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September 14, 2023



References

• J. Evans & H.Y., On the asymptotic behaviour of the run and tumble equation
for bacterial chemotaxis, to appear on SIAM J. Mathematical Analysis.

• J. Evans & H.Y., Trend to equilibrium for run and tumble equations with
non-uniform tumbling kernels, preprint on arXiv (2023).
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E. coli in motion by Howard Berg
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Motion of chemotactic bacteria
• Run: Travel in a straight line

• Tumble/ Jump: Instantaneous change velocity

• Post-tumbling velocity is uniform on a ball
• Microorganism: E. Coli, [Adler ′66, Berg, Brown ′72]

• Bacteria jump faster when it goes away from high chemical
concentration

• Bias in velocity towards high concentrations of chemoattractant
• In long-time: Aggregation of bacteria
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How can we interpret this behaviour mathematically?

1 Stochastic models (tracking the position & the direction of each
individual based on the experiments) [Adler ′66, Berg-Brown ′72,
Boyarsky-Noble ′77, Stroock ′74] and many more...

2 PDE (macroscopic) models (density & mean flux of the whole
population) [Patlak ′53, Keller-Segel ′71, ′73,...]

Combining 1 & 2:

Run and Tumble Model for Chemotaxis [Stroock ‘74, Alt ‘80]

∂tf + v · ∇xf =

∫
Rd

∫
V
(T (t, x, v, v′)f(t, x, v′)− T (t, x, v′, v)f(t, x, v))

where x ∈ Rd and v ∈ V = B(0, V0), |V| = 1 and f(0, x, v) = f0(x, v).
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Mesoscopic description: run and tumble equation

Run and Tumble Model for Chemotaxis [Stroock ′74, Alt ′80]

∂tf + v · ∇xf =

∫
Rd

∫
V
(T (t, x, v, v′)f(t, x, v′)− T (t, x, v′, v)f(t, x, v))

where x ∈ Rd and v ∈ V = B(0, V0), |V| = 1 and f(0, x, v) = f0(x, v).

• f(t, x, v) ≥ 0: probability density of bacteria

• T describes the change in velocity from v to v′:
T (t, x, v, v′) := T (m, v, v′) = λ(m)κ(v, v′).

• λ(m) : R → [0,∞): tumbling rate
P (Tumble happens in [t, t+∆t]) = λ(vt · ∇xM(xt))∆t+O(∆t).

• m = v · ∇xM , M : external signal
• M = m0 + log(S), m0 > 0, S : chemoattractant concentration

• κ(v, v′): probability distribution of change in v → v′,
∫
V κdv

′ = 1.
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Run and tumble equation - a kinetic equation

Run and Tumble Model for Chemotaxis [Stroock ‘74, Alt ‘80]

 ∂tf = L[f ] = −v · ∇xf +

∫
Rd

∫
V
λ(m′)κ(v, v′)f ′ − λ(m)f

f(0, x, v) = f0(x, v) ∈ P(Rd,V)
(RT)

where x ∈ Rd and v ∈ V = B(0, V0) so that |V| = 1.

• Tumbling frequency
T (x, v, v′) = λ(m′)κ(v, v′) = 1− χψ(x, v′), χ ∈ (0, 1)

• Remember: m = v · ∇xM , and M = log(S),
• Fixed S(x)⇝ (RT) is a linear equation.
• Realistic case: (RT) + Poisson like coupling

−∆S + αS = ρ(t, x) :=

∫
V
f(t, x, v) dv, α ≥ 0 (P)
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An introduction to kinetic theory

A generic kinetic equation

∂tf(t, x, v) + T [f ](t, x, v)︸ ︷︷ ︸
Transport term

= C[f ](t, x, v)︸ ︷︷ ︸
Collision term

(KE)

• f(t, x, v) : probability of finding a particle at time t > 0 in a phase
z := (x, v) ∈ Z := Ω× V.

• Transport term

• T [f ] = v · ∇xf or T [f ] = v · ∇xf −∇xΦ(x) · ∇vf .

• Collision term

• Acts only on v variable
• Initial datum: f(0, x, v) = f0(x, v) ∈ P(Ω× V).
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Hypocoercivity
• We want to find f∞ > 0 s.t. ∂tf∞ = (C − T )f∞ = 0 and ft → f∞ as
t→ +∞.

• ∃C > 0, a positive function β(t) such that β(t) → 0 as t→ +∞ and

∥ft − f∞∥∗ ≤ Cβ(t)∥f0 − f∞∥∗

=⇒ (KE) is “hypocoercive” in the distance ∥ · ∥∗
• β(t) = e−λt for some λ > 0 ⇝ geometric convergence

• β(t) is a polynomial function ⇝ sub-geometric convergence
• C ⇝ dissipation on v + T ⇝ transport in x

“Mixing” of dissipation into x variable ⇝ Hypocoercivity

[Hérau & Nier ′04]; [Hérau ′06]; [Villani ′09];...

• Two approaches for quantitative ergodicity estimates 1

1 Poincaré-type inequalities ⇝ Integral bounds on the generator
2 Harris-type theorems ⇝ Lyapunov functions

1D. Bakry, P. Cattiaux, A. Guillin, Rate of convergence for ergodic continuous
Markov processes: Lyapunov vs. Poincaré, J. Funct. Anal. (2008).
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Back to the run and tumble - how does it differ?

I. Confinement mechanism

• Run and tumble vs. linear Boltzmann euqations

RT: ∂tf + v · ∇xf =

∫
V
λ′(m′)f ′ dv′ − λ(m)f

BGK: ∂tf + v · ∇xf −∇xΦ(x) · ∇vf = M(v)

∫
Rd

f ′ dv′ − f
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Back to the run and tumble - how does it differ?

II. Nature of steady states
• Boltzmann-type equations ⇝ Maxwellian velocity distribution

∂tf + v · ∇xf −∇xΦ(x) · ∇vf︸ ︷︷ ︸
T [f ]

= M(v)

∫
Rd

f ′ dv′ − f︸ ︷︷ ︸
C[f ]

• [DMS ′15]2 Condition: f∞ ∈ Ker(T ) ∩Ker(C).
• Classical Hypocoercivity:

d
dtH[f ] ≤ −λH[f ] =⇒ ∥ft − f∞∥∗ ≤ Ce−λt∥f0 − f∞∥∗

• (RT) has complex, non-explicit steady states!!
• Classical hypocoercivity methods are difficult to apply!

2J. Dolbeault, C. Mouhot, C. Schmeiser, Hypocoercivity for linear equations
conserving mass, Trans. Am. Math. Soc. (2015)
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Harris-type theorems

• Harris-type theorems: Ergodicity of Markov Processes
• Markov ⇝ transition probabilities
• Transition probabilities ⇝ Semigroup of linear operators
• Spectral properties of the semigroup ⇝ Ergodicity of Markov

Processes
• [Doeblin ′40] ⇝ Transition probabilities > 0 =⇒ Mixing property

book by [Stroock ′14]

• [Harris ′56] ⇝ Conditions for ∃&! equilibrium state

• [Meyn-Tweedie ′90s] ⇝ Exponential convergence to a unique
invariant measure

• [Douc, Fort, Guillin ′09,′10]; [Fort, Roberts ′05] ⇝ Sub-geometric
case

• [Hairer & Mattingly ′11] ⇝ Quantitative hypocoercivity, alternative
proof using mass transport distances

• [Cañizo & Mischler ′21] ⇝ Proofs based on PDE (semigroup)
arguments

• Spectral gaps of integro-differential operators ∼ PDMPs
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Harris-type theorems

(M) Uniform mixing property in a region

“Minorisation condition”

“local Doeblin condition”

“Irreducibility”

(FL) Geometric drift condition

“Foster-Lyapunov condition”

“Confinement”


=⇒

{
∃&! stationary state
Exponential or
algebraic convergence
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Harris-type theorems II

Harris’s theorem

Let (St)t≥0 be a Markov semigroup defined on M(Z) satisfying

∃σ > 0, D ≥ 0, ϕ : Z → [1,+∞) s.t. L∗ϕ(z) ≤ −σϕ(z) +D (FL)

∃α ∈ (0, 1), η ∈ P, τ > 0, s.t. Sτµ ≥ αη, ∀µ ∈ P(A) (M)

where
A := {z | ϕ(z) ≤ R}, R > 2D/(1− α).

Then ∃ ! stationary solution µ∞ and ∀µ ∈ P(Z), ∃C > 0, λ > 0 s.t.

∥St(µ− µ∞)∥ϕ ≤ Ce−λt∥µ− µ∞∥ϕ.

∥f∥ϕ :=

∫
Ω

ϕ(z)|f(z)|( dz)
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Harris-type theorems III

Subgeometric Harris’s theorem

Let (St)t≥0 be a Markov semigroup (+ Feller) defined on M(Z) satisfying

∃σ > 0, D ≥ 0, ϕ :Z → [1,+∞) with pre-compact sub-level sets

L∗ϕ(z) ≤ −σV (ϕ) +D
(FLs)

where V strictly concave, positive, increasing, limu→∞ V ′(u) = 0.

∀R > 0 ∃α ∈ (0, 1), η ∈ P, τ > 0, s.t. Sτµ ≥ αη, ∀µ ∈ P(A) (Ms)

where A := {z | ϕ(z) ≤ R}. Then ∃ ! stationary solution µ∞ s.t.∫
V (ϕ(z))µ∞( dz) ≤ D and ∀µ ∈ P(Z), ∃C > 0,

∥St(µ− µ∞)∥TV ≤ Cµ(ϕ)

(H−1
V )(t)

+
C

(V ◦H−1
V )(t)

, HV =

∫ t

0

ds

V (s)
.

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq. September 14, 2023 15 / 28



Back to the RT equation: linear case

(H1) Uniform tumbling kernel: κ ≡ 1.

(H2) Tumbling rate increases as the bacteria move away from the regions
with higher density of chemoattractant.

λ(m) = 1− χψ(m), m = v′ · ∇xM, χ ∈ (0, 1),

where ψ is an odd, non-decreasing function, ∥ψ∥∞ ≤ 1 and mψ(m)
is differentiable.

(H3) Chemoattractant density decreases as |x| → ∞.

• M(x) → −∞ as |x| → ∞,
• ∃R ≥ 0 and m∗ > 0 s.t. when |x| > R, |∇xM(x)| ≥ m∗.
• Hess(M)(x) → 0 as |x| → ∞ and Hess(M)(x) is bounded.

(H4) ∃λ̃ > 0 (depends on ψ, ∥∇xM∥∞) and ∃k > 0 (depends on ψ)∫
V
m′ψ(m′) dv′ ≥ λ̃|∇xM(x)|k.

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq. September 14, 2023 16 / 28



Theorem I: linear Case [J. Evans, H. Y., SIMA (2023)]

Suppose that t 7→ ft is the solution to (RT) with f0 ∈ P(Rd ×V) and
that (H1)-(H4) are satisfied.

• There exist C, ρ > 0 (independent from f0) such that

∥ft − f∞∥∗ ≤ Ce−σt∥f0 − f∞∥∗, (⋆)

where f∞ is the unique steady state solution of (RT) and

∥µ∥∗ =
∫
Rd

∫
V
Ψ(m,ψ(m))e−γM(x)|µ| dv dx.

• If there exist C1, C2, α > 0 s.t. C1 − α⟨x⟩ ≤M(x) ≤ C2 − α⟨x⟩
then (⋆) holds with ∥µ∥∗∗ =

∫
Rd

∫
V e

δ⟨x⟩|µ| dv dx, where δ is a

constant small enough depends on M and ⟨x⟩ :=
√

1 + |x|2.
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Sketch of the proof - linear case

Minorisation/local Doeblin condition:
Find t∗ > 0 and α ∈ (0, 1) such that for any f0 ∈ P, ft∗ ≥ αµ, µ
probability measure.

• (RT) =⇒ ft = Stf0 = Ttf0 +
∫ t

0
Tt−s (J fs) ds

• Transport (T )t≥0 : ∂tf + v · ∇xM + λ(x, v)f = 0.

Ttδ(x0,v0)(x, v) ≥ e−(1+χ)tδ(x0+v0t,v0)(x, v)

• Tumble/Jump J [f ] :=
∫
V λ

′(m′)f ′ dv′.

J Ttδ(x0,v0)(x, v) ≥ (1− χ)e−(1+χ)tδ(x0+v0t)(x)1{|v|≤V0}(v).
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Sketch of the proof of Theorem I - linear case

Lemma - Minorisation condition for (RT)

For every R > 0, taking t∗ = 3 +R/V0

f(t∗, x, v) ≥
∫ t

0

∫ s

0

Tt−sJ Ts−rJ Trf0(x, v) dr ds

≥ · · ·

≥ (1− χ)2e−(1+χ)t∗
1

td∗|B(V0)|
1{|x|≤V0}1{|v|≤V0}

for any f0(x, v) ∈ P(Rd × V) with
∫
|x|≤R

∫
V f0 dx dv = 1.

Havva Yoldaş (TU Delft) Hypocoercivity for run and tumble eq. September 14, 2023 19 / 28



Sketch of the proof of Theorem I - linear case

Foster-Laypunov condition: Find γ,D > 0 and ϕ such that
L∗ϕ ≤ −γϕ+D where L∗ is the adjoint operator

L∗[ϕ] = v · ∇xϕ+ λ(v · ∇xM)

(∫
V
ϕ(x, v′) dv′ − ϕ(x, v)

)

Lemma - Foster-Laypunov condition for (RT)

For β = χ/(1 + χ) and γ sufficiently small, m := v · ∇xM(x),

ϕ(x, v) = (1− γm(1 + βψ(m))e−γM(x)

satisfies (FL).

• Idea: Compute the action of L∗ on e−γM(x), me−γM(x) and
mψ(m)e−γM(x) and put them together.
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Towards more realistic models..

Non-uniform tumbling kernel
• The realistic one [Berg-Brown 72’, Macnab 80’, Othmer-Hillen 02’,

Frymier-Ford-Cummings 93’]:

κ1(v, v
′) = κ1(θ) =

g(θ)

2π sin θ
where θ = arccos

(
v · v′

|v||v′|

)
,

where g(θ) is the sixth order polynomial satisfying g(0) = g(π) = 0.

Unbounded velocity space: v ∈ Rd

• The tumbling kernel is given by the Maxwellian distribution on the
post-tumbling velocities independently from the pre-tumbling
velocities, i.e.,

κ2(v, v
′) = κ2(v

′) =
1

(2π)d/2
e−

|v′|2
2 .
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Theorem II: linear equation [J. Evans, H. Y., preprint(2023)]

Case I. Angle dependent kernel κ1(θ)

Under the previous assumptions on λ,mψ(m),M(x) with κ1(θ) and that
x ∈ R2 and v ∈ S1, then there exist positive constants C, σ (independent
of f0) such that

∥ft − f∞∥ϕ ≤ Ce−σt∥f0 − f∞∥ϕ,

where f∞ is the unique steady state solution to the RT equation. The
norm ∥ · ∥∗ is the weighted total variation norm with the weight

ϕ(x, v) =

(
1− γ

1− CK
v · ∇xM −Av · ∇xMψ(v · ∇xM)

)
e−γM

where γ,A,CK > 0 are constants which can be computed explicitly.
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Theorem II: linear equation [J. Evans, H. Y., preprint (2023)]

Case II. Unbounded velocity space

Under the previous assumptions on λ,mψ(m),M(x) with initial data
f0 ∈ P(Rd × Rd) with κ2(v

′), then there exist positive constants C > 0
such that

∥ft − f∞∥TV ≤ Ct−1/2Mf0 ,

where

Mf0 =

∫
Rd×Rd

f0(x, v)ϕ2(x, v)dvdx

with

ϕ2(x, v) = 1 +M2 + 2c · ∇xMM

(
1 +

χ

1 + χ
ψ(v · ∇xM)

)
+Av2,

where c, A > 0 are constants which can be computed explicitly.
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Nonlinear models...

We consider..

• Linear case with ψ(m) = sgn(m) & ψ Lipschitz (d ≥ 1).
• Non-linear toy model

S(x) = S∞(x)(1 + ηN(x) ∗ ρ), ρ(t, x) =

∫
V
f(t, x, v) dv,

where η > 0 a small constant, N a compactly supported positive
smooth function, S∞ a smooth function.

Why to consider this toy model?
• Intermediate case between more realistic non-linear couplings and

the linear one.
• S can be considered as a perturbation of the linear equation when
N ∗ ρ is decreasing and η small.
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Theorem III: non-linear equation [Evans, Y., SIMA (2023)]

Suppose that t 7→ ft is the solution to nonlinear (RT) where

S(x) = S∞(x)(1 + ηN(x) ∗ ρ),

where N is a smooth function with a compact support, η > 0 and S∞ is a
smooth function satisfying for C1, C2, α > 0

C1 − α⟨x⟩ ≤M∞(x) := log(S∞(x)) ≤ C2 − α⟨x⟩,

where ⟨x⟩ :=
√
1 + |x|2. Suppose also that (H1)-(H4) are satisfied and ψ is

a Lipschitz function.

• There exists C̃ (dep. on C1, C2, α) s.t. if η < C̃ there exists a unique
steady state solution f∞.

• Any f0 satisfying ∥f0∥∗∗ ≤ K (K dep. on σ, χ, V0, η, · · · ) then we have

∥ft − f∞∥∗∗ ≤ Ce−σt/2∥f0 − f∞∥∗∗. (⋆⋆)
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Sketch of the proof of Theorem III - non-linear case

• Build a stationary solution
• Consider the nonlinear problem as a perturbation of the linear

problem
• Fixed point argument: G(M) = log

(
S∞(1 + ηN ∗ ρM )

)
,

ρM =
∫
fM∞ dv′.

• Contraction argument
• f = LMtf = LM̃f − (LM̃ − LMt)f, M̃ fixed point of G.

ft = SM̃
t f0 +

∫ t

0

SM̃
t−s(LM̃ − LMs)fs ds.

∥ft − f∞∥∗∗ = ∥SM̃
t f0 − f∞∥∗∗ +

∥∥∥∥∫ t

0

SM̃
t−s(LM̃ − LMs)fs ds

∥∥∥∥
∗∗
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Summary

• Extension of [Mischler, Weng 2017] on the linear equation to d ≥ 1,
also for smooth ψ.

• Introducing the weakly non-linear model

• A unique stationary solution
• Exponential convergence

• First results concerning the hypocoercivity for non-uniform kernels
• Constructive proofs
• Quantifiable convergence rates
• Convergence results are in weighted TV norms with exponential

weights, i.e. e−γM = S−γ , γ > 0 small constant.
• Providing perspectives to treat the more realistic non-linear

couplings.
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Thank you!
Announcement:

• A new call for a postdoc position (1 year - possibility of
extension) and a PhD position (4 years) at TU Delft under
my supervision.

• Topics: in the broad area of analyis of PDEs arising from
structured population dynamics and kinetic theory:
study of well-posedness, long-time behaviour, numerical
analysis and derivation problems
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