

New results on nonlinear aggregation-diffusion equations with Riesz kernels

Bruno Volzone

Università degli studi di Napoli "Parthenope"

Gradient Flows face-to-face 3

September 11th 2023, Lyon

In \mathbb{R}^N with $N \ge 2$, the parabolic/elliptic KS model with degenerate diffusion is

$$\rho_t = \Delta \rho^m -
abla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

with m > 1, being \mathcal{N} the Newtonian kernel in \mathbb{R}^N . The behaviour of solutions depends on m and on the so called critical exponent $m_c = 2 - \frac{2}{N}$:

In \mathbb{R}^N with $N \ge 2$, the parabolic/elliptic KS model with degenerate diffusion is

$$\rho_t = \Delta \rho^m -
abla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

with m > 1, being \mathcal{N} the Newtonian kernel in \mathbb{R}^N . The behaviour of solutions depends on m and on the so called critical exponent $m_c = 2 - \frac{2}{N}$:

• for $m > m_c$, for any $\rho_0 \in L^1 \cap L^{\infty}(\mathbb{R}^N)$, the solution exists globally in time(Sugiyama '06)

2/33

In \mathbb{R}^N with $N \ge 2$, the parabolic/elliptic KS model with degenerate diffusion is

$$\rho_t = \Delta \rho^m -
abla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

with m > 1, being \mathcal{N} the Newtonian kernel in \mathbb{R}^N . The behaviour of solutions depends on m and on the so called critical exponent $m_c = 2 - \frac{2}{N}$:

- for $m > m_c$, for any $\rho_0 \in L^1 \cap L^{\infty}(\mathbb{R}^N)$, the solution exists globally in time(Sugiyama '06)
- for m < m_c, there is a blow-up in finite time for an initial data with arbitrarily small mass. (Sugiyama '06)

2/33

In \mathbb{R}^N with $N \ge 2$, the parabolic/elliptic KS model with degenerate diffusion is

$$\rho_t = \Delta \rho^m -
abla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

with m > 1, being \mathcal{N} the Newtonian kernel in \mathbb{R}^N . The behaviour of solutions depends on m and on the so called critical exponent $m_c = 2 - \frac{2}{N}$:

- for $m > m_c$, for any $\rho_0 \in L^1 \cap L^{\infty}(\mathbb{R}^N)$, the solution exists globally in time(Sugiyama '06)
- for m < m_c, there is a blow-up in finite time for an initial data with arbitrarily small mass. (Sugiyama '06)
- for $m = m_c$ (fair competition) the behaviour of solution depends on the mass, and there is the presence of a critical mass M_c . (Blanchet-Carrillo-Laurençot '09)

The Keller-Segel model with degenerate diffusion

From now on, we will focus on the "subcrictical case" $m > 2 - \frac{2}{N}$, in which solutions exist globally in time.

Question

What about the asymptotic behaviour of solutions?

From now on, we will focus on the "subcrictical case" $m > 2 - \frac{2}{N}$, in which solutions exist globally in time.

Question

What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional \mathcal{F} associated to the model:

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx - \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{N} * \rho) dx;$$

we can write the KS equation as

$$\rho_t = \nabla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho \right) \right) =: \nabla \cdot \left(\rho \nabla \left(\frac{\delta \mathcal{F}}{\delta \rho} \right) \right)$$

ere $\frac{\delta \mathcal{F}}{\delta s} = \frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho.$

whe

From now on, we will focus on the "subcrictical case" $m > 2 - \frac{2}{N}$, in which solutions exist globally in time.

Question

What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional \mathcal{F} associated to the model:

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx - \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{N} * \rho) dx;$$

we can write the KS equation as

$$\rho_t = \nabla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho \right) \right) =: \nabla \cdot \left(\rho \nabla \left(\frac{\delta \mathcal{F}}{\delta \rho} \right) \right)$$

where $\frac{\delta \mathcal{F}}{\delta \rho} = \frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho$. If ρ is a solution of the KS-equation, then $\mathcal{F}[\rho]$ decreases in time, hence it is a Lyapunov functional.

The Keller-Segel model with degenerate diffusion

The following properties are known for the global minimizers of \mathcal{F} , among densities with fixed mass M:

The following properties are known for the global minimizers of \mathcal{F} , among densities with fixed mass M:

- Existence: (Lions '84) for $N \ge 3$ and (Carrillo, Castorina, V. 2014) for N = 2;
- Radial symmetry (rearrangement techniques);
- Uniqueness + compact support (Lieb-Yau '87), (Kim-Yao 2012) for $N \ge 3$, (Carrillo, Castorina, V. 2014) for N = 2

Let ρ_M be a minimizer of \mathcal{F} with mass M. Then ρ_M must be a stationary solution.

Question

If $\rho_0 = \rho(0, \cdot)$ has mass *M*, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_M when $t \to \infty$?

The answer is affirmative only if we have a positive answer to the following questions:

Question

If $\rho_0 = \rho(0, \cdot)$ has mass *M*, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_M when $t \to \infty$?

The answer is affirmative only if we have a positive answer to the following questions:

Question

Is ρ_M the unique stationary state of mass *M* (up to translations)?

Question

If $\rho_0 = \rho(0, \cdot)$ has mass *M*, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_M when $t \to \infty$?

The answer is affirmative only if we have a positive answer to the following questions:

Question

Is ρ_M the unique stationary state of mass *M* (up to translations)?

We know the uniqueness of stationary solutions with radial symmetry, with fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above is solved if the following question has a positive answer:

5/33

Question

If $\rho_0 = \rho(0, \cdot)$ has mass *M*, is it always true that $\rho(\cdot, t)$ converges to (a translation of) ρ_M when $t \to \infty$?

The answer is affirmative only if we have a positive answer to the following questions:

Question

Is ρ_M the unique stationary state of mass *M* (up to translations)?

We know the uniqueness of stationary solutions with **radial symmetry**, with fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above is solved if the following question has a positive answer:

Question

Is it true that every steady state is radially symmetric (up to translations)?

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form

$$\rho_t - \nabla \cdot \left(\rho \nabla (\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho) \right) = 0,$$

then any stationary solution ρ_s satisfies

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form

$$\rho_t - \nabla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} - \mathcal{N} * \rho \right) \right) = 0,$$

then any stationary solution ρ_s satisfies

$$\frac{m}{m-1}\rho_s^{m-1}-\mathcal{N}*\rho_s=C_i$$

in each connected component of $\{\rho_s > 0\}$ (C_i may be get different values in each connected component).

Stationary solutions for the degenerate aggregation-diffusion equation

Now we consider the equation with a general attractive kernel \mathcal{K} :

$$\rho_t =
abla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} + \mathcal{K} * \rho \right) \right),$$

where \mathcal{K} is radial and strictly increasing in |x|. Similarly, each steady state ρ_s verifies $\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$ in each connected component of $\{\rho_s > 0\}$.

Stationary solutions for the degenerate aggregation-diffusion equation

Now we consider the equation with a general attractive kernel \mathcal{K} :

$$\rho_t =
abla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} + \mathcal{K} * \rho \right) \right),$$

where \mathcal{K} is radial and strictly increasing in |x|. Similarly, each steady state ρ_s verifies $\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$ in each connected component of $\{\rho_s > 0\}$.

Theorem (Carrillo-Hittmeir-Yao, V., Invent. Math., 2019)

Let $\rho_s \in L^1_+(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ a steady state. Then ρ_s must be radially decreasing, up to translastions.

Stationary solutions for the degenerate aggregation-diffusion equation

Now we consider the equation with a general attractive kernel \mathcal{K} :

$$\rho_t =
abla \cdot \left(\rho \nabla \left(\frac{m}{m-1} \rho^{m-1} + \mathcal{K} * \rho \right) \right),$$

where \mathcal{K} is radial and strictly increasing in |x|. Similarly, each steady state ρ_s verifies $\frac{m}{m-1}\rho_s^{m-1} + \mathcal{K} * \rho_s = C_i$ in each connected component of $\{\rho_s > 0\}$.

Theorem (Carrillo-Hittmeir-Yao, V., Invent. Math., 2019)

Let $\rho_s \in L^1_+(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ a steady state. Then ρ_s must be radially decreasing, up to translastions.

Main ingredients: Steiner and continuous Steiner symmetrization.

Uniqueness

Uniqueness?

In principle, nothing can be said on the uniqueness of the stationary states for a **general kernel** \mathcal{K} : if $\mathcal{K} = -\mathcal{N}$, there is a unique radial stationary state with mass *M* (up to translation) (Kim-Yao 2012).

Existence of global minimizers

It is possible to show the existence of a radially decreasing global minimizer of the energy functional

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{K} * \rho) dx,$$

in the class of admissible densities

Existence of global minimizers

It is possible to show the existence of a radially decreasing global minimizer of the energy functional

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{K} * \rho) dx,$$

in the class of admissible densities

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^N) \cap L^m(\mathbb{R}^N) : \|\rho\|_1 = M, \omega(1+|x|) \, \rho(x) \in L^1(\mathbb{R}^N) \right\},$$

where we assume $\int_{\mathbb{R}^N} x \rho(x) \, dx = 0$, with $\mathcal{K}(x) = \omega(|x|)$.

Existence of global minimizers

It is possible to show the existence of a radially decreasing global minimizer of the energy functional

$$\mathcal{F}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m dx + \frac{1}{2} \int_{\mathbb{R}^N} \rho(\mathcal{K} * \rho) dx,$$

in the class of admissible densities

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^N) \cap L^m(\mathbb{R}^N) : \|\rho\|_1 = M, \omega(1+|x|) \, \rho(x) \in L^1(\mathbb{R}^N) \right\},$$

where we assume $\int_{\mathbb{R}^N} x \rho(x) \, dx = 0$, with $\mathcal{K}(x) = \omega(|x|)$. More precise assumptions on \mathcal{K} are

(K1) $\omega'(r) > 0$ for all r > 0 with $\omega(1) = 0$.

- (K2) \mathcal{K} is not more singular than the Newtonian kernel in \mathbb{R}^N close to the origin, i.e., there exists $C_W > 0$ such that $\omega'(r) \leq C_W r^{1-N}$ per $r \leq 1$.
- (K3) There is some $C_w > 0$ such that $\omega'(r) \leq C_w$ for all r > 1.
- (K4) Condition at infinity: $\lim_{r \to +\infty} \omega_+(r) = \ell \in [0, +\infty].$

If ρ_0 is a global minimizer, one has

*ρ*₀ is radially decreasing and satisfies

$$rac{m}{m-1}
ho_0^{m-1} + \mathcal{K}*
ho_0 = C \quad ext{a.e. in } \{
ho_0 > 0\}$$

hence it is a stationary state;

If ρ_0 is a global minimizer, one has

*ρ*₀ is radially decreasing and satisfies

$$rac{m}{m-1}
ho_0^{m-1} + \mathcal{K}*
ho_0 = \mathcal{C} \quad ext{a.e. in } \{
ho_0 > 0\}$$

hence it is a stationary state;

• From this equation and from the asymptotic bahavior of $\mathcal{K} * \rho_0$ one can show that ρ_0 is bounded and compactly supported;

If ρ_0 is a global minimizer, one has

• ρ₀ is radially decreasing and satisfies

$$rac{m}{m-1}
ho_0^{m-1} + \mathcal{K}*
ho_0 = C \quad ext{a.e. in } \{
ho_0 > 0\}$$

hence it is a stationary state;

- From this equation and from the asymptotic bahavior of $\mathcal{K} * \rho_0$ one can show that ρ_0 is bounded and compactly supported;
- Using the locally Lipschitz regularity $W_{loc}^{1,\infty}$ of $\mathcal{K} * \rho_0$ one shows that $\rho \in C^{0,\alpha}(\mathbb{R}^N), \alpha = \min\{1, \frac{1}{m-1}\}.$

10/33

If ρ_0 is a global minimizer, one has

*ρ*₀ is radially decreasing and satisfies

$$rac{m}{m-1}
ho_0^{m-1} + \mathcal{K}*
ho_0 = C \quad ext{a.e. in } \{
ho_0 > 0\}$$

hence it is a stationary state;

- From this equation and from the asymptotic bahavior of $\mathcal{K} * \rho_0$ one can show that ρ_0 is bounded and compactly supported;
- Using the locally Lipschitz regularity $W_{loc}^{1,\infty}$ of $\mathcal{K} * \rho_0$ one shows that $\rho \in C^{0,\alpha}(\mathbb{R}^N), \alpha = \min\{1, \frac{1}{m-1}\}.$

Remark: uniqueness

For $\mathcal{K} = -\mathcal{N}$, using the uniqueness result for radial steady states, for any mass M > 0, the unique steady state of mass M (up to translation) is the minimizer of the energy functional \mathcal{F} .

What happens when ${\mathcal K}$ is a Riesz kernel?

$$\partial_t \rho = \Delta \rho^m - \chi \nabla \cdot (\rho \nabla (W_s * \rho)) \quad \text{in } \mathbb{R}^N \times (0, T),$$

The interaction is given by the the Riesz kernel

$$W_s(x) := c_{N,s} |x|^{2s-N} \quad 0 < s < N/2.$$

What happens when ${\mathcal K}$ is a Riesz kernel?

$$\partial_t \rho = \Delta \rho^m - \chi \nabla \cdot (\rho \nabla (W_s * \rho)) \quad \text{in } \mathbb{R}^N \times (0, T),$$

The interaction is given by the the Riesz kernel

$$W_s(x) := c_{N,s} |x|^{2s-N} \quad 0 < s < N/2.$$

Free energy:

$$\mathcal{F}[
ho] = \mathcal{H}_m[
ho] + \mathcal{W}_s[
ho]$$

$$\mathcal{H}_m[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx \,, \qquad \mathcal{W}_s[\rho] = -\frac{\chi \, c_{N,s}}{2} \iint_{\mathbb{R}^N \times \mathbb{R}^N} |x-y|^{2s-N} \rho(x) \rho(y) \, dx dy$$

The Riesz kernels case

 \mathcal{H}_m and \mathcal{W}_s are homogeneous by taking dilations $\rho^{\lambda}(x) = \lambda^N \rho(\lambda x)$

$$\mathcal{F}[\rho^{\lambda}] = \lambda^{N(m-1)} \mathcal{H}_m[\rho] + \lambda^{N-2s} \chi \mathcal{W}_k[\rho]$$

The Riesz kernels case

 \mathcal{H}_m and \mathcal{W}_s are homogeneous by taking dilations $\rho^{\lambda}(x) = \lambda^N \rho(\lambda x)$

$$\mathcal{F}[\rho^{\lambda}] = \lambda^{N(m-1)} \mathcal{H}_m[\rho] + \lambda^{N-2s} \chi \mathcal{W}_k[\rho]$$

The Riesz kernels case

 \mathcal{H}_m and \mathcal{W}_s are homogeneous by taking dilations $\rho^{\lambda}(x) = \lambda^{N} \rho(\lambda x)$

$$\mathcal{F}[\rho^{\lambda}] = \lambda^{N(m-1)} \mathcal{H}_m[\rho] + \lambda^{N-2s} \chi \mathcal{W}_k[\rho].$$

Critical exponent $m_c := 2 - 2s/N$

- $m = m_c$: fair competition regime (critical mass)
- *m* > *m*_c: diffusion dominated regime
- *m* < *m*_c: attraction dominated regime

Fair competition regime [Blanchet, Carrillo, Laurencot 2009], [Calvez, Carrillo, Hoffmann 2016, 2017] and in case of Newtonian potential interaction [Kim, Yao 2012], [Carrillo, Castorina, V. 2015], [Carrillo, Hittmeir, V., Yao 2019]

 \leftarrow we focus on this case

12/33

.

Stationary states

Basic facts:

Stationary states

Basic facts: if ρ is a stationary state then

$$\rho(x)^{m-1} = rac{m-1}{m} \left(\chi W_s * \rho(x) - C[\rho](x) \right)_+, \quad x \in \mathbb{R}^N$$

where $C[\rho](x)$ is constant on each connected component of supp (ρ) .

Radial symmetry of stationary states

Using a suitable variation of the radial symmetry result contained in [Carrillo, Hittmeir, V., Yao 2019]:

14/33

Radial symmetry of stationary states

Using a suitable variation of the radial symmetry result contained in [Carrillo, Hittmeir, V., Yao 2019]:

Theorem (Carrillo-Hoffmann-Mainini-V., Calc. Var. 2018)

Stationary states are radially symmetric decreasing (up to translations), compactly supported.

14/33

Existence of global minimizers

Theorem

Let $s \in (0, N/2)$ and $m > m_c$. There exist a minimizer of \mathcal{F} on $\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^N) \cap L^m(\mathbb{R}^N), ||\rho||_1 = M, \int_{\mathbb{R}^N} x \rho(x) \, dx = 0 \right\}.$

It follows from Lions concentration-compactness, as for instance in [Kim,Yao 2012]

Properties of minimizers

Theorem

Let $s \in (0, N/2)$ and $m > m_c$. If ρ is a global minimizer of the free energy functional \mathcal{F} in \mathcal{Y}_M , then ρ is radially symmetric and non-increasing, bounded, compactly supported, and

$$ho^{m-1}(x) = \left(rac{m-1}{m}
ight) \left(\chi W_s *
ho(x) - C[
ho]
ight)_+ \quad in \ \mathbb{R}^N$$

where

Properties of minimizers

Theorem

Let $s \in (0, N/2)$ and $m > m_c$. If ρ is a global minimizer of the free energy functional \mathcal{F} in \mathcal{Y}_M , then ρ is radially symmetric and non-increasing, bounded, compactly supported, and

$$\rho^{m-1}(x) = \left(\frac{m-1}{m}\right) \left(\chi W_s * \rho(x) - C[\rho]\right)_+ \quad \text{in } \mathbb{R}^N$$

where

$$C[\rho] := -\frac{2}{M} \mathcal{F}[\rho] - \frac{1}{M} \frac{m-2}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx > 0, \qquad \rho \in \mathcal{Y}_M.$$

Uniqueness of steady states with Riesz aggregation kernels

Uniqueness of radial steady states is well-known with newtonian kernels \mathcal{N} . In the case of Riesz kernels $W_s(x) = c_{N,s}|x|^{2s-N}$, uniqueness was proved for N = 1 in [CHMV2018]; for N > 1, the situation is much more complicated. Recall that such special solutions satisfy

Uniqueness of steady states with Riesz aggregation kernels

Uniqueness of radial steady states is well-known with newtonian kernels \mathcal{N} . In the case of Riesz kernels $W_s(x) = c_{N,s}|x|^{2s-N}$, uniqueness was proved for N = 1 in [CHMV2018]; for N > 1, the situation is much more complicated. Recall that such special solutions satisfy

$$\rho(x)^{m-1} = rac{m-1}{m} \left(\chi W_s * \rho(x) - C \right)_+, \quad x \in \mathbb{R}^N$$

for some C > 0. Some results:

- Calvez-Carrillo-Hoffmann, 2020: case $m > 2 \frac{2s}{N}$, $s \in (0, 1)$.
- Delgaldino-Yan-Yao,2020: case m ≥ 2, s ∈ (0, N/2) (and some other general potentials)

A PDE approach

Putting
$$u = (-\Delta)^{-s}\rho$$
, $s \in (0, 1)$, $\rho = 1/(m-1)$, $a = \frac{m-1}{m}$, $\chi = 1$ in
 $\rho(x)^{m-1} = \frac{m-1}{m} (\chi W_s * \rho(x) - C)_+$, $x \in \mathbb{R}^N$

then u solves

New results on nonlinear aggregation-diffusion equations with Riesz kernels

A PDE approach

Putting
$$u = (-\Delta)^{-s}\rho$$
, $s \in (0, 1)$, $p = 1/(m-1)$, $a = \frac{m-1}{m}$, $\chi = 1$ in

$$\rho(x)^{m-1} = \frac{m-1}{m} \left(\chi W_s * \rho(x) - C \right)_+, \quad x \in \mathbb{R}^N$$

then u solves

$$\begin{cases} (-\Delta)^s u = a(u-C)_+^p & \text{in } \mathbb{R}^N, \\ u(x) \to 0 & \text{as } |x| \to \infty \end{cases}$$

a fractional plasma problem (FPP). Uniqueness is studied in

A PDE approach

Putting
$$u = (-\Delta)^{-s}\rho$$
, $s \in (0, 1)$, $p = 1/(m-1)$, $a = \frac{m-1}{m}$, $\chi = 1$ in

$$\rho(x)^{m-1} = \frac{m-1}{m} \left(\chi W_s * \rho(x) - C \right)_+, \quad x \in \mathbb{R}^N$$

then u solves

$$\begin{cases} (-\Delta)^s u = a(u-C)_+^p & \text{in } \mathbb{R}^N, \\ u(x) \to 0 & \text{as } |x| \to \infty \end{cases}$$

- a fractional plasma problem (FPP). Uniqueness is studied in
 - local case s = 1: Flucher Wei 1988, $N \ge 3$, 1 by an ODE argument;
 - Chan-Gonzalez-Huang-Mainini-V., Calc. Var. 2020: case $p \ge 1, s \in (0, 1)$.

Relation between uniqueness of steady states an uniqueness of solutions to the FPP

FIGURE 1. Sub and supercritical regimes in terms of m and p

New results on nonlinear aggregation-diffusion equations with Riesz kernels

The nonlocal case

The case $s \in (0, 1)$ is more challenging: no ODE technique can be used!

Theorem (Subcritical case, CGHMV, Calc. Var. 2020)

Let $1 \le p < (N+2s)/(N-2s)$ and C > 0. There exists a unique nonnegative, radially decreasing solution to the problem

$$\begin{cases} (-\Delta)^s u = a(u-C)_+^p & \text{in } \mathbb{R}^N, \\ u(x) \to 0 & as |x| \to \infty \end{cases}$$

Singular limits of the KS equation

Let us consider the Cauchy problem in the whole space \mathbb{R}^N , $N \ge 1$, for the aggregation-diffusion equation

$$\begin{cases} \rho_t = \Delta \rho^m + \beta \Delta \rho^2 - \chi \nabla \cdot (\rho \nabla (W_s * \rho)), \\ \rho(0) = \rho^0, \end{cases}$$
(1)

where $\beta \geq 0$ and m > 2.

Singular limits of the KS equation

Let us consider the Cauchy problem in the whole space \mathbb{R}^N , $N \ge 1$, for the aggregation-diffusion equation

$$\begin{cases} \rho_t = \Delta \rho^m + \beta \Delta \rho^2 - \chi \nabla \cdot (\rho \nabla (W_s * \rho)), \\ \rho(0) = \rho^0, \end{cases}$$
(1)

where $\beta \geq 0$ and m > 2.

The natural free energy associated with the nonlocal PDE (1) is given by

$$\mathcal{F}_{s}[\rho] = \frac{1}{m-1} \int_{\mathbb{R}^{N}} \rho^{m}(x) \, dx + \beta \int_{\mathbb{R}^{N}} \rho^{2}(x) \, dx - \frac{\chi}{2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} W_{s}(x-y) \rho(x) \rho(y) \, dx \, dy$$

We are interested in the limiting behavior of solutions to (1) and the stationary states as $s \rightarrow 0$: Huang-Mainini-Vázquez, V. 2022.

Limiting behavior of the stationary states

The limit functional is formally given by

$$\mathcal{F}_0[\rho] := \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx + \left(\beta - \frac{\chi}{2}\right) \int_{\mathbb{R}^N} \rho^2(x) \, dx.$$

It is clear that the minimization problem $\min_{\mathcal{Y}_M} \mathcal{F}_0$, where

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^d) \cap L^m(\mathbb{R}^d) : \int_{\mathbb{R}^d} \rho(x) \, dx = M, \ \int_{\mathbb{R}^d} x \rho(x) \, dx = 0 \right\},$$

is strongly influenced by the sign of the coefficient $\beta - \chi/2$.

Limiting behavior of the stationary states

The limit functional is formally given by

$$\mathcal{F}_0[\rho] := \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx + \left(\beta - \frac{\chi}{2}\right) \int_{\mathbb{R}^N} \rho^2(x) \, dx.$$

It is clear that the minimization problem $\min_{\mathcal{Y}_M} \mathcal{F}_0$, where

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^d) \cap L^m(\mathbb{R}^d) : \int_{\mathbb{R}^d} \rho(x) \, dx = M, \ \int_{\mathbb{R}^d} x \rho(x) \, dx = 0 \right\},$$

is strongly influenced by the sign of the coefficient $\beta - \chi/2$. Indeed, it can be proven that [HMVV, 2022] for $0 \le \beta < \chi/2$, \mathcal{F}_0 admits a unique radially decreasing minimizer over \mathcal{Y}_M , given by

$$\rho_0(x) := \left(\frac{\chi - 2\beta}{2}\right)^{1/(m-2)} \, \mathbb{1}_{B_{R_0}}(x), \qquad \text{where} \quad R_0 = \left(\frac{NM}{\sigma_N}\right)^{1/d} \left(\frac{\chi - 2\beta}{2}\right)^{-\frac{1}{N(m-2)}}$$

Limiting behavior of the stationary states

The limit functional is formally given by

$$\mathcal{F}_0[\rho] := \frac{1}{m-1} \int_{\mathbb{R}^N} \rho^m(x) \, dx + \left(\beta - \frac{\chi}{2}\right) \int_{\mathbb{R}^N} \rho^2(x) \, dx.$$

It is clear that the minimization problem $\min_{\mathcal{Y}_M} \mathcal{F}_0$, where

$$\mathcal{Y}_M := \left\{ \rho \in L^1_+(\mathbb{R}^d) \cap L^m(\mathbb{R}^d) : \int_{\mathbb{R}^d} \rho(x) \, dx = M, \ \int_{\mathbb{R}^d} x \rho(x) \, dx = 0 \right\},$$

is strongly influenced by the sign of the coefficient $\beta - \chi/2$. Indeed, it can be proven that [HMVV, 2022] for $0 \le \beta < \chi/2$, \mathcal{F}_0 admits a unique radially decreasing minimizer over \mathcal{Y}_M , given by

$$\rho_{0}(x) := \left(\frac{\chi - 2\beta}{2}\right)^{1/(m-2)} \mathbb{1}_{B_{R_{0}}}(x), \quad \text{where} \quad R_{0} = \left(\frac{NM}{\sigma_{N}}\right)^{1/d} \left(\frac{\chi - 2\beta}{2}\right)^{-\frac{1}{N(m-2)}}$$

Else if $\beta \ge \chi/2$, functional \mathcal{F}_{0} does not admit a minimizer over \mathcal{Y}_{M} and $\inf_{\mathcal{Y}_{M}} \mathcal{F}_{0} = 0.$

Limiting behavior of the stationary states

We have the following result

Theorem (HMVV, 2022)

For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . If $0 \leq \beta < \chi/2$, there exists $\rho \in \mathcal{Y}_M$ such that $\rho_s \to \rho$ strongly in $L^m(\mathbb{R}^N)$ as $s \downarrow 0$, and moreover ρ is the unique radially decreasing minimizer of the functional \mathcal{F}_0 over \mathcal{Y}_M . Else if $\beta \geq \chi/2$, we have $\lim_{s\downarrow 0} \mathcal{F}_s[\rho_s] = 0$ and $\rho_s \to 0$ uniformly on \mathbb{R}^N .

Limiting behavior of the stationary states

The steady states for different s > 0 with m = 3 and $\chi = 1$ (Left figure: $\beta = 0$ and Right figure: $\beta = 0.2$). The expected limiting steady state with s = 0, which is a characteristic function with height $\left(\frac{\chi - 2\beta}{2}\right)^{1/(m-2)}$ is also plotted for reference.

Limiting behavior of the stationary states: main ingredients for the case $\beta < \chi/2$

Lemma

Fix any $s_0 \in (0, 1/2)$. For any $s \in (0, s_0)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then $\sup_{s \in (0, s_0)} \|\rho_s\|_{L^{\infty}(\mathbb{R}^N)} < +\infty$.

Limiting behavior of the stationary states: main ingredients for the case $\beta < \chi/2$

Lemma

Fix any $s_0 \in (0, 1/2)$. For any $s \in (0, s_0)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then $\sup_{s \in (0, s_0)} \|\rho_s\|_{L^{\infty}(\mathbb{R}^N)} < +\infty$.

Lemma

For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then

$$\liminf_{s\downarrow 0} \mathcal{C}_s \geq \frac{m-2}{m-1} \left(\frac{\chi-2\beta}{2}\right)^{\frac{m-1}{m-2}}$$

where C_s is the Lagrange multiplier of ρ_s .

Limiting behavior of the stationary states: main ingredients for the case $\beta < \chi/2$

Lemma

Fix any $s_0 \in (0, 1/2)$. For any $s \in (0, s_0)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then $\sup_{s \in (0, s_0)} \|\rho_s\|_{L^{\infty}(\mathbb{R}^N)} < +\infty$.

Lemma

For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then

$$\liminf_{s\downarrow 0} \mathcal{C}_s \geq \frac{m-2}{m-1} \left(\frac{\chi-2\beta}{2}\right)^{\frac{m-1}{m-2}}$$

where C_s is the Lagrange multiplier of ρ_s .

Lemma

Let $0 \leq \beta < \chi/2$. For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . Then there exists $R \in (0, +\infty)$ and $s_0 \in (0, 1/2)$ such that $\operatorname{supp}(\rho_s) \subset B_R$ for any $s \in (0, s_0)$.

Limiting behavior of the stationary statesf: main ingredients for the case $\beta < \chi/2$

Lemma

For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . For any vanishing sequence $(s_n) \subset (0, 1/2)$, the sequence (ρ_{s_n}) admits limit points in the strong $L^p(\mathbb{R}^N)$ topology as $n \to +\infty$ for any $p \in [1, +\infty)$.

Limiting behavior of the stationary statesf: main ingredients for the case $\beta < \chi/2$

Lemma

For any $s \in (0, 1/2)$, let $\rho_s \in \mathcal{Y}_M$ be the unique minimizer of \mathcal{F}_s over \mathcal{Y}_M . For any vanishing sequence $(s_n) \subset (0, 1/2)$, the sequence (ρ_{s_n}) admits limit points in the strong $L^p(\mathbb{R}^N)$ topology as $n \to +\infty$ for any $p \in [1, +\infty)$.

Lemma

Suppose that $\rho_s \in \mathcal{Y}_M$ for any s > 0 and that $\rho \in \mathcal{Y}_M$. If $\rho_s \to \rho$ strongly in $L^2(\mathbb{R}^d)$ as $s \downarrow 0$, then

$$\lim_{s\downarrow 0}\int_{\mathbb{R}^{2N}}c_{d,s}|x-y|^{2s-d}\rho_s(x)\rho_s(y)\,dx\,dy=\int_{\mathbb{R}^N}\rho^2(x)\,dx.$$

Limiting behavior of the solutions to the KS equation

The formal limiting equation as $s \rightarrow 0$ to the KS equation

$$\rho_t = \Delta \rho^m + \beta \Delta \rho^2 - \chi \nabla \cdot (\rho \nabla (W_s * \rho))$$
(2)

reads

$$\rho_t = \Delta \rho^m + (\beta - \chi/2) \ \Delta \rho^2, \qquad (3)$$

and its behavior is again crucially depending on the sign of the coefficient $\beta - \chi/2$. We only treat the case $\beta \ge \chi/2$, for which the limiting equation becomes a purely diffusive equation. We have the following result

Limiting behavior of the solutions to the KS equation

The formal limiting equation as $s \rightarrow 0$ to the KS equation

$$\rho_t = \Delta \rho^m + \beta \Delta \rho^2 - \chi \nabla \cdot (\rho \nabla (W_s * \rho))$$
(2)

reads

$$\rho_t = \Delta \rho^m + (\beta - \chi/2) \ \Delta \rho^2, \qquad (3)$$

and its behavior is again crucially depending on the sign of the coefficient $\beta - \chi/2$. We only treat the case $\beta \ge \chi/2$, for which the limiting equation becomes a purely diffusive equation. We have the following result

Theorem (HMVV, 2022)

Let $\beta \geq \chi/2$. Let $\rho^0 \in \mathcal{Y}_{M,2}$. Let $(s_n)_{\{n \in \mathbb{N}\}} \subset (0, 1/2)$ be a vanishing sequence, and for every $n \in \mathbb{N}$ let ρ_n be a gradient flow solution to (2) with $s = s_n$. Then the sequence $(\rho_n)_{n \in \mathbb{N}}$ admits strong $L^2_{loc}((0, +\infty); L^2(\mathbb{R}^N))$ limit points. If ρ is one of such limit points, then $[0, +\infty) \ni t \mapsto \rho(t, \cdot)$ is narrowly continuous with values in $\mathcal{Y}_{M,2}$, $\rho(0, \cdot) = \rho^0$ and ρ is a distributional solution to the nonlinear diffusion equation (3).

First step: existence of gradient flow solutions

We construct weak solutions to problem

$$egin{aligned} & \rho_t = \Delta
ho^m + eta \Delta
ho^2 - \chi
abla \cdot (
ho
abla (W_{ extsf{s}} st
ho)), \ &
ho(0) =
ho^0, \end{aligned}$$

by applying the Jordan-Kinderlehrer-Otto scheme.

First step: existence of gradient flow solutions

We construct weak solutions to problem

$$egin{aligned} & \rho_t = \Delta
ho^m + eta \Delta
ho^2 - \chi
abla \cdot (
ho
abla (W_s *
ho)), \ &
ho(0) =
ho^0, \end{aligned}$$

by applying the Jordan-Kinderlehrer-Otto scheme. Therefore, denoting by W_2 the Wasserstein distance of order 2, for a discrete time step $\tau > 0$, we solve the recursive minimization problems

$$ho_{ au}^0=
ho^0, \qquad
ho_{ au}^k\in rgmin_{
ho\in\mathcal{V}_M}\left(\mathcal{F}_s[
ho]+rac{1}{2 au}\,W_2^2(
ho,
ho_{ au}^{k-1})
ight), \quad k\in\mathbb{N},$$

We construct weak solutions to problem

$$\left\{ egin{array}{ll}
ho_t = \Delta
ho^m + eta \Delta
ho^2 - \chi
abla \cdot (
ho
abla (W_s st
ho)), \
ho(0) =
ho^0, \end{array}
ight.$$

by applying the Jordan-Kinderlehrer-Otto scheme. Therefore, denoting by W_2 the Wasserstein distance of order 2, for a discrete time step $\tau > 0$, we solve the recursive minimization problems

$$ho_{ au}^0=
ho^0, \qquad
ho_{ au}^k\in rgmin_{
ho\in\mathcal{V}_M}\left(\mathcal{F}_s[
ho]+rac{1}{2 au}\,W_2^2(
ho,
ho_{ au}^{k-1})
ight), \quad k\in\mathbb{N},$$

and we prove that piecewise constant in time interpolations ρ_{τ} of minimizers do converge to a weak solution to (1) as $\tau \to 0$ along a suitable vanishing sequence $(\tau_n)_{n \in \mathbb{N}}$. A weak solution that is constructed in this way, that is, as a limit of the JKO scheme applied to \mathcal{F}_s , will be called a gradient flow solution.

First step: existence of gradient flow solutions

A crucial step for the existence part is the derivation of energy estimates:

A crucial step for the existence part is the derivation of energy estimates:

• if $\beta > 0$, for every T > 0 there holds

$$\frac{4}{m}\int_0^T\int_{\mathbb{R}^N}|\nabla(\rho_\tau(t,x))^{m/2}|^2\,dx\,dt\leq C_1^*+C_2^*(T+\tau)+C_3^*(T+\tau)\,\chi\mathbf{s}\,\left(\frac{\chi(1-s)}{2\beta}\right)^{\frac{1-s}{s}},$$

where C_i^* , i = 1, 2, 3, are a suitable explicit constants, only depending on χ , M, m, s, d, β , and on ρ^0 .

A crucial step for the existence part is the derivation of energy estimates:

• if $\beta > 0$, for every T > 0 there holds

$$\frac{4}{m}\int_0^T\int_{\mathbb{R}^N}|\nabla(\rho_\tau(t,x))^{m/2}|^2\,dx\,dt\leq C_1^*+C_2^*(T+\tau)+C_3^*(T+\tau)\,\chi\mathbf{s}\,\left(\frac{\chi(1-s)}{2\beta}\right)^{\frac{1-s}{s}},$$

where C_i^* , i = 1, 2, 3, are a suitable explicit constants, only depending on χ , M, m, s, d, β , and on ρ^0 .

• if
$$\beta = 0$$
, let $N \ge 2$, $s \in [1/2, 1)$. Let $T > 0$. Then

$$\int_0^T \int_{\mathbb{R}^N} |\nabla (\rho_\tau(t,x))^{m-1}|^2 \, dx \, dt \leq C_1^{**} + (T+\tau) C_2^{**}$$

where C_1^{**} , C_2^{**} are a suitable explicit constants, only depending on χ , M, m, s, d and the initial datum ρ^0 .

A crucial step for the existence part is the derivation of energy estimates:

• if $\beta > 0$, for every T > 0 there holds

$$\frac{4}{m}\int_0^T\int_{\mathbb{R}^N}|\nabla(\rho_\tau(t,x))^{m/2}|^2\,dx\,dt\leq C_1^*+C_2^*(T+\tau)+C_3^*(T+\tau)\,\chi\mathbf{s}\,\left(\frac{\chi(1-s)}{2\beta}\right)^{\frac{1-s}{s}},$$

where C_i^* , i = 1, 2, 3, are a suitable explicit constants, only depending on χ , M, m, s, d, β , and on ρ^0 .

• if
$$\beta = 0$$
, let $N \ge 2$, $s \in [1/2, 1)$. Let $T > 0$. Then

$$\int_0^T \int_{\mathbb{R}^N} |\nabla (\rho_\tau(t,x))^{m-1}|^2 \, dx \, dt \leq C_1^{**} + (T+\tau) C_2^{**}$$

where C_1^{**} , C_2^{**} are a suitable explicit constants, only depending on χ , M, m, s, d and the initial datum ρ^0 .

Remark: The estimates pass to the limit as $\tau \to 0$. The red constant is bounded if and only if $\beta \ge \chi/2$.

Some simulations

Open problems

• A rigorous proof that every solution to the Cauchy problem associated to the KS equation does converge to the unique stationary state. We mention that a similar result is available in the two dimensional setting, in the case of aggregation with the Newtonian potential instead of the Riesz potential, with $\beta = 0$ and m > 1 (i.e., diffusion-dominated regime), see CHVY, 2019:

Open problems

- A rigorous proof that every solution to the Cauchy problem associated to the KS equation does converge to the unique stationary state. We mention that a similar result is available in the two dimensional setting, in the case of aggregation with the Newtonian potential instead of the Riesz potential, with $\beta = 0$ and m > 1 (i.e., diffusion-dominated regime), see CHVY, 2019:
- show that the family of solutions ρ_s to the Cauchy problem associated to the KS equation converges as $s \to 0$ to a solution (in an appropriate sense) to the equation

$$\rho_t = \Delta \rho^m + (\beta - \chi/2) \ \Delta \rho^2 = \Delta \varphi(\rho),$$

where if $\beta < \chi/2$ the nonlinearity φ is nonmonotone and the equation (31) is of **forward-backward** type.

Thank you for your attention!

