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Motivation: why evolution PDEs on graphs?

® Social networks: polarisation and formation of echo chambers
F. Baumann, P. Lorenz-Spreen, |. M. Sokolov, M. Starnini., Phys. Rev. Lett, 2020
A. Benatti, H. F. de Arruda, F. N. Silva, C. H. Comin, L. da Fontoura Costa, Journal of
Statistical Mechanics: Theory and Experiment, 2020

® Transportation Newtorks: gravity interactions
K. Tamura, H. Takayasu, M. Takayasu, Scientific Reports, 2018
H. Koike, H. Takayasu, and M. Takayasu, Journal of Statistical Physics, 2022

® Data Science/Machine Learning: data representation as point clouds for
clustering and classification
M. Belkin, P. Niyogi, Neural Comput., 2002
R. R. Coifman, S. Lafon, Appl. Comput. Harmon. Anal., 2006
K. Craig, N. Garcia-Trillos, N. Garcia, D. Slepcev, Springer International Publishing, 2022.
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Notation

® X = {x,x,...,x,} random sample i.i.d. according to u € M*(R)
= empirical measure p" = 137" 4,
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Notation

® X = {x,x,...,x,} random sample i.i.d. according to u € M*(R)
= empirical measure p" = 137" 4,

® a symmetric weight function 7 : D — [0, c0) with
D :=(R? xR\ {x =y}
= (u",n) defines an undirected discrete weighted graph
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Dynamics driven by interaction energies on graphs

ex(p) = % DD Kypspy

xeXyeX
On RY )
X == VK (xi, %)

Jj=1

On finite graphs

dpx .
g = 2 dn(xy)

yeX
Jxy = I(Pmpy) Vx,y

A.E., F. S. Patacchini, A. Schlichting - EJAM '23

Goals

® Define gradient flow of interaction energy on graph (i, n)

® Dynamics stable under graph limit n — oo (discrete-to-continuum)

® Dynamics stable for local limit: u = Leb(R9), n°(x,y) =& 97 (

= limit ¢ — 0 should give 8:p = V - (pVK x* p)

X—y
€

)
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Dynamics driven by interaction energies on graphs

General framework
® RY set of possible vertices, R? x RY \ {x = y} set of possible edges

® n:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x =y} n(x,y) > 0} set of edges

€ MF(RY) set of vertices

p € P(RY) distribution of mass
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Dynamics driven by interaction energies on graphs

General framework
® RY set of possible vertices, R? x RY \ {x = y} set of possible edges

® n:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x =y} n(x,y) > 0} set of edges

® ;1 € M*(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(RY) — R given by

&) =3 [, [, Ktxy) o) doty).

where K: RY x RY — R is symmetric.
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Dynamics driven by interaction energies on graphs

General framework
® RY set of possible vertices, R? x RY \ {x = y} set of possible edges

® n:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x =y} n(x,y) > 0} set of edges

® ;1 € M*(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(RY) — R given by

&) =3 [, [, Ktxy) o) doty).

where K: RY x RY — R is symmetric.

Continuum (local) setting: NLIE

Otp =V - (pVK * p) is a Wasserstein gradient flow for 2

2J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepéev - Duke Math. J.
156 (2011)
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Dynamics driven by interaction energies on graphs

General framework
® RY set of possible vertices, R? x RY \ {x = y} set of possible edges

® n:RIxRI\ {x =y} — [0,00) symmetric weight function
® G:={RYxRI\ {x =y} n(x,y) > 0} set of edges

® ;1 € M*(RY) set of vertices

® p € P(RY) distribution of mass

Evolution of interest

Gradient descent of the energy & : P(RY) — R given by

&) =3 [, [, Ktxy) o) doty).

where K: RY x RY — R is symmetric.

Continuum (local) setting: NLIE

Otp =V - (pVK * p) is a Wasserstein gradient flow for 2

2J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, D. Slepéev - Duke Math. J.
156 (2011)

What is the analogue of the NLIE on a graph?
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Related Literature (not exhaustive!)

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy

= Wassertein metric on a finite graph

[Erbar '14] Jump processes —(—A)*/? for o € (0, 2)

[Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure
for McKean-Vlasov on discrete spaces

[Heinze, Schmidtchen, Pietschmann '22, '23] Systems on graphs

[D. Slep&ev, A. Warren '22] nonlocal wasserstein distance

[P. Gladbach, E. Kopfer, J. Maas, and L. Portinale '20, '22]
Homogeneisation of dynamical optimal transport
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® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy
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for McKean-Vlasov on discrete spaces
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[D. Slep&ev, A. Warren '22] nonlocal wasserstein distance
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Gradient flows for free energies/(relative) entropies:

T7(0) = [ p(x)togplx) i+ [ [ Kxy) dp(x) do(y)
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Related Literature (not exhaustive!)

® [Maas '11] / [Mielke '11] / [Chow, Huang, Li, Zhou '12]
Diffusion on graphs as gradient flows of the entropy

= Wassertein metric on a finite graph

[Erbar '14] Jump processes —(—A)*/? for o € (0, 2)

[Erbar, Fathi, Laschos, Schlichting '16] Gradient flow structure
for McKean-Vlasov on discrete spaces

[Heinze, Schmidtchen, Pietschmann '22, '23] Systems on graphs

[D. Slep&ev, A. Warren '22] nonlocal wasserstein distance

[P. Gladbach, E. Kopfer, J. Maas, and L. Portinale '20, '22]
Homogeneisation of dynamical optimal transport

Gradient flows for free energies/(relative) entropies:

T7(0) = [ p(x)togplx) i+ [ [ Kxy) dp(x) do(y)

What if 0 = 07
o — 0: nonlocal metrics above do not have a clear/well-defined limit!

What is a suitable metric for gradient structure of interaction energies?
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Nonlocal continuity equation
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Nonlocal continuity equation

Continuity equation
Ope +V-j: =0 where  Jji(x) := pe(x)ve(x)
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Nonlocal continuity equation

Continuity equation
Ope +V-j: =0 where  ji(x) 1= pe(x)ve(x)

On Graphs
0upeo) + (V- 50(0) = Dupe() + [y y) dy = 0

jf(Xv.y) = I(pt(x),pt(y)) Vt(Xv}/)
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Nonlocal continuity equation

Continuity equation
Ope +V - jr =0 where  ji(x) 1= pe(x)ve(x)

On Graphs
0upeo) + (V- 50(0) = Dupe() + [y y) dy = 0

jf(x7.y) = I(pt(x),pt(y)) Vt(Xv}/)

Upwind interpolation: density along edges = density at the source

Je(x,¥) = p()ve(x, ¥)+ — p(y)ve(x, y)-

n Lyon, 12/09/23 Graph-to-local limit




Nonlocal continuity equation

Continuity equation

Ope +V-j: =0 where  ji(x) 1= pe(x)ve(x)

On Graphs
0upeo) + (V- 50(0) = Dupe() + [y y) dy = 0

jf(x7.y) = I(pt(x),pt(y)) Vt(Xv}/)

Upwind interpolation: density along edges = density at the source

Je(x,¥) = p()ve(x, ¥)+ — p(y)ve(x, y)-

Nonlocal continuity equation

For pr < 1

0)+ [ (el n)i = )l )-) () d() = O

(NCE)

Nonlocal interaction equation on graphs: NL?IE

(NCE) with v := —Vg—ﬁ = -VK % p;
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Upwind transportation “metric”
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Upwind transportation “metric”

Nonlocal continuity equation (p: < 1)

Oepe(x) + /Rd (pe(x)ve(x, ¥)+ — pe(¥)ve(x, ¥) =) n(x, y) du(y) =0 (NCE)

y

Benamou-Brenier

1
W2 (00, p1) = inf{% [ moRo) axat | (peve) € CE<po,p1)}
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Upwind transportation “metric”

Nonlocal continuity equation (p: < 1)

Oepr(x) + /Rd (pe(X)ve(x, )+ — pe(y)ve(x, ¥) =) n(x,y) dpu(y) =0 (NCE)

v

Benamou-Brenier

1
W2 (00, p1) = inf{% [ L wtoRo axat | (peve) € CE<po,p1)}

Upwind nonlocal transportation “metric”: Benamou-Brenier

{% /01 //,3(‘”("7}’)+|2Pt(x) + [ve(x, )~ Ppe(y))n(x, y) dp(x) dp(y) dt}

v

inf
(p,v)eNCE

Note that:

® p might contain atoms, even if u is Lebesgue!
= measure valued framework

® Benamou-Brenier functional is not jointly convex in (p¢, v¢)
= flux variables
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Upwind transportation “metric”

Nonlocal continuity equation (pr < p)

Oepe(x) + /l;d (pe(x)ve(x, ¥)+ = pe(¥)ve(x, ¥) =) n(x, y) du(y) =0 (NCE)

4

Benamou-Brenier

1
Wi (on. o) =iof {5 [ [ 1vGORo0 dae | (o) € CECom) |

Upwind nonlocal transportation “metric”: Benamou-Brenier

. 1/t
e {5 S0P+ ) Pt y) i) duty) e |

4

Definition (Nonlocal upwind transportation quasi-metric)

For 1 € M*(R?) satisfying moment bound and local blow-up control, and
00, p1 € P2(R?), the nonlocal upwind transportation cost between pg and p; is defined

b 1
Y Tutou)? = ot { [ 4G ey e+ (9.J) € NCEGpo. ) | (1)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by
o1 . . x>0y (¥) | Xg<op(x:¥)
8p,ili 2) = *// Jl(Xa}’)J2(X,}’)77(X7Y)< L bt
2/Je p(x) py)

) du(x)dpy)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by
o1 . . x>0y (¥) | Xg<op(x:¥)
8p,ili 2) = *// Jl(Xa}’)J2(X,}’)77(X7Y)< L bt
2/Je p(x) py)

) du(x)dpy)

Goal: direction of steepest discent from p!
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

o1 . . x>0y (¥) | Xg<op(x:¥)
8ol o) = *// Jl(Xa}’)Jz(X»Y)ﬂ(X7Y)< SE b 8 )du(X)du(y)
2JJe p(x) p(y)
Goal: direction of steepest discent from p!
Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY) J
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product
Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by
o1 . . x>0y (¥) | Xg<op(x:¥)
8p,ili 2) = *// Jl(XaY)Jz(X»Y)n(Xv}’)( L bt
2JJe p(x) p(y)

) du(x)dpy)

Goal: direction of steepest discent from p!

Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY)

Direction steepest descent is in general NOT — grad £(p)

It is the tangent flux denoted by grad™ €(p) s. t.

— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

stk = 3 [ ) et (K82 L XU g, )

Goal: direction of steepest discent from p!

Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY)

Direction steepest descent is in general NOT — grad £(p)

It is the tangent flux denoted by grad™ €(p) s. t.

— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)

Gradient flows in (P2(RY), T): 8¢pr = V - grad™ &(p)
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Gradient descent in Finsler geometry [Ohta-Sturm '09, '12] - [Agueh '12]

Inner product

Jj € T,P2(RY), we define an inner product g, j: ToP2(RY) x T,P2(RY) — R by

o1 . . x>0y (¥) | Xg<op(x:¥)

ensin k) = 3 [ ey ket y) (X029 U= d() ()
2JJe p(x) p(y)
Goal: direction of steepest discent from p!
Gradient vector: Diff, E[j] = g, grad £ () (grad €(p), ) for all j € T,P2(RY) J
Direction steepest descent is in general NOT — grad £(p)
It is the tangent flux denoted by grad™ €(p) s. t.
— Diffy Ej] = &, grad— £(p) (8rad ™ E(p),J) Vi € T,P2(RY)

Gradient flows in (P2(RY), T): 8¢pr = V - grad™ &(p) J

Nonlocal interaction energy J

grad™ £(p)(x, y) ==V(Kx*p)(x,y) (p(X)x{,w*,»o} (6 ¥) + )X —Frapoy (X5 y))
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Variational characterisation of (NL?IE)

Theorem

A curve (pt)iep, 1] C P5(R?) is a weak solution to (NL2IE) if and only if p belongs to
AC([0, TT; (P2(R9),T)) and is a curve of maximal slope for & with respect to v/D, that

is, satisfies
St(p)=0.

Local slope & De Giorgi Functional

For any p € AC([0, T]; (P2(R?),T)), the De Giorgi functional at p is defined as

1 T
§7(6) 1= E(pr) — E(m) + 5 [ (D(or) + |61 ) dr > 0,
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Variational characterisation of (NL?IE)

Theorem

A curve (pt)iep, 1] C P5(R?) is a weak solution to (NL2IE) if and only if p belongs to
AC([0, TT; (P2(R9),T)) and is a curve of maximal slope for & with respect to v/D, that

is, satisfies
St(p)=0.

Local slope & De Giorgi Functional

For any p € AC([0, T]; (P2(R?),T)), the De Giorgi functional at p is defined as
1 T
§7(6) 1= E(pr) — E(en) + 5 [ (Do) + It ) dr > 0

R _s8  —s¢
D(p) =8, _vse (—V—,— —)

n(x,y) dp(x) du(y)
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Stability with respect to graph approximations

Stability of gradient flows

Let (1), C MT(R?) and suppose that (u"), narrowly converges to u. Suppose
that p" is a gradient flow of € with respect to p" for all n € N, that is,

Gr(p";p")=0 forall neN,

such that (pg). satisfies sup, oy M2(pg) < 0o and pi — p: as n — oo for all t €
[0, T] for some curve (p)eepo,1] C P2(RY). Then, p € AC([0, T1; (P2(R9), T,.))
and p is a gradient flow of € with respect to p, that is,

Sr(uip) =0.
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Stability with respect to graph approximations

Stability of gradient flows

Let (1), C MT(R?) and suppose that (u"), narrowly converges to u. Suppose
that p" is a gradient flow of € with respect to p" for all n € N, that is,

Gr(p";p")=0 forall neN,

such that (pg). satisfies sup, oy M2(pg) < 0o and pi — p: as n — oo for all t €
[0, T] for some curve (p)eepo,1] C P2(RY). Then, p € AC([0, T1; (P2(R9), T,.))
and p is a gradient flow of € with respect to p, that is,

Sr(uip) =0.

Corollary

Existence of weak solution to (NL?IE) via finite-dimensional approximation.
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Graph-to-local limit

Consider a localising graph (u,n°), for

c _ 1 Xty x—y

0 0)+ [ TR 7)) () (x)euy)
R (NL2IE.)

- / V(K ) ) (3 Y )dpi () = 0

le—w (NLIEr)
Orpr = div(p: T(VK * p + VP))

The tensor T : RY — RI*9 s of the form

T(x) = %ﬁ(x) /R gy W ) (T)

® S. Lisini - ESAIM Control Optim. Calc. Var. (2009) diffusion
® D. Forkert, J. Maas, and L. Portinale - SIMA (2022) Evolutionary -convergence for FP
® A. Hraivoronska, O.Tse - SIMA (2023) limiting behaviour of random walks on tessellations
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Linking nonlocal and local continuity equation

Proposition (Local flux)
Let j € M(R??) satisfy the integrability condition
ffR2d|x yln(x, y)ljl(x,y) < co. Then there exists 5 € M(RY; R?) such that

1// ﬁgondj:/ Ve-dj,  forallp e CHRY). (2)
2 R}d Rd

In particular, if (p,j) € NCEt such that A(u,n; p,j) < oo, then there exists
(9¢)tepp, 1] € M(RY; RY) such that (p,3) € CEr.

Proposition (Compactness)

Let (¥)es0 € M (RY) and (n°)->0 identify localising graphs, uniformly in €.
Let (p®,j%)e>0 C NCE7 be such that sup_.q A(p®,n%; p°,j°) < co and let 5°
be associated to j° as in Proposition above. Then there exists a (not relabeled)
subsequence of pairs (p©,3°) € CEt and a pair (p,j) € CEt such that pi — p:
narrowly in P(RY) for a.e. t € [0, T] and such that [ 75dt = [ jdt weakly-+ in
M((0, T) x RY; R9).
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Limiting tensor structure

Space of tangent velocities

ToPa(RY) = {v LG S Rvid(p® ) — ved(u® p) € Tj?z(Rd)} (3)
{Vo:pe CZ(RY)} is dense in ?;TQ(R‘/) wrt “L%-norm”
Tangent-to-cotangent mapping
T2 TEPo(RY) — (TS P2(RY))", for a fixed v € T5Po(RY)

~, 1
Fwl = [[ wiiledto@ ) - v-due o) (4)

(Vo) [Ve] = / /Gs (T (6,7 T,y () (M)
= %//GE VCP(X,y)ﬁlp(x,y)ns(xyy)dp(x)d”(y) + 0(1)

- /Rd V(x) - T°(x)V(x)dp(x) + o(1)

T =g [, DBl ),
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Limiting tensor structure

Theorem (Limiting inner product)
The tangent-to-cotangent mapping7§ : ?;?Q(Rd) — (7';?2(Rd))* defined
in (4) satisfies

i T (Vo)(Tul = [ Ve TVvdp Ve e CR),

with the tensor T € C(Rd; Rdx") obtained as limit of (T)sy><>0. The limiting
tensor, given by

T(x) = %ﬁ(x) /R gy W W), (T)

is bounded and uniformly continuous.
Furthermore, the tensor T is uniformly elliptic, i.e. there exist ¢, C > 0 such
that for any x,& € R? we have

clél’ < €-T(x)e < Cl¢f.

Finally, for any x € R the matrix T(x) is symmetric.
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Variational graph-to-local limit

Theorem (Graph-to-local limit)
Let (p,m ) be a localising graph. For any € > 0 suppose that p® is a gradient flow of
& in (P2(RY),T.)), that is,

E(p5) — £(o5) + > / L(0%) + 10, 2)dr =0 for any = >0,

with (p§)e C P2(RY) be such that sup.so Ma(p§) < oo. Then there exists
p € AC%([0, T]; (P2(R2), Wr)) such that p§ — pt ase — 0 for all t € [0, T] and p is
a gradient flow of & in (P2(R%), Wr)), that is,

o)~ &)+ 3 [ (Da(or) + 10 R)ar =0,

WAoo =inc { [* [ d<1r*1(x>jip'(x), 30 a1t .)€ CElam,01)

where the metric slope is
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Take-home messages

® Graph-to-local limit for the nonlocal interaction equation
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® Graph-to-local limit for the nonlocal interaction equation

® Connect Finslerian and Riemannian structures
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Take-home messages

® Graph-to-local limit for the nonlocal interaction equation
® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations
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Take-home messages

® Graph-to-local limit for the nonlocal interaction equation
® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations

® A. E., F. S. Patacchini, A. Schlichting, D. Slep&ev, Nonlocal-interaction
equation on graphs: gradient flow structure and continuum limit - ARMA (2021).

® A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal
interaction equation, preprint arXiv:2306.03475.

® A. E., G. Heinze, J.-F. Pietschmann, A. Schlichting, Graph-to-local limit for a
multi-species nonlocal cross-interaction system, preprint arXiv:2306.17414.
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Take-home messages

® Graph-to-local limit for the nonlocal interaction equation
® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations

® A. E., F. S. Patacchini, A. Schlichting, D. Slepéev, Nonlocal-interaction
equation on graphs: gradient flow structure and continuum limit - ARMA (2021).

® A. E., G. Heinze, A. Schlichting, Graph-to-local limit for the nonlocal
interaction equation, preprint arXiv:2306.03475.

® A. E., G. Heinze, J.-F. Pietschmann, A. Schlichting, Graph-to-local limit for a
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Take-home messages

® Graph-to-local limit for the nonlocal interaction equation
® Connect Finslerian and Riemannian structures

® Graphs: space-discretisation
= nonlocal deterministic approximation for transport type equations
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