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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

In RN with N � 2, the parabolic/elliptic KS model with degenerate diffusion is

�t = ∆�m �r � (�r(N � �));

with m > 1, being N the Newtonian kernel in RN . The behaviour of solutions
depends on m and on the so called critical exponent mc = 2� 2

N :

for m > mc , for any �0 2 L1 \ L1(RN ), the solution exists globally in
time(Sugiyama ’06)
for m < mc , there is a blow-up in finite time for an initial data with arbitrarily small
mass. (Sugiyama ’06)
for m = mc (fair competition) the behaviour of solution depends on the mass, and
there is the presence of a critical mass Mc . (Blanchet-Carrillo-Laurençot ’09)
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

From now on, we will focus on the “subcrictical case” m > 2� 2
N , in which

solutions exist globally in time.

Question

What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional F associated to the model:

F [�] =
1

m � 1

Z
RN

�mdx �
1
2

Z
RN

�(N � �)dx ;

we can write the KS equation as

�t = r �
�
�r(

m
m � 1

�m�1 �N � �)
�

=: r �

�
�r

�
�F

��

��

where �F
��

= m
m�1�

m�1 �N � �.
If � is a solution of the KS-equation, then F [�] decreases in time, hence it is
a Lyapunov functional.
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

The following properties are known for the global minimizers of F , among
densities with fixed mass M:

Existence: (Lions ’84) for N � 3 and (Carrillo, Castorina, V. 2014) for N = 2;
Radial symmetry (rearrangement techniques);
Uniqueness + compact support (Lieb-Yau ’87), (Kim-Yao 2012) for N � 3,
(Carrillo, Castorina, V. 2014) for N = 2

Let �M be a minimizer of F with mass M. Then �M must be a stationary
solution.
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

Question

If �0 = �(0; �) has mass M, is it always true that �(�; t) converges to (a
translation of) �M when t !1?

The answer is affirmative only if we have a positive answer to the following
questions:

Question

Is �M the unique stationary state of mass M (up to translations)?

We know the uniqueness of stationary solutions with radial symmetry, with
fixed mass (Lieb-Yau ’87), , (Kim-Yao 2014) hence the question above is
solved if the following question has a positive answer:

Question

Is it true that every steady state is radially symmetric (up to translations)?
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Stationary solutions

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form

�t �r �
�
�r(

m
m � 1

�m�1 �N � �)
�

= 0;

then any stationary solution �s satisfies

m
m � 1

�m�1
s �N � �s = Ci

in each connected component of f�s > 0g (Ci may be get different values in
each connected component).
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Stationary solutions

Stationary solutions for the degenerate
aggregation-diffusion equation

Now we consider the equation with a general attractive kernel K:

�t = r �
�
�r(

m
m � 1

�m�1 +K � �)
�
;

where K is radial and strictly increasing in jx j. Similarly, each steady state �s

verifies m
m � 1

�m�1
s +K � �s = Ci

in each connected component of f�s > 0g.

Theorem (Carrillo-Hittmeir-Yao, V., Invent. Math., 2019)

Let �s 2 L1
+(RN) \ L1(RN) a steady state. Then �s must be radially de-

creasing, up to translastions.

Main ingredients: Steiner and continuous Steiner symmetrization.
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Uniqueness

Uniqueness?

In principle, nothing can be said on the uniqueness of the stationary states
for a general kernel K: if K = �N , there is a unique radial stationary state
with mass M (up to translation) (Kim-Yao 2012).
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Existence of global minimizers

Existence of global minimizers

It is possible to show the existence of a radially decreasing global minimizer
of the energy functional

F [�] =
1

m � 1

Z
RN

�mdx +
1
2

Z
RN

�(K � �)dx ;

in the class of admissible densities

YM :=
�
� 2 L1

+(RN) \ Lm(RN) : k�k1 = M; !(1 + jx j) �(x) 2 L1(RN)
	
;

where we assume
R
RN x�(x) dx = 0, with K(x) = !(jx j).More precise

assumptions on K are
(K1) !0(r) > 0 for all r > 0 with !(1) = 0.

(K2) K is not more singular than the Newtonian kernel in RN close to the origin,i.e.,
there exists Cw > 0 such that !0(r) � Cw r1�N per r � 1.

(K3) There is some Cw > 0 such that !0(r) � Cw for all r > 1.

(K4) Condition at infinity: lim
r!+1

!+(r) = ` 2 [0;+1].
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Existence of global minimizers

Regularity of minimizers

If �0 is a global minimizer, one has
�0 is radially decreasing and satisfies

m
m � 1

�m�1
0 +K � �0 = C a.e. in f�0 > 0g

hence it is a stationary state;

From this equation and from the asymptotic bahavior of K � �0 one can show that
�0 is bounded and compactly supported;

Using the locally Lipschitz regularity W 1;1
loc of K � �0 one shows that

� 2 C0;�(RN ), � = minf1; 1
m�1g.

Remark: uniqueness

For K = �N , using the uniqueness result for radial steady states, for any
mass M > 0, the unique steady state of mass M (up to translation) is the
minimizer of the energy functional F .

10 / 33
New results on nonlinear aggregation-diffusion equations with Riesz kernels

N



Existence of global minimizers

Regularity of minimizers

If �0 is a global minimizer, one has
�0 is radially decreasing and satisfies

m
m � 1

�m�1
0 +K � �0 = C a.e. in f�0 > 0g

hence it is a stationary state;

From this equation and from the asymptotic bahavior of K � �0 one can show that
�0 is bounded and compactly supported;

Using the locally Lipschitz regularity W 1;1
loc of K � �0 one shows that

� 2 C0;�(RN ), � = minf1; 1
m�1g.

Remark: uniqueness

For K = �N , using the uniqueness result for radial steady states, for any
mass M > 0, the unique steady state of mass M (up to translation) is the
minimizer of the energy functional F .

10 / 33
New results on nonlinear aggregation-diffusion equations with Riesz kernels

N



Existence of global minimizers

Regularity of minimizers

If �0 is a global minimizer, one has
�0 is radially decreasing and satisfies

m
m � 1

�m�1
0 +K � �0 = C a.e. in f�0 > 0g

hence it is a stationary state;

From this equation and from the asymptotic bahavior of K � �0 one can show that
�0 is bounded and compactly supported;

Using the locally Lipschitz regularity W 1;1
loc of K � �0 one shows that

� 2 C0;�(RN ), � = minf1; 1
m�1g.

Remark: uniqueness

For K = �N , using the uniqueness result for radial steady states, for any
mass M > 0, the unique steady state of mass M (up to translation) is the
minimizer of the energy functional F .

10 / 33
New results on nonlinear aggregation-diffusion equations with Riesz kernels

N



Existence of global minimizers

Regularity of minimizers

If �0 is a global minimizer, one has
�0 is radially decreasing and satisfies

m
m � 1

�m�1
0 +K � �0 = C a.e. in f�0 > 0g

hence it is a stationary state;

From this equation and from the asymptotic bahavior of K � �0 one can show that
�0 is bounded and compactly supported;

Using the locally Lipschitz regularity W 1;1
loc of K � �0 one shows that

� 2 C0;�(RN ), � = minf1; 1
m�1g.

Remark: uniqueness

For K = �N , using the uniqueness result for radial steady states, for any
mass M > 0, the unique steady state of mass M (up to translation) is the
minimizer of the energy functional F .

10 / 33
New results on nonlinear aggregation-diffusion equations with Riesz kernels

N



Aggregation diffusion with Riesz kernels

What happens when K is a Riesz kernel?

@t� = ∆�m � �r � (�r(Ws � �)) in RN � (0;T );

The interaction is given by the the Riesz kernel

Ws(x) := cN;s jx j2s�N 0 < s < N=2:

Free energy:
F [�] = Hm[�] +Ws[�]

Hm[�] =
1

m � 1

Z
RN

�m(x) dx ; Ws[�] = �
� cN;s

2

x

RN�RN

jx�y j2s�N�(x)�(y) dxdy :
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Aggregation diffusion with Riesz kernels

The Riesz kernels case

Hm and Ws are homogeneous by taking dilations ��(x) = �N�(�x)

F [��] = �N(m�1)Hm[�] + �N�2s�Wk [�] :

Critical exponent mc := 2� 2s=N
m = mc : fair competition regime (critical mass)

m > mc : diffusion dominated regime  we focus on this case

m < mc : attraction dominated regime

Fair competition regime
[Blanchet, Carrillo, Laurencot 2009], [Calvez, Carrillo, Hoffmann 2016, 2017]

and in case of Newtonian potential interaction
[Kim, Yao 2012], [Carrillo, Castorina, V. 2015], [Carrillo, Hittmeir, V., Yao 2019]
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Aggregation diffusion with Riesz kernels

Stationary states

Basic facts:

if � is a stationary state then

�(x)m�1 =
m � 1

m
(�Ws � �(x)� C[�](x))+ ; x 2 RN

where C[�](x) is constant on each connected component of supp(�).
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Aggregation diffusion with Riesz kernels

Radial symmetry of stationary states

Using a suitable variation of the radial symmetry result contained in [Carrillo,
Hittmeir, V., Yao 2019]:

Theorem (Carrillo-Hoffmann-Mainini-V., Calc. Var. 2018)

Stationary states are radially symmetric decreasing (up to translations),
compactly supported.
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Aggregation diffusion with Riesz kernels

Existence of global minimizers

Theorem

Let s 2 (0;N=2) and m > mc . There exist a minimizer of F on YM :=�
� 2 L1

+(RN) \ Lm(RN) ; jj�jj1 = M ;
R
RN x�(x) dx = 0

	
.

It follows from Lions concentration-compactness, as for instance in [Kim,Yao
2012]
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Aggregation diffusion with Riesz kernels

Properties of minimizers

Theorem

Let s 2 (0;N=2) and m > mc . If � is a global minimizer of the free en-
ergy functional F in YM , then � is radially symmetric and non-increasing,
bounded, compactly supported, and

�m�1(x) =
�m � 1

m

�
(�Ws � �(x)� C[�])+ in RN

where

C[�] := �
2
M
F [�]�

1
M

m � 2
m � 1

Z
RN

�m(x) dx > 0; � 2 YM :
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Uniqueness of steady states

Uniqueness of steady states with Riesz aggrega-
tion kernels

Uniqueness of radial steady states is well-known with newtonian kernels N .
In the case of Riesz kernels Ws(x) = cN;sjx j2s�N , uniqueness was proved for
N = 1 in [CHMV2018]; for N > 1, the situation is much more complicated.
Recall that such special solutions satisfy

�(x)m�1 =
m � 1

m
(�Ws � �(x)� C)+ ; x 2 RN

for some C > 0. Some results:
Calvez-Carrillo-Hoffmann, 2020: case m > 2� 2s

N , s 2 (0; 1).

Delgaldino-Yan-Yao,2020: case m � 2, s 2 (0;N=2) (and some other general
potentials)
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Uniqueness of steady states

A PDE approach

Putting u = (�∆)�s�, s 2 (0; 1), p = 1=(m � 1), a = m�1
m , � = 1 in

�(x)m�1 =
m � 1

m
(�Ws � �(x)� C)+ ; x 2 RN

then u solves

(
(�∆)su = a(u � C)

p
+ in RN ;

u(x) ! 0 as jx j ! 1

a fractional plasma problem (FPP). Uniqueness is studied in
local case s = 1: Flucher Wei 1988, N � 3, 1 < p < N+2

N�2 by an ODE argument;

Chan-Gonzalez-Huang-Mainini-V., Calc. Var. 2020: case p � 1, s 2 (0; 1).
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Uniqueness of steady states

Relation between uniqueness of steady states an
uniqueness of solutions to the FPP

2COMMENTS TO THE REVISION: UNIQUENESS OF ENTIRE GROUND STATES FOR THE FRACTIONAL PLASMA PROBLEM

1
N

N−2s
N+2s
N−2s

2N
N+2s

mc

2

p

m

m = 1 + 1
p

m = 1

Figure 1. Sub and supercritical regimes in terms of m and p

Sub and supercritical regimes in terms of m and p
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Uniqueness of steady states

The nonlocal case

The case s 2 (0; 1) is more challenging: no ODE technique can be used!

Theorem (Subcritical case,CGHMV, Calc. Var. 2020)

Let 1 � p < (N + 2s)=(N � 2s) and C > 0. There exists a unique non-
negative, radially decreasing solution to the problem(

(�∆)su = a(u � C)
p
+ in RN ;

u(x) ! 0 as jx j ! 1:
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Singular limits of the Keller-Segel equation

Singular limits of the KS equation

Let us consider the Cauchy problem in the whole space RN , N � 1, for the
aggregation-diffusion equation8<

:
�t = ∆�m + �∆�2 � �r � (�r(Ws � �));

�(0) = �0;

(1)

where � � 0 and m > 2.

The natural free energy associated with the nonlocal PDE (1) is given by

Fs[�] =
1

m � 1

Z
RN

�m(x) dx + �

Z
RN

�2(x) dx �
�

2

Z
RN

Z
RN

Ws(x � y)�(x)�(y) dx dy :

We are interested in the limiting behavior of solutions to (1) and the stationary
states as s ! 0: Huang-Mainini-Vázquez, V. 2022.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

The limit functional is formally given by

F0[�] :=
1

m � 1

Z
RN

�m(x) dx +
�
� �

�

2

�Z
RN

�2(x) dx :

It is clear that the minimization problem minYM F0, where

YM :=

�
� 2 L1

+(Rd ) \ Lm(Rd ) :

Z
Rd

�(x) dx = M;

Z
Rd

x�(x) dx = 0
�
;

is strongly influenced by the sign of the coefficient � � �=2.

Indeed, it can be
proven that [HMVV, 2022] for 0 � � < �=2, F0 admits a unique radially
decreasing minimizer over YM , given by

�0(x) :=
�
�� 2�

2

�1=(m�2)

1BR0
(x); where R0 =

�NM
�N

�1=d ��� 2�
2

�� 1
N(m�2)

:

Else if � � �=2, functional F0 does not admit a minimizer over YM and
infYM F0 = 0.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

We have the following result

Theorem (HMVV, 2022)

For any s 2 (0; 1=2), let �s 2 YM be the unique minimizer of Fs over YM .
If 0 � � < �=2, there exists � 2 YM such that �s ! � strongly in Lm(RN)

as s # 0, and moreover � is the unique radially decreasing minimizer of
the functional F0 over YM . Else if � � �=2, we have lims#0 Fs[�s] = 0 and
�s ! 0 uniformly on RN .
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states
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s = 0.02

s = 0

The steady states for different s > 0 with m = 3 and � = 1 (Left figure: � = 0 and
Right figure: � = 0:2). The expected limiting steady state with s = 0, which is a

characteristic function with height
�
��2�

2

�1=(m�2)
is also plotted for reference.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states: main in-
gredients for the case � < �=2

Lemma

Fix any s0 2 (0; 1=2). For any s 2 (0; s0), let �s 2 YM be the unique
minimizer of Fs over YM . Then sups2(0;s0) k�skL1(RN ) < +1.

Lemma

For any s 2 (0; 1=2), let �s 2 YM be the unique minimizer of Fs over YM .
Then

lim inf
s#0

Cs �
m � 2
m � 1

�
�� 2�

2

�m�1
m�2

where Cs is the Lagrange multiplier of �s.

Lemma

Let 0 � � < �=2. For any s 2 (0; 1=2), let �s 2 YM be the unique
minimizer of Fs over YM . Then there exists R 2 (0;+1) and s0 2 (0; 1=2)

such that supp(�s) � BR for any s 2 (0; s0).
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary statesf: main
ingredients for the case � < �=2

Lemma

For any s 2 (0; 1=2), let �s 2 YM be the unique minimizer of Fs over YM .
For any vanishing sequence (sn) � (0; 1=2), the sequence (�sn ) admits
limit points in the strong Lp(RN) topology as n ! +1 for any p 2 [1;+1).

Lemma

Suppose that �s 2 YM for any s > 0 and that � 2 YM . If �s ! � strongly in
L2(Rd ) as s # 0, then

lim
s#0

Z
R2N

cd;sjx � y j2s�d�s(x)�s(y) dx dy =

Z
RN

�2(x) dx :
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Singular limits of the Keller-Segel equation

Limiting behavior of the solutions to the KS equa-
tion

The formal limiting equation as s ! 0 to the KS equation

�t = ∆�m + �∆�2 � �r � (�r(Ws � �)) (2)

reads
�t = ∆�m + (� � �=2) ∆�2; (3)

and its behavior is again crucially depending on the sign of the coefficient
� � �=2. We only treat the case � � �=2, for which the limiting equation
becomes a purely diffusive equation. We have the following result

Theorem (HMVV, 2022)

Let � � �=2. Let �0 2 YM;2. Let (sn)fn2Ng � (0; 1=2) be a vanishing
sequence, and for every n 2 N let �n be a gradient flow solution to (2) with
s = sn. Then the sequence (�n)n2N admits strong L2

loc((0;+1); L2(RN))

limit points. If � is one of such limit points, then [0;+1) 3 t 7! �(t ; �) is
narrowly continuous with values in YM;2, �(0; �) = �0 and � is a distribu-
tional solution to the nonlinear diffusion equation (3).
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

We construct weak solutions to problem8<
:

�t = ∆�m + �∆�2 � �r � (�r(Ws � �));

�(0) = �0;

by applying the Jordan-Kinderlehrer-Otto scheme.

Therefore, denoting by W2

the Wasserstein distance of order 2, for a discrete time step � > 0, we solve
the recursive minimization problems

�0
� = �0; �k

� 2 argmin
�2YM

�
Fs[�] +

1
2�

W 2
2 (�; �k�1

� )
�
; k 2 N;

and we prove that piecewise constant in time interpolations �� of minimizers
do converge to a weak solution to (1) as � ! 0 along a suitable vanishing
sequence (�n)n2N. A weak solution that is constructed in this way, that is, as a
limit of the JKO scheme applied to Fs, will be called a gradient flow solution.
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

A crucial step for the existence part is the derivation of energy estimates:

if � > 0, for every T > 0 there holds

4
m

Z T

0

Z
RN

jr(�� (t ; x))m=2j2 dx dt � C�1 +C�2 (T +�)+C�3 (T +�)�s
�
�(1� s)

2�

� 1�s
s
;

where C�i , i = 1; 2; 3, are a suitable explicit constants, only depending on
�;M;m; s; d ; �, and on �0.

if � = 0, let N � 2, s 2 [1=2; 1). Let T > 0. ThenZ T

0

Z
RN

jr(�� (t ; x))m�1j2 dx dt � C��1 + (T + �)C��2

where C��1 , C��2 are a suitable explicit constants, only depending on �;M;m; s; d
and the initial datum �0.

Remark: The estimates pass to the limit as � ! 0. The red constant is
bounded if and only if � � �=2.
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jr(�� (t ; x))m=2j2 dx dt � C�1 +C�2 (T +�)+C�3 (T +�)�s
�
�(1� s)

2�

� 1�s
s
;

where C�i , i = 1; 2; 3, are a suitable explicit constants, only depending on
�;M;m; s; d ; �, and on �0.

if � = 0, let N � 2, s 2 [1=2; 1). Let T > 0. ThenZ T

0

Z
RN

jr(�� (t ; x))m�1j2 dx dt � C��1 + (T + �)C��2

where C��1 , C��2 are a suitable explicit constants, only depending on �;M;m; s; d
and the initial datum �0.

Remark: The estimates pass to the limit as � ! 0. The red constant is
bounded if and only if � � �=2.
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Singular limits of the Keller-Segel equation

Some simulations
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Singular limits of the Keller-Segel equation

Open problems

A rigorous proof that every solution to the Cauchy problem associated to the KS
equation does converge to the unique stationary state. We mention that a similar
result is available in the two dimensional setting, in the case of aggregation with
the Newtonian potential instead of the Riesz potential, with � = 0 and m > 1 (i.e.,
diffusion-dominated regime), see CHVY, 2019:

show that the family of solutions �s to the Cauchy problem associated to the KS
equation converges as s ! 0 to a solution (in an appropriate sense) to the
equation

�t = ∆�m + (� � �=2) ∆�2 = ∆'(�);

where if � < �=2 the nonlinearity ' is nonmonotone and the equation (31) is of
forward-backward type.
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Thank you for your attention!
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