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Microscopic Description @
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Xi(t) ... Xn(t) positions in R? of individuals at time t with masses n; ... ny

Yi(t)... Yu(t) positions in R? of control agents at time t with masses m; ...
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Microscopic Description @

The dynamics of the individuals is described by a suitable nonlocal transport equation

Xi(t) ==Y nX(Xi(t) = X()) +u(t) i=1...N
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Microscopic Description @

The dynamics of the individuals is described by a suitable nonlocal transport equation
’ N
Xi(t) ==Y nX(Xi(t) = X()) +u(t) i=1...N
j=1

where v is a control variable minimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control.
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Microscopic Description @

The dynamics of the individuals is described by a suitable nonlocal transport equation
’ N
Xi(t) ==Y nX(Xi(t) = X()) +u(t) i=1...N
j=1

where v is a control variable minimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control. A natural modelling choice is to
consider the control variable as a family of M control agents (where M can change in time),
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Microscopic Description @

The dynamics of the individuals is described by a suitable nonlocal transport equation
’ N
Xi(t) ==Y nX(Xi(t) = X()) +u(t) i=1...N
j=1

where v is a control variable minimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control. A natural modelling choice is to
consider the control variable as a family of M control agents (where M can change in time),

thus the problem becomes

Xi(t) = = N, mK(Xi(t) — Xi(1) — i) md (Xi(t) — Yi(t))

U admissible control vectors
(X, Y) = argmingz ) 3(Z,U) where solves the ODEs with U
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Microscopic Description @

The dynamics of the individuals is described by a suitable nonlocal transport equation
’ N
Xi(t) ==Y nX(Xi(t) = X()) +u(t) i=1...N
j=1

where v is a control variable minimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control. A natural modelling choice is to
consider the control variable as a family of M control agents (where M can change in time),

thus the problem becomes
Xi(t) = = oty K (Xi(8) = Xi(1)) — S midt(Xi(e) — Yi(1))

U admissible control vectors

(X, Y) = argmingz ) 3(Z,U) where solves the ODEs with U

Problem: curse of dimensionality

Emanuela Radici - Transport problems with non linear mobilities



Continuum Description

This dimensionality problem can be bypassed by introducing an optimal control strategy
independent on the number of agents but depending on their distributions:

o(t,-) represents the distribution of the population of individuals X ... Xy at time t
v(t,-) represents the distribution of the population of control agents Y1 ... Yy at time t
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Continuum Description

This dimensionality problem can be bypassed by introducing an optimal control strategy
independent on the number of agents but depending on their distributions:

o(t,-) represents the distribution of the population of individuals X ... Xy at time t
v(t,-) represents the distribution of the population of control agents Y1 ... Yy at time t

The dynamics of p is described by a transport equation

Op(t,x)+ V- (p(t, X) (K *xp(t,x)+H=v(t, x))) =0
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Continuum Description @

This dimensionality problem can be bypassed by introducing an optimal control strategy
independent on the number of agents but depending on their distributions:

o(t,-) represents the distribution of the population of individuals X ... Xy at time t
v(t,-) represents the distribution of the population of control agents Y1 ... Yy at time t

The dynamics of p is described by a transport equation

Op(t,x)+ V- (p(t, X) (K *xp(t,x)+H=v(t, x))) =0

while the role of v is designed by an optimal control problem

infd(p,v) s.t. Oep(t,x)+ V- (p(t, x)(KX *p(t,x) + Hxv(t,x))) =0
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Setting @

The ambient spaces
Lip2(0, T; 22(R)) = {1+ [0, T] = Pa(R?) : Wa(u(2), u(s)) < L]t — s}

Lipi ¢ (0, T MF(RY)) = {p: [0, T] = MM(R?) : d(u(t), u(s)) < L'[t —s|}
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Setting

The ambient spaces
Lip2(0, T; 22(R)) = {1+ [0, T] = Pa(R?) : Wa(u(2), u(s)) < L]t — s}

Lipi ¢ (0, T MF(RY)) = {p: [0, T] = MM(R?) : d(u(t), u(s)) < L'[t —s|}

For simplicitywe call & = Lip. 2(0, T; 222) x Lipys 4 (0, T; My (R?))
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The ambient spaces
Lip2(0, T; 22(R)) = {1+ [0, T] = Pa(R?) : Wa(u(2), u(s)) < L]t — s}

Lipi ¢ (0, T MF(RY)) = {p: [0, T] = MM(R?) : d(u(t), u(s)) < L'[t —s|}

For simplicitywe call & = Lip. 2(0, T; 222) x Lipys 4 (0, T; My (R?))
Assumptions:

(Self) KX = —VW where W € C}(R? \ {0})is even, globally Lipschitz and \-convex for some A < 0
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Setting

The ambient spaces
Lipe2(0, T; 22(RY) = {u: [0, T] = Z2(R) : Wa(u(), u(s)) < LIt — |}
Lipr,a (0, T; My (RY)) = {2 [0, T] = ME(R) : d(u(t), u(s)) < L[t —s|}
For simplicitywe call & = Lip. 2(0, T; 222) x Lipys 4 (0, T; My (R?))

Assumptions:

(Self) KX = —VW where W € C}(R? \ {0})is even, globally Lipschitz and \-convex for some A < 0
(Cross) H = —VV where V € C*(RY) is globally Lipschitz and bounded from below
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Setting

The ambient spaces
Lip2(0, T; 22(R)) = {1+ [0, T] = Pa(R?) : Wa(u(2), u(s)) < L]t — s}

Lipi ¢ (0, T MF(RY)) = {p: [0, T] = MM(R?) : d(u(t), u(s)) < L'[t —s|}

For simplicitywe call & = Lip. 2(0, T; 222) x Lipys 4 (0, T; My (R?))
Assumptions:
(Self) KX = —VW where W € C}(R? \ {0})is even, globally Lipschitz and \-convex for some A < 0
(Cross) H = —VV where V € C*(RY) is globally Lipschitz and bounded from below
(Contr) J: 6 — RU {+oo} bounded from below and Isc with respect to d pointwise in time
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Setting

The ambient spaces
Lipe2(0, T; 22(RY) = {u: [0, T] = Z2(R) : Wa(u(), u(s)) < LIt — |}
Lipr,a (0, T; My (RY)) = {2 [0, T] = ME(R) : d(u(t), u(s)) < L[t —s|}
For simplicitywe call & = Lip. 2(0, T; 222) x Lipys 4 (0, T; My (R?))

Assumptions:

(Self) KX = —VW where W € C}(R? \ {0})is even, globally Lipschitz and \-convex for some A < 0
(Cross) H = —VV where V € C*(RY) is globally Lipschitz and bounded from below
(Contr) J: 6 — RU {+oo} bounded from below and Isc with respect to d pointwise in time

The case with smooth potential W was considered in [Bongini,Buttazzo 2017]
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Main Results @

Theorem (Fagioli,Kaufmann,R. 2023)

Given po € Z2(R?), v € Lipy 4(0, T; M (R?)) and W, V as in(Self), (Cross) respectively, there exists
p € Lip; 2(0, T; P2(RY)) for some L = L(M, LipV/, LipW) such that °W x p € L*(0, T; L2(p(t))) and

foreveryp € C°((0, T) x RY) it holds
{ Jo Sy (atgo +(°W xp+VV xv)- w) dp(t,x) =0 (0,T) x R? T
p(0,-) = po. )
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Main Results @

Theorem (Fagioli,Kaufmann,R. 2023)

Given po € Z2(R?), v € Lipy 4(0, T; M (R?)) and W, V as in(Self), (Cross) respectively, there exists
p € Lip; 2(0, T; P2(RY)) for some L = L(M, LipV/, LipW) such that °W x p € L*(0, T; L2(p(t))) and
foreveryp € C°((0, T) x RY) it holds

p(0,-) = po.

{ Jo Sy (atgo+ (8OW*p+VV*I/)~Vg0)dp(t,X) =0 (0, T) x R? T

y

Theorem (Fagioli,Kaufmann,R. 2023)

Given po € P>(RY), W, V and J as in (Self), (Cross) and (Contr) respectively, then the variational

problem
m€|:n {H(p, v):p,v satisfy (TE)}

admits a solution.
u

NIVERSITA
DEGLI STUDI
DELL'AQUILA
Emanuela Radici - Transport problems with non linear mobilities




Applications @

driving a mass of pedestrian to (or out of) a certain location using a small number of stewards;
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Applications @

driving a mass of pedestrian to (or out of) a certain location using a small number of stewards;

trying to stabilize the stock market in order to avoid systemic failures, by acting on few key
investors with a relatively limited amount of resources;
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Applications @

driving a mass of pedestrian to (or out of) a certain location using a small number of stewards;

trying to stabilize the stock market in order to avoid systemic failures, by acting on few key
investors with a relatively limited amount of resources;

computing the minimal amount of manually controlled units such that a swarm of drones
performs a given task (as, for instance, wind harvesting or the recognition of a given area).
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Interesting functionals included

Optimization of the quantity of control agents in accordance with the goal to achieve

I(p,v) :/()T/Qf(t,x)du(t,x)

where f : [0, T] x Q — [0, oc] is a Isc function. A standard choice is f(t, x) = ¢(t)|x — x0|? and
Xo represents a sort of manpower storage room
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Interesting functionals included @

Optimization of the quantity of control agents in accordance with the goal to achieve

I(p,v) :/()T/Qf(t,x)du(t,x)

where f : [0, T] x Q — [0, oc] is a Isc function. A standard choice is f(t, x) = ¢(t)|x — x0|? and
Xo represents a sort of manpower storage room

Require the dynamics of p to satisfy a specific feature, like the collapse of one of its moments
or marginals. For example alignment models like Cucker-Smale one, where the goal of the
control strategy is to force the alignment of the group

o)~ [ wip(exw)  dpw) = / ' [ [ 1= v Pdntex, )

which means that all velocities tend to coincide with the mean.
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Interesting functionals included @

Optimization of the quantity of control agents in accordance with the goal to achieve

I(p,v) :/()T/Qf(t,x)du(t,x)

where f : [0, T] x Q — [0, oc] is a Isc function. A standard choice is f(t, x) = ¢(t)|x — x0|? and
Xo represents a sort of manpower storage room

Require the dynamics of p to satisfy a specific feature, like the collapse of one of its moments
or marginals. For example alignment models like Cucker-Smale one, where the goal of the
control strategy is to force the alignment of the group

o)~ [ wip(exw)  dpw) = / ' [ [ 1= v Pdntex, )

which means that all velocities tend to coincide with the mean.
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Interesting functionals included @

Evacuation fromaset C C

o) = [ [ dotena
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Interesting functionals included

Evacuation fromaset C C ,
Ip,v) = / / dp(t, x)dt
o Jc

Desired final configuration p

3(p.v) = / Walp(t).p)dt o d(p,v) = Wa(e(T), p)

In the first case the dynamics of p(t) should be in average close to g while in the second case
p(t) has much more freedom as only p( T) should be as close as possible to 5
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Interesting functionals included @

Evacuation fromaset C C ,
Ip,v) = / / dp(t, x)dt
o Jc

Desired final configuration p

-
Ao = [ VA Dde ot dp.r) = WA(p(T).7)
0
In the first case the dynamics of p(t) should be in average close to g while in the second case
p(t) has much more freedom as only p( T) should be as close as possible to 5

the dynamics of v has a structure, for example it conserves mass and solves a transport
equation of the form 0;v(t, x) + V - (v(t, x)u(t, x)) = 0. Then the admissible v belong to a
precise subset B of the usual ambient space

I(p,v) = x8(p,v)
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Interesting functionals included

Another way to give more structure to the dynamics of v is to embed the desired features
inside the functional

-
som)= [ [ [ @byiduexdule.yde
o JalJa
which forces v to self-interact through the kernel Q, for example

Q(x,y) = |x — y|? avoid concentration, Q(x,y) = |x — y|° promote concentration
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Interesting functionals included @

Another way to give more structure to the dynamics of v is to embed the desired features
inside the functional

-
som)= [ [ [ @byiduexdule.yde
o JalJa
which forces v to self-interact through the kernel Q, for example

Q(x,y) = |x — y|? avoid concentration, Q(x,y) = |x — y|° promote concentration

other interesting functionals are of the form

H(p,u):/o (/Q h(t,ya(t,x))dx+Zk(ﬂ(r,@)) dt

xXEQ
where v and v* denotes the absolutely continuous part and the atomic part of v respectively,
and
h: [0,00) — [0, c0) convex, h(0) = 0, lim|y| o0 B = +o00
k[0, 00) — [0, 00) concave, k(0) = 0, lim|,| o0 k' =0
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Interesting functionals included @

Another way to give more structure to the dynamics of v is to embed the desired features
inside the functional

-
som)= [ [ [ @byiduexdule.yde
o JalJa
which forces v to self-interact through the kernel Q, for example

Q(x,y) = |x — y|? avoid concentration, Q(x,y) = |x — y|° promote concentration

other interesting functionals are of the form

H(p,u):/o (/Q h(t,ya(t,x))dx+Zk(ﬂ(r,@)) dt

xXEQ
where v and v* denotes the absolutely continuous part and the atomic part of v respectively,
and
h: [0,00) — [0, c0) convex, h(0) = 0, lim|y| o0 B = +o00
k[0, 00) — [0, 00) concave, k(0) = 0, lim|,| o0 k' =0
a famous example is the Mumford-Shah functional

0 ifs=0,

— 2 J—
h(s) =s k(s) = 1 otherwise.
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Interesting functionals included @

Another way to give more structure to the dynamics of v is to embed the desired features
inside the functional

-
s = [ [ | Qxy)dulex)du(e. )t
0 QJQ
which forces v to self-interact through the kernel Q, for example

Q(x,y) = |x — y|~P avoid concentration, Q(x,y) = |[x — y|° promote concentration

other interesting functionals are of the form

g(p,u)Z/o (/Q h(t,ya(t,x))dx+Zk(ﬂ(r,@)) dt

xEN
where v and ! denotes the absolutely continuous part and the atomic part of v respectively,
and
h: [0,00) — [0, c0) convex, h(0) = O, lim|,| o0 ' = +o00
k[0, 00) — [0, 00) concave, k(0) = 0, lim|,| o0 k' =0
another famous example is the counting measure

0 ifs =0, [ 0 ifs=0,
h(s) _{ 400 otherwise. k(s) _{ 1 otherwise.
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Interesting functionals not included @

Penalization of the change of the mass of v in time,

3(/),1/):/; Bt/le/(t,x)

this appears in contexts where hiring control agents after the dynamics has started is costlier
than doing it before

dt
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Interesting functionals not included @

Penalization of the change of the mass of v in time,

H(W):/OT at/ﬂdv(px)

this appears in contexts where hiring control agents after the dynamics has started is costlier
than doing it before

dt

another popular functional in the applications is

8(p.v) = / /()| dt

where v/ is the metric derivative of v at time t
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Simulations for a control problem in pedestrian dynamics @

Problem The populations p and v interact trhough the kernels X1, X», H1, H> and, in addition, the
population v tries to optimize its trajectory in order to let p evacuate from the set C while, at the
same time, penalizing too high values for the velocity field u

Emanuela Radici - Transport problems with non linear mobilities



Simulations for a control problem in pedestrian dynamics @

Problem The populations p and v interact trhough the kernels X1, X», H1, H> and, in addition, the
population v tries to optimize its trajectory in order to let p evacuate from the set C while, at the
same time, penalizing too high values for the velocity field u

i { [ (fLoteocs [lstenraeecoa sty 515 0101500 o)
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Simulations for a control problem in pedestrian dynamics @

Problem The populations p and v interact trhough the kernels X1, X», H1, H> and, in addition, the
population v tries to optimize its trajectory in order to let p evacuate from the set C while, at the
same time, penalizing too high values for the velocity field u

i { [ (fLoteocs [lstenraeecoa sty 515 0101500 o)

Example in R?: v atomic, p diffuse, area to be evacuated C = R? \ {one point}
The control agents know where the exit is
The exit becomes visible only to the individuals which are closer than a prescribed range
The interaction kernels are repulsive at short range since pedestrians cannot overlap in space

The control agents aim at optimizing their trajectories in order to reach the goal encoded in the
cost functional (evacuate p from C penalizing too high values of the optimized velocity field u)
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41,2%

71,3%

85,2%

courtesy of the authors of [Albi,Bongini,Cristiani,Kalise 2016]



The transport problem @

Given v, we can build a weak solution of

{atp:v.(p(a°w*p+vv*u)) (0, T) x R
p(0,-) = po € Z2(R?)

(TE)

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
Folu] = E/Rd W*udu+/Rd Visv(t)dp
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The transport problem @

Given v, we can build a weak solution of

{atp:v.(p(a°w*p+vv*u)) (0, T) x R
p(0,-) = po € Z2(R?)

(TE)

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
STr(f)[u]:E/RdW*udu+/RdV*V(t)du

and works updating at each iteration the energy functional in the variational problem

0 .__
{ P = po
Pt € argmin,, g, may (52 W3 (0, 1) + Forirny )
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The transport problem @

Given v, we can build a weak solution of

{ Bep =V - (p(°W x p+VV 1)) (0,T)xR?

p(0,) = po € P2(RY) ()

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
STr(t)[u]:E/RdW*udu+/RdV*V(t)du

and works updating at each iteration the energy functional in the variational problem

0 .__
{ P = po
Pt € argmin,, g, may (52 W3 (0, 1) + Forirny )

The interpolations p” ( Z p'17i,-¢i+1)(t) =: p” (t) are bounded in W, uniformly in t and 7 and

lim igf Wa(p™ (s), p" (t)) < L(M, LipW, LipV)|s — t|
T
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The transport problem @

Given v, we can build a weak solution of

{ Bep =V - (p(°W x p+VV 1)) (0,T)xR?

p(0,) = po € P2(RY) ()

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
STr(t)[u]:E/RdW*udu+/RdV*V(t)du

and works updating at each iteration the energy functional in the variational problem

0 .__
{ P = po
Pt € argmin,, g, may (52 W3 (0, 1) + Forirny )

The interpolations p” ( Z p'17i,-¢i+1)(t) =: p” (t) are bounded in W, uniformly in t and 7 and

lim igf Wa(p™ (s), p" (t)) < L(M, LipW, LipV)|s — t|
T

Ascoli-Arzela = p"(t) — p(t) narrowly, pointwise in time in [0, T] :
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The transport problem @

Given v, we can build a weak solution of

{ Bep =V - (p(°W x p+VV 1)) (0,T)xR?

p(0,) = po € P2(RY) ()

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
STr(t)[u]:E/RdW*udu+/RdV*V(t)du

and works updating at each iteration the energy functional in the variational problem

0 .__
{ P = po
Pt € argmin,, g, may (52 W3 (0, 1) + Forirny )

The interpolations p” ( Z p'17i,-¢i+1)(t) =: p” (t) are bounded in W, uniformly in t and 7 and

lim igf Wa(p™ (s), p" (t)) < L(M, LipW, LipV)|s — t|
T

Isc of Wo = p(t) € P(R?) forall t and Wa(p(s), p(t)) < L(M, LipW, LipV')|s — ki
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Ascoli-Arzela = p"(t) — p(t) narrowly, pointwise in time in [0, T] :



The transport problem @

Given v, we can build a weak solution of

{afp:v.(p(vw*5+vv*y)) (0, T) x R? (TE)
p(0,-) = po € Z2(R?)

following a suitable generalisation of the JKO scheme that applies to time-depending energies

1
(t)[‘u]:E/dW*udu—l—/dV*y(t)du
R R

and works updating at each iteration the energy functional in the variational problem

0
° = po
{ Pt € arg mMin, ¢ g, (rd) ( wz (P B) + Fu(r(ivy) [/v‘])

The interpolations p" ( Z p l[T, +i+1)(t) =: p"(t) are bounded in W5 uniformly in t and 7 and

lim igf Wa(p™ (s), p" (t)) < L(M, LipW, LipV)|s — t|
T—

= p € Lip (0, T; #>(R?)) and is a solution of (TE) ; @ .

Emanuela Radici - Transport problems with non linear mobilities



The control problem @

The optimal control problem can be written as

igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

UNIVERSITA DISIM
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DELL'AQUILA

Emanuela Radici - Transport problems with non linear mobilities



The control problem @

The optimal control problem can be written as
igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

Let (p«, vk )k be minimizing sequence
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The control problem @

The optimal control problem can be written as
igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

Let (p«, vk )k be minimizing sequence
Independent compactness:

(px)x bounded in Lip; 2(0, T; Z2(RY)) = pk(t) LN p(t) forall t and p € Lip; »(0, T; 22(R?))
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The control problem @

The optimal control problem can be written as
igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

Let (p«, vk )k be minimizing sequence
Independent compactness:

(px)x bounded in Lip; 2(0, T; Z2(RY)) = pk(t) LN p(t) forall t and p € Lip; »(0, T; 22(R?))

(v)x bounded in Lipy 4(0, T; M5 (RY)) = vi(t) 5 v(t) forall tand v € Lipy,4(0,T; MF(R?))
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The control problem @

The optimal control problem can be written as
igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

Let (p«, vk )k be minimizing sequence
Independent compactness:

(px)x bounded in Lip; 2(0, T; Z2(RY)) = pk(t) LN p(t) forall t and p € Lip; »(0, T; 22(R?))
(v)x bounded in Lipy 4(0, T; M5 (RY)) = vi(t) 5 v(t) forall tand v € Lipy,4(0,T; MF(R?))

Lower semicontinuity:
d islsc with respect to d pointwise in time thanks to (Contr)
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d islsc with respect to d pointwise in time thanks to (Contr)

(TE) is stable under d-convergence of (p«, v«) (i.e. xu is Isc for d pointwise in time)
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The control problem @

The optimal control problem can be written as
igf (3(p,v) + xu(p,v)) where U= {(p,v) € &: p,v satisfy (TE)} (0C)

Let (p«, vk )k be minimizing sequence
Independent compactness:

(px)x bounded in Lip; 2(0, T; Z2(RY)) = pk(t) LN p(t) forall t and p € Lip; »(0, T; 22(R?))
(v)x bounded in Lipy 4(0, T; M5 (RY)) = vi(t) 5 v(t) forall tand v € Lipy,4(0,T; MF(R?))

Lower semicontinuity:
d islsc with respect to d pointwise in time thanks to (Contr)

(TE) is stable under d-convergence of (p«, v«) (i.e. xu is Isc for d pointwise in time)

then  J(p, v) + xu(p, v) < liminf J(pi, vi) + xulpw; vie) = inf(d + xu)
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Open problems @

extend the analysis to the functionals fOT |0 [, dv(t, x)|dt and fOT [V (t)|dt

consider more involved evolution equations (different transport terms,more singular
kernels,different mobilities etcetc)

study more performant numerical schemes (for example try the JKO)
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Thank you e

for your kind attention!
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