

Hypocoercivity for run and tumble equations

Havva Yoldaş Delft University of Technology

based on joint works with Jo Evans (U. Warwick)

Gradient flows face-to-face 3, Université Claude Bernard Lyon 1, France September 14, 2023

References

- J. Evans & H.Y., On the asymptotic behaviour of the run and tumble equation for bacterial chemotaxis, to appear on SIAM J. Mathematical Analysis.
- J. Evans & H.Y., Trend to equilibrium for run and tumble equations with non-uniform tumbling kernels, preprint on arXiv (2023).

E. coli in motion by Howard Berg

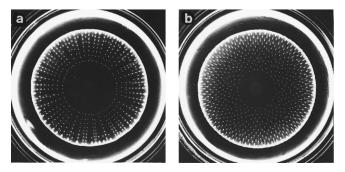


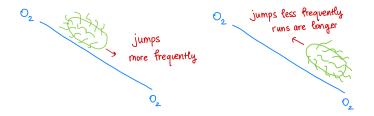
FIGURE 3.7. (a) Cells of a mutant of *E. coli* chemotactic to aspartate but not to serine that have spread outward in a soft-agar plate to form radial arrays of spots. (b) Cells of the same kind that have formed a hexagonal array of spots. The carbon source was α -ketoglutarate (2.5 mM), which is not a chemoattractant. Plate (a) contained, in addition, 2.5 mM hydrogen peroxide, and plate (b) 2.0 mM hydrogen peroxide. The plates were inoculated at the center and incubated for 40 hours at 25°C. They were illuminated slantwise from below and photographed against a dark background. The bright ring near the periphery is an illumination artifact.

< 🗇 >

Motion of chemotactic bacteria

- Run: Travel in a straight line
- Tumble/ Jump: Instantaneous change velocity
 - Post-tumbling velocity is uniform on a ball
 - Microorganism: E. Coli, [Adler '66, Berg, Brown '72]
- Bacteria jump faster when it goes away from high chemical concentration
- Bias in velocity towards high concentrations of chemoattractant
- In long-time: Aggregation of bacteria

r.



TU Delft			
	< □ >	<∄> < ≧> < ≧> = ≧	୬ୡ୯
Havva Yoldaş (TU Delft)	Hypocoercivity for run and tumble eq	September 14, 2023	4 / 28

How can we interpret this behaviour mathematically?

- Stochastic models (tracking the position & the direction of each individual based on the experiments) [Adler '66, Berg-Brown '72, Boyarsky-Noble '77, Stroock '74] and many more...
- 2 PDE (macroscopic) models (density & mean flux of the whole population) [Patlak '53, Keller-Segel '71, '73,...]

How can we interpret this behaviour mathematically?

- Stochastic models (tracking the position & the direction of each individual based on the experiments) [Adler '66, Berg-Brown '72, Boyarsky-Noble '77, Stroock '74] and many more...
- 2 PDE (macroscopic) models (density & mean flux of the whole population) [Patlak '53, Keller-Segel '71, '73,...] Combining 1 & 2:

Run and Tumble Model for Chemotaxis [Stroock '74, Alt '80]

$$\partial_t f + v \cdot \nabla_x f = \int_{\mathbb{R}^d} \int_{\mathcal{V}} (T(t, x, v, v') f(t, x, v') - T(t, x, v', v) f(t, x, v))$$

where $x \in \mathbb{R}^d$ and $v \in \mathcal{V} = B(0, V_0), \quad |\mathcal{V}| = 1$ and $f(0, x, v) = f_0(x, v).$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 5 / 28

< 🗇 🕨

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Mesoscopic description: run and tumble equation

Run and Tumble Model for Chemotaxis [Stroock '74, Alt '80]

$$\partial_t f + v \cdot \nabla_x f = \int_{\mathbb{R}^d} \int_{\mathcal{V}} (T(t, x, v, v') f(t, x, v') - T(t, x, v', v) f(t, x, v))$$

where $x \in \mathbb{R}^d$ and $v \in \mathcal{V} = B(0, V_0)$, $|\mathcal{V}| = 1$ and $f(0, x, v) = f_0(x, v)$.

- $f(t, x, v) \ge 0$: probability density of bacteria
- T describes the change in velocity from v to v': $T(t, x, v, v') := T(m, v, v') = \lambda(m)\kappa(v, v').$
- $\lambda(m) : \mathbb{R} \to [0, \infty)$: tumbling rate \mathbb{P} (Tumble happens in $[t, t + \Delta t]$) = $\lambda(v_t \cdot \nabla_x M(x_t))\Delta t + \mathcal{O}(\Delta t)$.
- $m = v \cdot \nabla_x M, M$: external signal
- $M = m_0 + \log(S), m_0 > 0, S$: chemoattractant concentration
- $\kappa(v, v')$: probability distribution of change in $v \to v'$, $\int_{\mathcal{V}} \kappa \, \mathrm{d}v' = 1$.

TUDelft

Run and tumble equation - a kinetic equation

Run and Tumble Model for Chemotaxis [Stroock '74, Alt '80]

$$\partial_t f = \mathcal{L}[f] = -v \cdot \nabla_x f + \int_{\mathbb{R}^d} \int_{\mathcal{V}} \lambda(m') \kappa(v, v') f' - \lambda(m) f$$

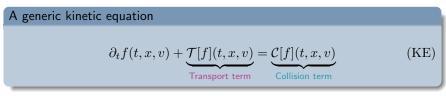
$$f(0, x, v) = f_0(x, v) \in \mathcal{P}(\mathbb{R}^d, \mathcal{V})$$
 (RT)

where $x \in \mathbb{R}^d$ and $v \in \mathcal{V} = B(0, V_0)$ so that $|\mathcal{V}| = 1$.

- Tumbling frequency $T(x, v, v') = \lambda(m')\kappa(v, v') = 1 - \chi\psi(x, v'), \ \chi \in (0, 1)$
- Remember: $m = v \cdot \nabla_x M$, and $M = \log(S)$,
- Fixed $S(x) \rightsquigarrow (RT)$ is a linear equation.
- Realistic case: (RT) + Poisson like coupling

$$-\Delta S + \alpha S = \rho(t, x) := \int_{\mathcal{V}} f(t, x, v) \,\mathrm{d}v, \quad \alpha \ge 0 \tag{P}$$

An introduction to kinetic theory



- f(t, x, v): probability of finding a particle at time t > 0 in a phase $z := (x, v) \in Z := \Omega \times \mathcal{V}.$
- Transport term

•
$$\mathcal{T}[f] = v \cdot \nabla_x f$$
 or $\mathcal{T}[f] = v \cdot \nabla_x f - \nabla_x \Phi(x) \cdot \nabla_v f$

- Collision term
 - Acts only on v variable
- Initial datum: $f(0, x, v) = f_0(x, v) \in \mathcal{P}(\Omega \times \mathcal{V}).$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 8 / 28

▲冊▶ ▲ 国 ▶ ▲ 国 ▶

< D >

Hypocoercivity

- We want to find $f_{\infty} > 0$ s.t. $\partial_t f_{\infty} = (\mathcal{C} \mathcal{T}) f_{\infty} = 0$ and $f_t \to f_{\infty}$ as $t \to +\infty$.
- $\exists C > 0$, a positive function $\beta(t)$ such that $\beta(t) \to 0$ as $t \to +\infty$ and

$$||f_t - f_\infty||_* \le C\beta(t)||f_0 - f_\infty||_*$$

 \Longrightarrow (KE) is "hypocoercive" in the distance $\|\cdot\|_*$

- $\beta(t) = e^{-\lambda t}$ for some $\lambda > 0 \rightsquigarrow$ geometric convergence
- $\beta(t)$ is a polynomial function \rightsquigarrow sub-geometric convergence
- C → dissipation on v + T → transport in x
 "Mixing" of dissipation into x variable → Hypocoercivity [Hérau & Nier '04]; [Hérau '06]; [Villani '09];...

fuDelft

¹D. Bakry, P. Cattiaux, A. Guillin, *Rate of convergence for ergodic continuous* Markov processes: Lyapunov vs. Poincaré, J. Funct. Anal. (2008).

Hypocoercivity

- We want to find $f_{\infty} > 0$ s.t. $\partial_t f_{\infty} = (\mathcal{C} \mathcal{T}) f_{\infty} = 0$ and $f_t \to f_{\infty}$ as $t \to +\infty$.
- $\exists C > 0$, a positive function $\beta(t)$ such that $\beta(t) \to 0$ as $t \to +\infty$ and

$$||f_t - f_\infty||_* \le C\beta(t)||f_0 - f_\infty||_*$$

 \Longrightarrow (KE) is "hypocoercive" in the distance $\|\cdot\|_*$

- $\beta(t) = e^{-\lambda t}$ for some $\lambda > 0 \rightsquigarrow$ geometric convergence
- $\beta(t)$ is a polynomial function \rightsquigarrow sub-geometric convergence
- C → dissipation on v + T → transport in x
 "Mixing" of dissipation into x variable → Hypocoercivity
 [Hérau & Nier '04]; [Hérau '06]; [Villani '09];...
- Two approaches for quantitative ergodicity estimates ¹

Poincaré-type inequalities → Integral bounds on the generator
 <u>Harris-type theorem</u>s → Lyapunov functions

< D >

A (1) > A (

¹D. Bakry, P. Cattiaux, A. Guillin, *Rate of convergence for ergodic continuous Markov processes: Lyapunov vs. Poincaré*, J. Funct. Anal. (2008).

fuDelft

Back to the run and tumble - how does it differ?

I. Confinement mechanism

• Run and tumble vs. linear Boltzmann euqations

RT:
$$\partial_t f + v \cdot \nabla_x f = \int_{\mathcal{V}} \lambda'(m') f' \, \mathrm{d}v' - \lambda(m) f$$

BGK: $\partial_t f + v \cdot \nabla_x f - \nabla_x \Phi(x) \cdot \nabla_v f = \mathcal{M}(v) \int_{\mathbb{R}^d} f' \, \mathrm{d}v' - f$

The unbiased process

The biased process

Back to the run and tumble - how does it differ?

II. Nature of steady states

• Boltzmann-type equations \rightsquigarrow Maxwellian velocity distribution

$$\partial_t f + \underbrace{v \cdot \nabla_x f - \nabla_x \Phi(x) \cdot \nabla_v f}_{\mathcal{T}[f]} = \underbrace{\mathcal{M}(v) \int_{\mathbb{R}^d} f' \, \mathrm{d}v' - f}_{\mathcal{C}[f]}$$

- [DMS '15]² Condition: $f_{\infty} \in \text{Ker}(\mathcal{T}) \cap \text{Ker}(\mathcal{C})$.
- Classical Hypocoercivity: $\frac{\mathrm{d}}{\mathrm{d}t}H[f] \leq -\lambda H[f] \implies ||f_t - f_{\infty}||_* \leq Ce^{-\lambda t} ||f_0 - f_{\infty}||_*$
- (RT) has complex, non-explicit steady states!!
- Classical hypocoercivity methods are difficult to apply!

7́∪Delft

< 🗇 > < 🖃 > < 🗎 >

< D >

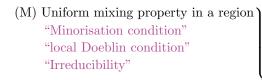
²J. Dolbeault, C. Mouhot, C. Schmeiser, *Hypocoercivity for linear equations conserving mass*, Trans. Am. Math. Soc. (2015)

Harris-type theorems

- Harris-type theorems: Ergodicity of Markov Processes
- Markov \rightsquigarrow transition probabilities
- Transition probabilities ~> Semigroup of linear operators
- Spectral properties of the semigroup \leadsto Ergodicity of Markov Processes
- [Doeblin '40] \rightsquigarrow Transition probabilities > 0 \implies Mixing property book by [Stroock '14]
- [Harris '56] \rightsquigarrow Conditions for $\exists \&!$ equilibrium state
- [Meyn-Tweedie '90s] \rightsquigarrow Exponential convergence to a unique invariant measure
- [Douc, Fort, Guillin '09,'10]; [Fort, Roberts '05] \rightsquigarrow Sub-geometric case
- [Hairer & Mattingly '11] \rightsquigarrow Quantitative hypocoercivity, alternative proof using mass transport distances
- [Cañizo & Mischler '21] \rightsquigarrow Proofs based on PDE (semigroup) arguments
- Spectral gaps of integro-differential operators \sim PDMPs

7∕UDelft

Harris-type theorems



(FL) Geometric drift condition "Foster-Lyapunov condition" "Confinement" \implies

 $\exists \&! \text{ stationary state} \\ \text{Exponential or} \\ \text{algebraic convergence} \end{cases}$

TUDelft

			≣ *) Q (*
Havva Yoldaş (TU Delft)	Hypocoercivity for run and tumble eq	September 14, 2023	13 / 28

Harris-type theorems II

Harris's theorem

Let $(S_t)_{t\geq 0}$ be a Markov semigroup defined on $\mathcal{M}(Z)$ satisfying

$$\exists \sigma > 0, \ D \ge 0, \ \phi : Z \to [1, +\infty) \text{ s.t. } \mathcal{L}^* \phi(z) \le -\sigma \phi(z) + D \qquad (\text{FL})$$

$$\exists \alpha \in (0,1), \eta \in \mathcal{P}, \tau > 0, \text{ s.t. } S_{\tau} \mu \ge \alpha \eta, \quad \forall \mu \in \mathcal{P}(\mathcal{A})$$
(M)

where

$$\mathcal{A} := \{ z \mid \phi(z) \le R \}, \quad R > 2D/(1-\alpha).$$

Then $\exists !$ stationary solution μ_{∞} and $\forall \mu \in \mathcal{P}(Z), \exists C > 0, \lambda > 0$ s.t.

$$||S_t(\mu-\mu_\infty)||_{\phi} \le Ce^{-\lambda t} ||\mu-\mu_\infty||_{\phi}.$$

$$||f||_{\phi} := \int_{\Omega} \phi(z) |f(z)| (\,\mathrm{d} z)$$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 14 / 28

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Harris-type theorems III

Subgeometric Harris's theorem Let $(S_t)_{t\geq 0}$ be a Markov semigroup (+ Feller) defined on $\mathcal{M}(Z)$ satisfying $\exists \sigma > 0, D \geq 0, \phi : Z \to [1, +\infty)$ with pre-compact sub-level sets $\mathcal{L}^*\phi(z) \leq -\sigma V(\phi) + D$ (FL_s)

where V strictly concave, positive, increasing, $\lim_{u\to\infty} V'(u) = 0$.

$$\forall R > 0 \,\exists \alpha \in (0,1), \eta \in \mathcal{P}, \, \tau > 0, \, \text{s.t.} \, S_{\tau} \mu \ge \alpha \eta, \quad \forall \mu \in \mathcal{P}(\mathcal{A}) \qquad (\mathcal{M}_s)$$

where $\mathcal{A} := \{ z \mid \phi(z) \leq R \}$. Then $\exists !$ stationary solution μ_{∞} s.t. $\int V(\phi(z))\mu_{\infty}(dz) \leq D$ and $\forall \mu \in \mathcal{P}(Z), \exists C > 0,$

$$\|S_t(\mu - \mu_{\infty})\|_{TV} \le \frac{C\mu(\phi)}{(H_V^{-1})(t)} + \frac{C}{(V \circ H_V^{-1})(t)}, \quad H_V = \int_0^t \frac{\mathrm{d}s}{V(s)}.$$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 15 / 28

< 🗇 🕨

< 🗆 🕨

(▲ 글) (▲ 글)

Back to the RT equation: linear case

(H1) Uniform tumbling kernel: $\kappa \equiv 1$.

(H2) Tumbling rate increases as the bacteria move away from the regions with higher density of chemoattractant.

$$\lambda(m) = 1 - \chi \psi(m), \quad m = v' \cdot \nabla_x M, \, \chi \in (0, 1),$$

where ψ is an odd, non-decreasing function, $\|\psi\|_{\infty} \leq 1$ and $m\psi(m)$ is differentiable.

(H3) Chemoattractant density decreases as $|x| \to \infty$.

•
$$M(x) \to -\infty$$
 as $|x| \to \infty$,

fuDelft

- $\exists R \ge 0 \text{ and } m_* > 0 \text{ s.t. when } |x| > R, |\nabla_x M(x)| \ge m_*.$
- $\operatorname{Hess}(M)(x) \to 0$ as $|x| \to \infty$ and $\operatorname{Hess}(M)(x)$ is bounded.

(H4) $\exists \tilde{\lambda} > 0$ (depends on $\psi, \|\nabla_x M\|_{\infty}$) and $\exists k > 0$ (depends on ψ)

$$\int_{\mathcal{V}} m' \psi(m') \, \mathrm{d}v' \ge \tilde{\lambda} |\nabla_x M(x)|^k.$$

Theorem I: linear Case [J. Evans, H. Y., SIMA (2023)]

Suppose that $t \mapsto f_t$ is the solution to (RT) with $f_0 \in \mathcal{P}(\mathbb{R}^d \times \mathcal{V})$ and that (H1)-(H4) are satisfied.

• There exist $C, \rho > 0$ (independent from f_0) such that

$$||f_t - f_\infty||_* \le Ce^{-\sigma t} ||f_0 - f_\infty||_*,$$
 (*)

< 🗇 🕨

where f_{∞} is the unique steady state solution of (RT) and

$$\|\mu\|_* = \int_{\mathbb{R}^d} \int_{\mathcal{V}} \Psi(m, \psi(m)) e^{-\gamma M(x)} |\mu| \,\mathrm{d}v \,\mathrm{d}x.$$

• If there exist $C_1, C_2, \alpha > 0$ s.t. $C_1 - \alpha \langle x \rangle \leq M(x) \leq C_2 - \alpha \langle x \rangle$ then (\bigstar) holds with $\|\mu\|_{**} = \int_{\mathbb{R}^d} \int_{\mathcal{V}} e^{\delta \langle x \rangle} |\mu| \, \mathrm{d}v \, \mathrm{d}x$, where δ is a constant small enough depends on M and $\langle x \rangle := \sqrt{1 + |x|^2}$.

TUDelft

Sketch of the proof - linear case

Minorisation/local Doeblin condition:

Find $t_* > 0$ and $\alpha \in (0, 1)$ such that for any $f_0 \in \mathcal{P}$, $f_{t_*} \ge \alpha \mu$, μ probability measure.

Sketch of the proof - linear case

Minorisation/local Doeblin condition:

Find $t_* > 0$ and $\alpha \in (0, 1)$ such that for any $f_0 \in \mathcal{P}$, $f_{t_*} \ge \alpha \mu$, μ probability measure.

• (RT) $\implies f_t = \mathcal{S}_t f_0 = \mathcal{T}_t f_0 + \int_0^t \mathcal{T}_{t-s} \left(\mathcal{J} f_s \right) \, \mathrm{d}s$

• Transport
$$(\mathcal{T})_{t\geq 0}$$
: $\partial_t f + v \cdot \nabla_x M + \lambda(x, v) f = 0.$

$$\mathcal{T}_t \delta_{(x_0, v_0)}(x, v) \ge e^{-(1+\chi)t} \delta_{(x_0 + v_0 t, v_0)}(x, v)$$

Sketch of the proof - linear case

Minorisation/local Doeblin condition:

Find $t_* > 0$ and $\alpha \in (0, 1)$ such that for any $f_0 \in \mathcal{P}$, $f_{t_*} \ge \alpha \mu$, μ probability measure.

• (RT) $\implies f_t = \mathcal{S}_t f_0 = \mathcal{T}_t f_0 + \int_0^t \mathcal{T}_{t-s} \left(\mathcal{J} f_s \right) \, \mathrm{d}s$

• Transport
$$(\mathcal{T})_{t\geq 0}$$
: $\partial_t f + v \cdot \nabla_x M + \lambda(x, v) f = 0.$

$$\mathcal{T}_t \delta_{(x_0, v_0)}(x, v) \ge e^{-(1+\chi)t} \delta_{(x_0 + v_0 t, v_0)}(x, v)$$

• Tumble/Jump
$$\mathcal{J}[f] := \int_{\mathcal{V}} \lambda'(m') f' \, \mathrm{d} v'.$$

$$\mathcal{JT}_t \delta_{(x_0, v_0)}(x, v) \ge (1 - \chi) e^{-(1 + \chi)t} \delta_{(x_0 + v_0 t)}(x) \mathbb{1}_{\{|v| \le V_0\}}(v).$$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 18 / 28

< 🗇 🕨

4 3 > 4 3 >

Sketch of the proof of Theorem I - linear case

Lemma - Minorisation condition for $\left(\mathrm{RT}\right)$

For every R > 0, taking $t_* = 3 + R/V_0$

$$\begin{split} f(t_*, x, v) &\geq \int_0^t \int_0^s \mathcal{T}_{t-s} \mathcal{J} \mathcal{T}_{s-r} \mathcal{J} \mathcal{T}_r f_0(x, v) \, \mathrm{d}r \, \mathrm{d}s \\ &\geq \cdots \\ &\geq (1-\chi)^2 e^{-(1+\chi)t_*} \frac{1}{t_*^d |B(V_0)|} \mathbbm{1}_{\{|x| \leq V_0\}} \mathbbm{1}_{\{|v| \leq V_0\}} \end{split}$$
for any $f_0(x, v) \in \mathcal{P}(\mathbb{R}^d \times \mathcal{V})$ with $\int_{|x| < R} \int_{\mathcal{V}} f_0 \, \mathrm{d}x \, \mathrm{d}v = 1.$

TUDelft

Havva Yoldaş (TU Delft)	Hypocoercivity for run and tumble eq	September 14, 2023	19 / 28

Sketch of the proof of Theorem I - linear case

Foster-Laypunov condition: Find $\gamma, D > 0$ and ϕ such that $\mathcal{L}^* \phi \leq -\gamma \phi + D$ where \mathcal{L}^* is the adjoint operator

$$\mathcal{L}^*[\phi] = v \cdot \nabla_x \phi + \lambda (v \cdot \nabla_x M) \left(\int_{\mathcal{V}} \phi(x, v') \, \mathrm{d}v' - \phi(x, v) \right)$$

Lemma - Foster-Laypunov condition for (RT)

For $\beta = \chi/(1+\chi)$ and γ sufficiently small, $m := v \cdot \nabla_x M(x)$,

$$\phi(x,v) = (1 - \gamma m (1 + \beta \psi(m))e^{-\gamma M(x)})$$

satisfies (FL).

• Idea: Compute the action of \mathcal{L}^* on $e^{-\gamma M(x)}$, $me^{-\gamma M(x)}$ and $m\psi(m)e^{-\gamma M(x)}$ and put them together.

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 20 / 28

・ 同 ト ・ ヨ ト ・ ヨ ト

Towards more realistic models..

Non-uniform tumbling kernel

• The realistic one [Berg-Brown 72', Macnab 80', Othmer-Hillen 02', Frymier-Ford-Cummings 93']:

$$\kappa_1(v, v') = \kappa_1(\theta) = \frac{g(\theta)}{2\pi \sin \theta} \quad \text{where} \quad \theta = \arccos\left(\frac{v \cdot v'}{|v||v'|}\right),$$

where $g(\theta)$ is the sixth order polynomial satisfying $g(0) = g(\pi) = 0$. Unbounded velocity space: $v \in \mathbb{R}^d$

• The tumbling kernel is given by the Maxwellian distribution on the post-tumbling velocities independently from the pre-tumbling velocities, i.e.,

$$\kappa_2(v, v') = \kappa_2(v') = \frac{1}{(2\pi)^{d/2}} e^{-\frac{|v'|^2}{2}}.$$

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 1

Theorem II: linear equation [J. Evans, H. Y., preprint(2023)]

Case I. Angle dependent kernel $\kappa_1(\theta)$

Under the previous assumptions on $\lambda, m\psi(m), M(x)$ with $\kappa_1(\theta)$ and that $x \in \mathbb{R}^2$ and $v \in \mathbb{S}^1$, then there exist positive constants C, σ (independent of f_0) such that

$$||f_t - f_\infty||_\phi \le Ce^{-\sigma t} ||f_0 - f_\infty||_\phi,$$

where f_{∞} is the unique steady state solution to the RT equation. The norm $\|\cdot\|_*$ is the weighted total variation norm with the weight

$$\phi(x,v) = \left(1 - \frac{\gamma}{1 - C_K} v \cdot \nabla_x M - Av \cdot \nabla_x M \psi(v \cdot \nabla_x M)\right) e^{-\gamma M}$$

where $\gamma, A, C_K > 0$ are constants which can be computed explicitly.

TUDelft

Havva Yoldaş (TU Delft)	Hypocoercivity for run and tumble eq	September 14, 2023	22 / 28

Theorem II: linear equation [J. Evans, H. Y., preprint (2023)]

Case II. Unbounded velocity space

Under the previous assumptions on $\lambda, m\psi(m), M(x)$ with initial data $f_0 \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$ with $\kappa_2(v')$, then there exist positive constants C > 0 such that

$$\|f_t - f_\infty\|_{TV} \le Ct^{-1/2} M_{f_0},$$

where

$$M_{f_0} = \int_{\mathbb{R}^d \times \mathbb{R}^d} f_0(x, v) \phi_2(x, v) \mathrm{d}v \mathrm{d}x$$

with

$$\phi_2(x,v) = 1 + M^2 + 2c \cdot \nabla_x MM\left(1 + \frac{\chi}{1+\chi}\psi(v \cdot \nabla_x M)\right) + Av^2,$$

where c, A > 0 are constants which can be computed explicitly.

TUDelft

		and set set is	12 N C
Havva Yoldaş (TU Delft)	Hypocoercivity for run and tumble eq	September 14, 2023	23 / 28

Nonlinear models...

We consider ..

- Linear case with $\psi(m) = \operatorname{sgn}(m) \& \psi$ Lipschitz $(d \ge 1)$.
- Non-linear toy model

$$S(x) = S_{\infty}(x)(1 + \eta N(x) * \rho), \quad \rho(t, x) = \int_{\mathcal{V}} f(t, x, v) \,\mathrm{d}v,$$

where $\eta>0$ a small constant, N a compactly supported positive smooth function, S_∞ a smooth function.

Why to consider this toy model?

- Intermediate case between more realistic non-linear couplings and the linear one.
- S can be considered as a perturbation of the linear equation when $N*\rho$ is decreasing and η small.

Theorem III: non-linear equation [Evans, Y., SIMA (2023)]

Suppose that $t \mapsto f_t$ is the solution to nonlinear (RT) where

$$S(x) = S_{\infty}(x)(1 + \eta N(x) * \rho),$$

where N is a smooth function with a compact support, $\eta>0$ and S_∞ is a smooth function satisfying for $C_1,C_2,\alpha>0$

$$C_1 - \alpha \langle x \rangle \le M_\infty(x) := \log(S_\infty(x)) \le C_2 - \alpha \langle x \rangle,$$

where $\langle x \rangle := \sqrt{1 + |x|^2}$. Suppose also that (H1)-(H4) are satisfied and ψ is a Lipschitz function.

- There exists \tilde{C} (dep. on C_1, C_2, α) s.t. if $\eta < \tilde{C}$ there exists a unique steady state solution f_{∞} .
- Any f_0 satisfying $\|f_0\|_{**} \leq K$ (K dep. on $\sigma, \chi, V_0, \eta, \cdots$) then we have

$$\|f_t - f_{\infty}\|_{**} \le C e^{-\sigma t/2} \|f_0 - f_{\infty}\|_{**}.$$
 (**★**)

▲冊▶ ▲ 国 ▶ ▲ 国 ▶

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 25 / 28

Sketch of the proof of Theorem III - non-linear case

• Build a stationary solution

- Consider the nonlinear problem as a perturbation of the linear problem
- Fixed point argument: $G(M) = \log (S_{\infty}(1 + \eta N * \rho^{M})),$ $\rho^{M} = \int f_{\infty}^{M} dv'.$

Sketch of the proof of Theorem III - non-linear case

• Build a stationary solution

• Consider the nonlinear problem as a perturbation of the linear problem

• Fixed point argument: $G(M) = \log (S_{\infty}(1 + \eta N * \rho^{M})),$ $\rho^{M} = \int f_{\infty}^{M} dv'.$

• Contraction argument

•
$$f = \mathcal{L}_{M_t} f = \mathcal{L}_{\tilde{M}} f - (\mathcal{L}_{\tilde{M}} - \mathcal{L}_{M_t}) f$$
, \tilde{M} fixed point of G .

$$f_t = \mathcal{S}_t^{\tilde{M}} f_0 + \int_0^t \mathcal{S}_{t-s}^{\tilde{M}} (\mathcal{L}_{\tilde{M}} - \mathcal{L}_{M_s}) f_s \, \mathrm{d}s.$$
$$\|f_t - f_\infty\|_{**} = \|\mathcal{S}_t^{\tilde{M}} f_0 - f_\infty\|_{**} + \left\| \int_0^t \mathcal{S}_{t-s}^{\tilde{M}} (\mathcal{L}_{\tilde{M}} - \mathcal{L}_{M_s}) f_s \, \mathrm{d}s \right\|_{**}$$

TUDelft

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq September 14, 2023 26 / 28

Summary

- Extension of [Mischler, Weng 2017] on the linear equation to $d \ge 1$, also for smooth ψ .
- Introducing the weakly non-linear model
 - A unique stationary solution
 - Exponential convergence
- First results concerning the hypocoercivity for non-uniform kernels
- Constructive proofs
- Quantifiable convergence rates
- Convergence results are in weighted TV norms with exponential weights, i.e. $e^{-\gamma M} = S^{-\gamma}$, $\gamma > 0$ small constant.
- Providing perspectives to treat the more realistic non-linear couplings.

Thank you!

Announcement:

- A new call for a **postdoc position** (1 year possibility of extension) and a **PhD position** (4 years) at TU Delft under my supervision.
- Topics: in the broad area of analyis of PDEs arising from structured population dynamics and kinetic theory: study of well-posedness, long-time behaviour, numerical analysis and derivation problems

