(R"), p=>1.
[x,yINA#D
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Discrete flow problems on random graphs.

Discrete energies: consider a random, local, discrete energy functional

weQ—F,: VExBR") =R,
where V& :={J:E =V : J(x,y) = —J(y,x)} (discrete flows), B(R") :=Borel sets.
Example: for given random conductances (wxy)x,, C R4, consider the discrete energies

Fu(£LA) = > wolldoy)lf,, JeVs, AeB(R"), p=>1.
[x,y]NA#£D

(i) We assume locality in the first variable and o-additivity in the second, i.e.

Fu(J,A)=> Fu(,A), A=|JA, {At}iendisjoint, JeVy.
i=1 ieN

(i) Stationarity: we assume that Law(7,F) = Law(F) for every z € Z9, i.e.

(72F)w = Frw, where (7zF)u(J,A) :=F,(J(-+2),A—2).
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(4/4) Stochastic homogenisation of discrete

transport problems
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Main result: stochastic homogenisation in the linear growth case.

We can prove the sought approximation result under linear growth, namely

Fu(hbA) Zc S U y)llv — clAl,
[x,yINA#D

Fu(J,A) —Fu(J A <C 0 Y Uy) = an)liv.

[x.y]CBr(A)
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Main result: stochastic homogenisation in the linear growth case.
We can prove the sought approximation result under linear growth, namely

Fod ) =c S0 [0ay)llv - clAl,

[x,y]NA#D
Fud,A) = FulS A <€ >0 00y) =S Goy)lv.
[x,y]CBr(A)
Rescaling: for € > 0, we define £ := £ and rescaled energies F,,- : Vi< x B(R") as

J(e,e) 1 . n
Foc(J,A) = dew< E;.H ),—A> ., JeVi, AeBR".

€
Constrained functionals: in the same spirit as in the continuous setting, we set

Fo.c(J,U), if DivJ=m,
e ()= 4 oY) ,
400, otherwise,

for any given m € Mo(Z2 N 'U) (i.e. m has zero mass in U). Here: DivJ(x) = ZJ X, ¥).

y~x
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Statement of the main result.

Theorem (Gladbach, Maas, and P., 2023+ ; for simplicity: X = Z9)

Assume that m. — p € M(U; V) P-almost-surely. Then, P-almost surely, under the
assumptions mentioned above, the discrete constrained functionals F;5. I'-convergence
as e — 0 (wrt the weak topology) to Fe, hom, where

Fomom (2 ) 42 + /fom )diels, if Voe=n,
Fw,hom / h h d|£| ‘§| € 1%
otherwise,

where f, hom : V & RY — R is lower semicontinuous, with linear growth, and
div-quasiconvex. Moreover, if in addition one assumes ergodicity, then the f, hom = fhom
does not depend on w (the limit is deterministic).
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Statement of the main result.

Theorem (Gladbach, Maas, and P., 2023+ ; for simplicity: X = Z9)

Assume that m. — p € M(U; V) P-almost-surely. Then, P-almost surely, under the
assumptions mentioned above, the discrete constrained functionals F;5. I'-convergence
as e — 0 (wrt the weak topology) to Fe, hom, where

fo, om dzd /f om d iFV-E=p,
Fw,hom / h hi d|£| ‘gl é— 1%
otherwise,

where f, hom : V & RY — R is lower semicontinuous, with linear growth, and
div-quasiconvex. Moreover, if in addition one assumes ergodicity, then the f, hom = fhom
does not depend on w (the limit is deterministic).

A function f : V @ RY — R is said to be div-quasiconvex if for every cube Q C R¢,
€) §][ f(E+ h(x))dx : Vhe C°(Q) with V-h=0.
Q

Generalisation of quasiconvexity by Morrey [1952] (weaker than convexity if n > 1).
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Multi-cell formula in the stochastic setting: computing f,, hom-

The limit density f,, hom can be computed as limit of cell problems on on large cubes. In
particular, for every £ € V ® R and A C RY, we have define the cell problem

fu(§,A) = inf{F.(J,A) : JE€Rep({,A)},
where the set of representatives of £ on A is given by
Rep(€, A) = {J €V: . DivJ=0 and "J=¢" on 8A} .

Then the homogenized energy density can be computed by taking the limit

RN
foom(£) 1= fim_ % . (1)
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Multi-cell formula in the stochastic setting: computing f,, hom-

The limit density f,, hom can be computed as limit of cell problems on on large cubes. In
particular, for every £ € V ® R and A C RY, we have define the cell problem

fu(§, A) = inf {Fu(J,A) : J € Rep(§ A},
where the set of representatives of £ on A is given by
Rep(€, A) = {J €V: . DivJ=0 and "J=¢" on 8A} .

Then the homogenized energy density can be computed by taking the limit

RN
foom(£) 1= fim_ % . 1)

The existence (P-almost surely) of the limit in (1) follows by stationarity, as application
of the subadditive ergodic theorem [Akcoglu-Krengel '81; Dal-Maso Modica '86].

£.(6A) <D LAY, A=J. {Alien disoint, (e VR
ieEN ieN
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Open problems/future directions.

o Full generality: beyond the linear growth and the flow-based (i.e. f = f(u,£)).
o Discrete-to-continuum limits of (generalised) gradient flows.

o Extend the analysis performed in Euclidean setting to Riemannian manifolds.
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Open problems/future directions.

o Full generality: beyond the linear growth and the flow-based (i.e. f = f(u,£)).
o Discrete-to-continuum limits of (generalised) gradient flows.

o Extend the analysis performed in Euclidean setting to Riemannian manifolds.

Thank you!

| _ IﬁII l7/

% ///////-/- c-/
[0,1) /
V) /—

\\\\\\\\\\\\\

\\\\\-

—’W////
// 7
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Sketch of the proof
Liminf: for J. — v, DivJ. = m. — u, we must show
dl/ d
00 > I|m |nf Fue(Je, U) > Fy hom(v, U) = fw hom dz f “hom d| | djv|®.
The key tool is the blow-up technique 3 la Fonseca—Miiller: define the measures
e = F(Je,) 20 e M (U) = o(U)= I@OUS(U) = Iim_i(r)lf Fo.c(Je, U).

Writing the Radon—Nykodym decomposition of o and v, the liminf reduces to show

dv do d
fw om —ada.e., AC
oh (dx) = dx L e (AC)
dv do
fhom | —— ) < —— f—ae..
om dM)_ ae W —ae (S)

For example, in the (AC) case, one observe that

do, « . o(Q) . . Fu(J Qs) i Je(e)
o= Im T T e, ek T T

In this case, J. ~ 4% (x9).27 (tangent measure) and DivJ. ~ 0 — need correction.
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wy converges as € — 0 to Whom, where
1
Wﬁom(:u’oﬂu‘l) = {/ /d ﬁ‘om(.u‘fagf) dxdt : ()ufyé-t)t S CE(/"’OH“LI)} ) where
o Jr

0 Whom = W> if and only if the mesh is isotropic: in the periodic setting, it reads

1 _ .
5 > " do #7THOK N OK )y ® ny = |Kylid, Vx € X.

y~x

. doy A7 (0K N OK, ) (g - v
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wy converges as ¢ — 0 to Whom, where

1
W) = { [ [ (e € et 5 e € € CEGuo,pn) . where
0 JT

€ Rom |€|2
I

o fhom(p, &) = , where || - ||hom is @ norm (possibly not Riemannianian!)

t=10 t=24 1‘.:1/2 t=1-149 t=1

Figure: Strongly oscillating measures on the graph scale can be cheaper.
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