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X1(t)

X2(t) Xi (t)

XN(t)
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Y2(t)
YM(t)

X1(t) . . .XN(t) positions inRd of individuals at time t withmasses n1 . . . nN

Y1(t) . . .YM(t) positions inRd of control agents at time t withmassesm1 . . .mM
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The dynamics of the individuals is described by a suitable nonlocal transport equation

Ẋi (t) = −
N∑
j=1

njK
(
Xi (t)− Xj(t)

)
+ u(t) i = 1 . . .N

where u is a control variableminimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control. A natural modelling choice is to
consider the control variable as a family ofM control agents (whereM can change in time),
thus the problem becomes

Ẋi (t) = −
∑N

j=1 njK
(
Xi (t)− Xj(t)

)
−
∑M(t)

k=1 mkH
(
Xi (t)− Yk(t)

)
(X ,Y ) = argmin(Z ,U) J(Z ,U) where U admissible control vectors

Z solves the ODEs withU

Problem: curse of dimensionality
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Ẋi (t) = −
N∑
j=1

njK
(
Xi (t)− Xj(t)

)
+ u(t) i = 1 . . .N

where u is a control variableminimiser of a proper cost functional J taking into account the desired
behaviour of the individuals as well as the cost of the control. A natural modelling choice is to
consider the control variable as a family ofM control agents (whereM can change in time),
thus the problem becomes
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This dimensionality problem can be bypassed by introducing an optimal control strategy
independent on the number of agents but depending on their distributions:

ρ(t, ·) represents the distribution of the population of individuals X1 . . .XN at time t
ν(t, ·) represents the distribution of the population of control agents Y1 . . .YM(t) at time t

The dynamics of ρ is described by a transport equation

∂tρ(t, x) +∇ ·
(
ρ(t, x)(K ∗ ρ (t, x) +H ∗ ν (t, x))

)
= 0

while the role of ν is designed by an optimal control problem

inf J(ρ, ν) s.t. ∂tρ(t, x) +∇ ·
(
ρ(t, x)(K ∗ ρ (t, x) +H ∗ ν (t, x))

)
= 0
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The ambient spaces

LipL,2
(
0,T ;P2(Rd)

)
=
{
µ : [0,T ] → P2(Rd) : W2(µ(t), µ(s)) ≤ L|t − s|

}
LipL′,d

(
0,T ;MR

M(Rd)
)
=
{
µ : [0,T ] → MR

M(Rd) : d(µ(t), µ(s)) ≤ L′|t − s|
}

For simplicity we call S = LipL,2
(
0,T ;P2

)
× LipL′,d

(
0,T ;MR

M(Rd)
)

Assumptions:

(Self) K = −∇W whereW ∈ C 1(Rd \ {0}) is even, globally Lipschitz and λ-convex for some λ ≤ 0

(Cross) H = −∇V where V ∈ C 1(Rd) is globally Lipschitz and bounded from below
(Contr) J : S → R ∪ {+∞} bounded from below and lsc with respect to d pointwise in time

The case with smooth potentialW was considered in [Bongini,Buttazzo 2017]
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Theorem (Fagioli,Kaufmann,R. 2023)
Given ρ0 ∈ P2(Rd), ν ∈ LipL′,d(0,T ;MR

M(Rd)) andW ,V as in(Self), (Cross) respectively, there exists
ρ ∈ LipL,2(0,T ;P2(Rd)) for some L = L(M, LipV , LipW ) such that ∂0W ∗ ρ ∈ L1(0,T ; L2(ρ(t))) and
for every φ ∈ C∞

c ((0,T )× Rd) it holds{ ∫ T

0

∫
Rd

(
∂tφ+ (∂0W ∗ ρ+∇V ∗ ν) · ∇φ

)
dρ(t, x) = 0 (0,T )× Rd

ρ(0, ·) = ρ0.
(TE)

Theorem (Fagioli,Kaufmann,R. 2023)
Given ρ0 ∈ P2(Rd),W ,V and J as in (Self), (Cross) and (Contr) respectively, then the variational
problem

min
S

{
J(ρ, ν) : ρ, ν satisfy (TE)

}
admits a solution.
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driving amass of pedestrian to (or out of) a certain location using a small number of stewards;

trying to stabilize the stockmarket in order to avoid systemic failures, by acting on few key
investors with a relatively limited amount of resources;

computing theminimal amount of manually controlled units such that a swarm of drones
performs a given task (as, for instance, wind harvesting or the recognition of a given area).
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Optimization of the quantity of control agents in accordance with the goal to achieve

J(ρ, ν) =

∫ T

0

∫
Ω

f (t, x)dν(t, x)

where f : [0,T ]× Ω → [0,∞] is a lsc function. A standard choice is f (t, x) = c(t)|x − x0|p and
x0 represents a sort ofmanpower storage room

Require the dynamics of ρ to satisfy a specific feature, like the collapse of one of its moments
or marginals. For example alignment models like Cucker-Smale one, where the goal of the
control strategy is to force the alignment of the group

v̄(t) =

∫
R2d

wdρ(t, x ,w) J(ρ, ν) =

∫ T

0

∫
Ω

∫
R2d

|v − v̄(t)|2dρ(t, x , v)

whichmeans that all velocities tend to coincide with themean.
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Evacuation from a set C ⊂ Ω

J(ρ, ν) =

∫ T

0

∫
C

dρ(t, x)dt

Desired final configuration ρ̄

J(ρ, ν) =

∫ T

0
W1(ρ(t), ρ̄)dt or J(ρ, ν) = W1(ρ(T ), ρ̄)

In the first case the dynamics of ρ(t) should be in average close to ρ̄while in the second case
ρ(t) hasmuchmore freedom as only ρ(T ) should be as close as possible to ρ̄

the dynamics of ν has a structure, for example it conserves mass and solves a transport
equation of the form ∂tν(t, x) +∇ · (ν(t, x)u(t, x)) = 0. Then the admissible ν belong to a
precise subset B of the usual ambient space

J(ρ, ν) = χB(ρ, ν)
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Another way to givemore structure to the dynamics of ν is to embed the desired features
inside the functional

J(ρ, ν) =

∫ T

0

∫
Ω

∫
Ω

Q(x , y)dν(t, x)dν(t, y)dt

which forces ν to self-interact through the kernelQ, for example
Q(x , y) = |x − y |−p avoid concentration, Q(x , y) = |x − y |p promote concentration

other interesting functionals are of the form

J(ρ, ν) =

∫ T

0

(∫
Ω

h(t, νa(t, x))dx +
∑
x∈Ω

k(ν♯(t, x))

)
dt

where νa and ν♯ denotes the absolutely continuous part and the atomic part of ν respectively,
and

h : [0,∞) → [0,∞) convex, h(0) = 0, lim|x|→∞ h′ = +∞
k[0,∞) → [0,∞) concave, k(0) = 0, lim|x|→∞ k ′ = 0

a famous example is theMumford-Shah functional

h(s) = s2 k(s) =

{
0 if s = 0,
1 otherwise.
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which forces ν to self-interact through the kernelQ, for example
Q(x , y) = |x − y |−p avoid concentration, Q(x , y) = |x − y |p promote concentration

other interesting functionals are of the form

J(ρ, ν) =

∫ T

0

(∫
Ω

h(t, νa(t, x))dx +
∑
x∈Ω

k(ν♯(t, x))

)
dt

where νa and ν♯ denotes the absolutely continuous part and the atomic part of ν respectively,
and

h : [0,∞) → [0,∞) convex, h(0) = 0, lim|x|→∞ h′ = +∞
k[0,∞) → [0,∞) concave, k(0) = 0, lim|x|→∞ k ′ = 0

a famous example is theMumford-Shah functional

h(s) = s2 k(s) =

{
0 if s = 0,
1 otherwise.
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Penalization of the change of themass of ν in time,

J(ρ, ν) =

∫ T

0

∣∣∣∣∂t

∫
Ω

dν(t, x)

∣∣∣∣ dt
this appears in contexts where hiring control agents after the dynamics has started is costlier
than doing it before

another popular functional in the applications is

J(ρ, ν) =

∫ T

0
|ν′(t)|dt

where ν′ is themetric derivative of ν at time t
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Problem The populations ρ and ν interact trhough the kernelsK1,K2,H1,H2 and, in addition, the
population ν tries to optimize its trajectory in order to let ρ evacuate from the set C while, at the
same time, penalizing too high values for the velocity field u

min
{∫ T

0

(∫
C

ρ(t, x)dx +

∫
Ω

|u(t, x)|pdx
)
dt : (ρ, u) satisfy ∂tρ+∇ ·

(
ρ(K1 ∗ ρ+H1 ∗ ν)

)
= 0

∂tν +∇ ·
(
ν(K2 ∗ ν +H2 ∗ ρ+ u)

)
= 0

}

Example inR2: ν atomic, ρ diffuse, area to be evacuated C = R2 \ {one point}
The control agents knowwhere the exit is
The exit becomes visible only to the individuals which are closer than a prescribed range
The interaction kernels are repulsive at short range since pedestrians cannot overlap in space
The control agents aim at optimizing their trajectories in order to reach the goal encoded in the
cost functional (evacuate ρ from C penalizing too high values of the optimized velocity field u)
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courtesy of the authors of [Albi,Bongini,Cristiani,Kalise 2016]
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Given ν, we can build a weak solution of{
∂tρ = ∇ ·

(
ρ(∂0W ∗ ρ+∇V ∗ ν)

)
(0,T )× Rd

ρ(0, ·) = ρ0 ∈ P2(Rd)
(TE)

following a suitable generalisation of the JKO scheme that applies to time-depending energies

Fν(t)[µ] =
1
2

∫
Rd

W ∗ µdµ+

∫
Rd

V ∗ ν(t)dµ

and works updating at each iteration the energy functional in the variational problem{
ρ0 := ρ0

ρi+1 ∈ argminµ∈P2(Rd )

( 1
2τ W

2
2 (ρ

i , µ) + Fν(τ(i+1))[µ]
)

The interpolations ρτ (t) =
∑
i

ρi1[τ i,τ(i+1)(t) =: ρτ (t) are bounded inW2 uniformly in t and τ and

lim inf
τ→0

W2(ρ
τ (s), ρτ (t)) ≤ L(M, LipW , LipV )|s − t|

Ascoli-Arzelà=⇒ ρτ (t) → ρ(t) narrowly, pointwise in time in [0,T ]

lsc ofW2 =⇒ ρ(t) ∈ P2(Rd) for all t andW2(ρ(s), ρ(t)) ≤ L(M, LipW , LipV )|s − t|
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The optimal control problem can be written as

inf
S

(
J(ρ, ν) + χU(ρ, ν)

)
where U = {(ρ, ν) ∈ S : ρ, ν satisfy (TE)} (OC)

Let (ρk , νk)k beminimizing sequence
Independent compactness:

(ρk)k bounded in LipL,2(0,T ;P2(Rd)) =⇒ ρk(t)
d−→ ρ(t) for all t and ρ ∈ LipL,2(0,T ;P2(Rd))

(νk)k bounded in LipL′,d(0,T ;MR
M(Rd)) =⇒ νk(t)

d−→ ν(t) for all t and ν ∈ LipL′,d(0,T ;MR
M(Rd))

Lower semicontinuity:
J is lsc with respect to d pointwise in time thanks to (Contr)

(TE) is stable under d-convergence of (ρk , νk) (i.e. χU is lsc for d pointwise in time)

then J(ρ, ν) + χU(ρ, ν) ≤ lim inf
k

J(ρk , νk) + χU(ρk , νk) = inf
S
(J+ χU)
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extend the analysis to the functionals
∫ T

0 |∂t

∫
Ω
dν(t, x)|dt and

∫ T

0 |ν′(t)|dt

consider more involved evolution equations (different transport terms,more singular
kernels,different mobilities etcetc)

studymore performant numerical schemes (for example try the JKO)



Thank you
for your kind attention!
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