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New results on nonlinear aggregation-diffusion equations with Riesz kernels




The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

In RN with N > 2, the parabolic/elliptic KS model with degenerate diffusion is
pt=Dp" =V - (pV(N *p)),

with m > 1, being A the Newtonian kernel in R". The behaviour of solutions
depends on m and on the so called critical exponent me = 2 — 2:

New results on nonlinear aggregation-diffusion equations with Riesz kernels

2/33



The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

In RN with N > 2, the parabolic/elliptic KS model with degenerate diffusion is
pt=Dp" =V - (pV(N *p)),

with m > 1, being A the Newtonian kernel in R". The behaviour of solutions
depends on m and on the so called critical exponent m. =2 — £:

@ for m > mg, for any po € L' n L= (RN), the solution exists globally in
time(Sugiyama '06)
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The Keller-Segel model with degenerate diffusion

In RN with N > 2, the parabolic/elliptic KS model with degenerate diffusion is
pt=Dp" =V - (pV(N *p)),
with m > 1, being A the Newtonian kernel in R". The behaviour of solutions

depends on m and on the so called critical exponent m. =2 — £:

@ for m> mg, forany pg € L' N L™ (]RN), the solution exists globally in
time(Sugiyama '06)

o for m < me, there is a blow-up in finite time for an initial data with arbitrarily small
mass. (Sugiyama '06)
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

In RN with N > 2, the parabolic/elliptic KS model with degenerate diffusion is
pt=Dp" =V - (pV(N *p)),

with m > 1, being A the Newtonian kernel in R". The behaviour of solutions
depends on m and on the so called critical exponent m. =2 — £:
@ for m> mg, forany pg € L' N L™ (]RN), the solution exists globally in
time(Sugiyama '06)
o for m < me, there is a blow-up in finite time for an initial data with arbitrarily small
mass. (Sugiyama '06)
o for m = mc (fair competition) the behaviour of solution depends on the mass, and
there is the presence of a critical mass Mc. (Blanchet-Carrillo-Laurencot '09)
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

solutions exist globally in time.

Question
What about the asymptotic behaviour of solutions?
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

solutions exist globally in time.
Question
What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional F associated to the model:

1 m 1
]—'[p]:—/ p dX_E/ p(N * p)dx;
RN RN

m-—1

we can write the KS equation as

pt=V- (pv(%p’"’1 —N*p)) =V (pV (%))
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The Keller-Segel model with degenerate diffusion

solutions exist globally in time.
Question
What about the asymptotic behaviour of solutions?

There is the existence of a free-energy functional F associated to the model:

1 m 1
]—'[p]:—/ p dX_E/ p(N * p)dx;
RN RN

m-—1

we can write the KS equation as

pt=V- (/JV(%p’"’1 —N*p)) =V (pV (%))
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

The following properties are known for the global minimizers of F, among
densities with fixed mass M:
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

The following properties are known for the global minimizers of F, among
densities with fixed mass M:
o Existence: (Lions '84) for N > 3 and (Carrillo, Castorina, V. 2014) for N = 2;
o Radial symmetry (rearrangement techniques);
@ Uniqueness + compact support (Lieb-Yau '87), (Kim-Yao 2012) for N > 3,
(Carrillo, Castorina, V. 2014) for N = 2
Let pum be a minimizer of F with mass M. Then py must be a stationary
solution.
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

Question
If po = p(0,-) has mass M, is it always true that p(-, t) converges to (a
translation of) pu when t — co?

The answer is affirmative only if we have a positive answer to the following
questions:
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Question
If po = p(0,-) has mass M, is it always true that p(-, t) converges to (a
translation of) pu when t — co?

The answer is affirmative only if we have a positive answer to the following
questions:

Question
Is pm the unique stationary state of mass M (up to translations)?
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

Question
If po = p(0,-) has mass M, is it always true that p(-, t) converges to (a
translation of) pu when t — co?

The answer is affirmative only if we have a positive answer to the following
questions:

Question
Is pm the unique stationary state of mass M (up to translations)?
We know the uniqueness of stationary solutions with radial symmetry, with

fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above is
solved if the following question has a positive answer:
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The Keller-Segel model with degenerate diffusion

The Keller-Segel model with degenerate diffusion

Question
If po = p(0,-) has mass M, is it always true that p(-, t) converges to (a
translation of) pu when t — co?

The answer is affirmative only if we have a positive answer to the following
questions:

Question
Is pm the unique stationary state of mass M (up to translations)?
We know the uniqueness of stationary solutions with radial symmetry, with

fixed mass (Lieb-Yau '87), , (Kim-Yao 2014) hence the question above is
solved if the following question has a positive answer:

Question
Is it true that every steady state is radially symmetric (up to translations)?
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Stationary solutions

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form
m —
pt—V- (pv(mpm ! —N*p)) =0,

then any stationary solution ps satisfies
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Stationary solutions

Stationary solutions of the Keller-Segel equation

Rewriting the KS-equation in the divergence form
pr—V - (/JV(,,,%P"F1 - N * p)) =0,
then any stationary solution ps satisfies
m _
mp;” "~ Nxps=C

in each connected component of {ps > 0} (C; may be get different values in
each connected component).
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Stationary solutions

Stationary solutions for the degenerate
aggregation-diffusion equation

Now we consider the equation with a general attractive kernel K:

m —
pt=V- (pv(mpm ! +K*p)),
where K is radial and strictly increasing in |x|. Similarly, each steady state ps
verifies m

— s+ Kxps =G
in each connected component of {ps > 0}.
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Stationary solutions

Stationary solutions for the degenerate
aggregation-diffusion equation

Now we consider the equation with a general attractive kernel K:

m _
pt=V- (pv(mpm ! +K*p)>,
where K is radial and strictly increasing in |x|. Similarly, each steady state ps
verifies m

— s+ Kxps =G
in each connected component of {ps > 0}.

Theorem (Carrillo-Hittmeir-Yao, V., Invent. Math., 2019)

Let ps € L1 (RN) n L*°(RN) a steady state. Then ps must be radially de-
creasing, up to translastions.
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Stationary solutions

Stationary solutions for the degenerate
aggregation-diffusion equation

Now we consider the equation with a general attractive kernel K:

m _
pt=V- (pv(mpm ! +K*p)>,
where K is radial and strictly increasing in |x|. Similarly, each steady state ps
verifies m

— s+ Kxps =G
in each connected component of {ps > 0}.

Theorem (Carrillo-Hittmeir-Yao, V., Invent. Math., 2019)

Let ps € L1 (RN) n L*°(RN) a steady state. Then ps must be radially de-
creasing, up to translastions.

Main ingredients: Steiner and continuous Steiner symmetrization.
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Uniqueness

Uniqueness?

In principle, nothing can be said on the uniqueness of the stationary states
for a general kernel K: if K = —N/, there is a unique radial stationary state
with mass M (up to translation) (Kim-Yao 2012).
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Existence of global minimizers

Existence of global minimizers

of the energy functional

1 m 1
Flol = 3 /RNP dX+2/RNP(K*p)dX,

in the class of admissible densities
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Existence of global minimizers

Existence of global minimizers

of the energy functional

1 m 1
Flol = 3 /RNP dX+2/RNP(K*p)dX,

in the class of admissible densities
Yu={pe LL®")NL"®RY) : |lplli = M,w(1 + |x]) p(x) € L'(RM)},

where we assume [, xp(x) dx = 0, with KC(x) = w(|x]).
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Existence of global minimizers

Existence of global minimizers

of the energy functional

1 m 1
f[p]—m/RNP dX+§/RNP(’C*p)dX,

in the class of admissible densities
Yu={pe LL®")NL"®RY) : |lplli = M,w(1 + |x]) p(x) € L'(RM)},

where we assume [, Xp(x) dx = 0, with IC(x) = w(|x|).More precise
assumptions on K are
w'(r) > 0forall r > 0 with w(1) = 0.

(K2) K is not more singular than the Newtonian kernel in RN close to the origin,i.e.,
there exists Cw > 0 such that w’(r) < Cyr'=N perr < 1.

(K3) There is some Cy > 0 such that w/(r) < Cy forall r > 1.
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Existence of global minimizers

Regularity of minimizers

@ po is radially decreasing and satisfies
m - .
mpg’1+K*p0:C a.e. in {po > 0}

hence it is a stationary state;

New results on nonlinear aggregation-diffusion equations with Riesz kernels




Existence of global minimizers

Regularity of minimizers

@ po is radially decreasing and satisfies
m - .
mpg’ Ty Kxpp=C ae.in {po > 0}
hence it is a stationary state;
@ From this equation and from the asymptotic bahavior of K % pg one can show that
po is bounded and compactly supported;
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Existence of global minimizers

Regularity of minimizers

@ po is radially decreasing and satisfies
m - .
mpg’ Ty Kxpp=C ae.in {po > 0}

hence it is a stationary state;
@ From this equation and from the asymptotic bahavior of K % pg one can show that

po is bounded and compactly supported;
@ Using the locally Lipschitz regularity W,L’c°° of K % pg one shows that

p € COXRN), a = min{1, -5}
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Existence of global minimizers

Regularity of minimizers

@ po is radially decreasing and satisfies
m - .
mpg’ Ty Kxpp=C ae.in {po > 0}

hence it is a stationary state;
@ From this equation and from the asymptotic bahavior of K % pg one can show that

po is bounded and compactly supported;
@ Using the locally Lipschitz regularity W,L’c°° of K % pg one shows that

p € COXRN), a = min{1, -5}

Remark: uniqueness

For K = —N, using the uniqueness result for radial steady states, for any
mass M > 0, the unique steady state of mass M (up to translation) is the
minimizer of the energy functional F.
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Aggregation diffusion with Riesz kernels

What happens when K is a Riesz kernel?

Op = Ap" — xV - (pV(Ws % p)) in RY x (0, ),
The interaction is given by the the Riesz kernel

Ws(x) := cns [x]ZN 0<s< N/2.
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Aggregation diffusion with Riesz kernels

What happens when K is a Riesz kernel?

Op = Ap" — xV - (pV(Ws % p)) in RY x (0, ),
The interaction is given by the the Riesz kernel

Ws(x) := cns [x]ZN 0<s< N/2.

Free energy:
Flo] = Hmlp] + Wslp]

Holel = =Lt [ 0000k, Wil = =29 [ ey p()ply) dvcy.

RN <« RN
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Aggregation diffusion with Riesz kernels

The Riesz kernels case

FIo* = AN D240 [0] + AV 2] -
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The Riesz kernels case

FIo* = AN D240 [0] + AV 2] -
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Aggregation diffusion with Riesz kernels

The Riesz kernels case

\

Hm and Ws are homogeneous by taking dilations p”(x) = A" p(Ax)

FIo* = AN D240 [0] + AV 2] -

Critical exponent m; := 2 — 2s/N
@ m = mc: fair competition regime (critical mass)
@ m > me: diffusion dominated regime «— we focus on this case

@ m < mg: attraction dominated regime

Fair competition regime
[Blanchet, Carrillo, Laurencot 2009], [Calvez, Carrillo, Hoffmann 2016, 2017]

and in case of Newtonian potential interaction
[Kim, Yao 2012], [Carrillo, Castorina, V. 2015], [Carrillo, Hittmeir, V., Yao 2019]
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Aggregation diffusion with Riesz kernels

Stationary states

Basic facts:
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Aggregation diffusion with Riesz kernels

Stationary states

Basic facts:if p is a stationary state then

m-—1

— (xWe s p(x) - ClpI(X), , X ER"

()" =

where C[p](x) is constant on each connected component of supp(p).
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Aggregation diffusion with Riesz kernels

Radial symmetry of stationary states

Using a suitable variation of the radial symmetry result contained in [Carrillo,
Hittmeir, V., Yao 2019]:
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Aggregation diffusion with Riesz kernels

Radial symmetry of stationary states

Using a suitable variation of the radial symmetry result contained in [Carrillo,
Hittmeir, V., Yao 2019]:

Theorem (Carrillo-Hoffmann-Mainini-V., Calc. Var. 2018)

Stationary states are radially symmetric decreasing (up to translations),
compactly supported.
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Aggregation diffusion with Riesz kernels

Existence of global minimizers

Theorem
Lets € (0,N/2) and m > m.. There exist a minimizer of F on Yy :=
{p € LLRM) N L(RY), |lpll1 = M, [ Xp(x) 0x = 0} .

o It follows from Lions concentration-compactness, as for instance in [Kim,Yao
2012]
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Aggregation diffusion with Riesz kernels

Properties of minimizers

Theorem

Lets € (0,N/2) and m > m.. If p is a global minimizer of the free en-
ergy functional F in Yu, then p is radially symmetric and non-increasing,
bounded, compactly supported, and

om0 = (T L) (xWex o) — Clel), iR

where
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Aggregation diffusion with Riesz kernels

Properties of minimizers

Theorem

Lets € (0,N/2) and m > m.. If p is a global minimizer of the free en-
ergy functional F in Yu, then p is radially symmetric and non-increasing,
bounded, compactly supported, and

om0 = (T L) (xWex o) — Clel), iR

where

2 1m-2 i
bl = 71~ gy [ P08 >0, pedn.
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Uniqueness of steady states

Uniqueness of steady states with Riesz aggrega-
tion kernels

Uniqueness of radial steady states is well-known with newtonian kernels N
In the case of Riesz kernels Ws(x) = cn s|x|**~V, uniqueness was proved for
N =1in [CHMV2018]; for N > 1, the situation is much more complicated.
Recall that such special solutions satisfy
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Uniqueness of steady states

Uniqueness of steady states with Riesz aggrega-
tion kernels

Unigueness of radial steady states is well-known with newtonian kernels A/.
In the case of Riesz kernels Ws(x) = cn s|x|**~V, uniqueness was proved for
N =1in [CHMV2018]; for N > 1, the situation is much more complicated.
Recall that such special solutions satisfy
- m—1
p()" = = (xWs*p(x) = C),, x€R"

for some C > 0. Some results:

@ Calvez-Carrillo-Hoffmann, 2020: case m > 2 — 2—,5 s € (0,1).

o Delgaldino-Yan-Ya0,2020: case m > 2, s € (0, N/2) (and some other general

potentials)
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Uniqueness of steady states

A PDE approach

Putting u = (=A)~°p, s € (0,1), p=1/(m—1),a= "1, x = 1in

- -1
)"~ =T (xWaxp(x) = C)., x€ER"

then u solves
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Uniqueness of steady states

A PDE approach

Putting u = (=A)~°p, s € (0,1), p=1/(m—1),a= "1, x = 1in

o)™ = "L (xWys p(x) - ©), , x € R

then u solves
{(—A)Su —au—C). inRY,

u(x) —»0 as x| = oo

a fractional plasma problem (FPP). Uniqueness is studied in
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Uniqueness of steady states

A PDE approach

Putting u = (—A)=%p, s € (0,1),p=1/(m=1),a= "1 x=1in
m

o)™ = "L (xWys p(x) - ©), , x € R

then u solves
(-A)u=a(u—C). inRN,
{u(x)—>0 as x| = oo
a fractional plasma problem (FPP). Uniqueness is studied in
@ local case s = 1: Flucher Wei 1988, N > 3,1 < p < % by an ODE argument;
@ Chan-Gonzalez-Huang-Mainini-V., Calc. Var. 2020: case p > 1, s € (0,1).
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2N
N+2s

Uniqueness of steady states

Relation between uniqueness of steady states an

uniqueness of solutions to the FPP
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Uniqueness of steady states

The nonlocal case

The case s € (0, 1) is more challenging: no ODE technique can be used!

Theorem (Subcritical case,CGHMV, Calc. Var. 2020)

Let1 < p < (N+2s)/(N—-2s) and C > 0. There exists a unique non-
negative, radially decreasing solution to the problem

{(—A)Su =a(u-C)y> inRY,

u(x) —»0 as|x| — oo.

New results on nonlinear aggregation-diffusion equations with Riesz kernels YR
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Singular limits of the Keller-Segel equation

Singular limits of the KS equation

Let us consider the Cauchy problem in the whole space RY, N > 1, for the
aggregation-diffusion equation

pt = Dp" + BAP" — XV - (pV(Ws % p)),

p(0) = ¢°,

where 8 > 0and m > 2.
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Singular limits of the Keller-Segel equation

Singular limits of the KS equation

Let us consider the Cauchy problem in the whole space RY, N > 1, for the
aggregation-diffusion equation

pt = Dp" + BAP" — XV - (pV(Ws % p)),

p(0) = ¢°,

where 8 > 0and m > 2.
The natural free energy associated with the nonlocal PDE (1) is given by

ol = / (4B / Aok X / [ W= ppopty) axay

We are interested in the limiting behavior of solutions to (1) and the stationary
states as s — 0: Huang-Mainini-Vazquez, V. 2022.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

Folp] = ﬁ /RN P (x) dx + (/s - g) /RN P%(x) dx.

It is clear that the minimization problem miny,, Fo, where

Yu = {peLL(Rd)mLm(Rd):/ p(x)dx:M,/ Xp(X)dX:O},

is strongly influenced by the sign of the coefficient g — x/2.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

Folp] = ﬁ /RN P (x) dx + (/s - g) /RN P%(x) dx.

It is clear that the minimization problem miny,, Fo, where

Yu = {peLL(Rd)mLm(Rd):/ p(x)dx:M,/ Xp(X)dX:O},

is strongly influenced by the sign of the coefficient g — x/2. Indeed, it can be
proven that [HMVV, 2022] for 0 < g < x/2, Fo admits a unique radially
decreasing minimizer over Yy, given by

_ 1/(m—2) 1d ., _ =T
po(X) := (X 2ﬁ) 1, (X), where Ry = (W) (ﬂ) e
2 0 oN 2
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

Folo] = ﬁ /RN " (x) dx + (/s _ g) /RN P2(X) dx.

It is clear that the minimization problem miny,, Fo, where

Yu = {peLL(Rd)mLm(Rd):/ p(x)dx:M,/ Xp(X)dX:O},

is strongly influenced by the sign of the coefficient g — x/2. Indeed, it can be
proven that [HMVV, 2022] for 0 < g < x/2, Fo admits a unique radially
decreasing minimizer over Yy, given by

_ 1/(m—2) 1d ., _ =T
po(X) := (X 2’3) 1, (X), where Ry = (W) (M) e
2 0 oN 2
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

We have the following result

Theorem (HMVV, 2022)

For any s € (0,1/2), let ps € Yu be the unique minimizer of Fs over Y.
If0 < B < x/2, there exists p € Yu such that ps — p strongly in L™(RN)
as s | 0, and moreover p is the unique radially decreasing minimizer of
the functional Fo over Yu. Else if B > x /2, we have limso Fs[ps] = 0 and
ps — 0 uniformly onR".
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states

The steady states for different s > 0 withm = 3 and x = 1 (Left figure: 8 = 0 and
Right figure: B = 0.2). The expected limiting steady state with s = 0, which is a

1/(m—2
characteristic function with height (X—Tz;s) ) is also plotted for reference.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states: main in-

gredients for the case g < x/2

Lemma

Fix any so € (0,1/2). Forany s € (0, s0), let ps € Yu be the unique
minimizer of Fs over Yu. Then supge o) l1Ps|lLo0 @ny < +o00.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states: main in-
gredients for the case g < x/2

Lemma
Fix any so € (0,1/2). Forany s € (0, s0), let ps € Yu be the unique
minimizer of Fs over Yu. Then supge o) l1Ps|lLo0 @ny < +o00.

Lemma
For any s € (0,1/2), let ps € Yu be the unique minimizer of Fs over Yu.

Then o
I|m |nsz > m—? (x—_22,3) "

where Cs is the Lagrange multiplier of ps.
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary states: main in-
gredients for the case g < x/2

Lemma

Fix any so € (0,1/2). Forany s € (0, s0), let ps € Yu be the unique
minimizer of Fs over Yu. Then supge o) l1Ps|lLo0 @ny < +o00.

Lemma
For any s € (0,1/2), let ps € Yu be the unique minimizer of Fs over Yu.

Then o
I|m |nsz > m—? (X—_22,3) "

where Cs is the Lagrange multiplier of ps.

Lemma

Let0 < B < x/2. For any s € (0,1/2), let ps € Yu be the unique
minimizer of Fs over Yu. Then there exists R € (0, +o00) and sy € (0,1/2)
such that supp(ps) C Br for any s € (0, so).
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary statesf: main
ingredients for the case g < x/2

Lemma

For any s € (0,1/2), let ps € Yu be the unique minimizer of Fs over Yu.
For any vanishing sequence (s,) C (0,1/2), the sequence (ps,) admits
limit points in the strong LP(R") topology as n — +co forany p € [1, 4+c0).
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Singular limits of the Keller-Segel equation

Limiting behavior of the stationary statesf: main
ingredients for the case g < x/2

Lemma

For any s € (0,1/2), let ps € Yu be the unique minimizer of Fs over Yu.
For any vanishing sequence (s,) C (0,1/2), the sequence (ps,) admits
limit points in the strong LP(R") topology as n — +co forany p € [1, 4+c0).

Lemma

Suppose that ps € Yu for any s > 0 and that p € Yu. If ps — p strongly in
[2(R%) as s | O, then

Ty / ol — Y5 pa(X)psly) dx dy = /
sl0 JRren

p%(x) dx.
RN
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Singular limits of the Keller-Segel equation

Limiting behavior of the solutions to the KS equa-

pr = Dp" + BAP® — XV - (pV(Ws % p)) (63
reads
pe=Dp" + (B —x/2) AP, (3)
and its behavior is again crucially depending on the sign of the coefficient
B — x/2. We only treat the case g > x/2, for which the limiting equation
becomes a purely diffusive equation. We have the following result

New results on nonlinear aggregation-diffusion equations with Riesz kernels



Singular limits of the Keller-Segel equation

Limiting behavior of the solutions to the KS equa-

pr = Dp" + BAPT — XV - (pV(Ws * p)) @
reads
pe=Dp" + (B —x/2) AP, (3)
and its behavior is again crucially depending on the sign of the coefficient
B — x/2. We only treat the case g > x/2, for which the limiting equation
becomes a purely diffusive equation. We have the following result

Theorem (HMVV, 2022)
Let B > x/2. Letp°® € Vup. Let (Sn)neny C (0,1/2) be a vanishing
sequence, and for every n € N let p, be a gradient flow solution to (2) with
s = sn. Then the sequence (pn)nen admits strong L2,((0, +o0); L2(RV))
limit points. If p is one of such limit points, then [0, +c0) 3 t — p(t,-) is
narrowly continuous with values in Yu 2, p(0,-) = p° and p is a distribu-
tional solution to the nonlinear diffusion equation (3).
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

pt = Dp™ + BAP" — XV - (pV(Ws % p)),

p(0) = ¢°,

by applying the Jordan-Kinderlehrer-Otto scheme.
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

pt = Dp™ + BAP" — XV - (pV(Ws % p)),

p(0) = ¢°,

by applying the Jordan-Kinderlehrer-Otto scheme. Therefore, denoting by W>
the Wasserstein distance of order 2, for a discrete time step 7 > 0, we solve
the recursive minimization problems

1
0 0 K . 2 k—1

r =P, -+ € ar n ]:p—l-—W , ), kEN,
P 1% 1% g'mlM(s[] 2 Z(PPT )
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

VVe construct weak solutions to problem

pt = Dp™ + BAP" — XV - (pV(Ws % p)),

p(0) = ¢°,

by applying the Jordan-Kinderlehrer-Otto scheme. Therefore, denoting by W>
the Wasserstein distance of order 2, for a discrete time step 7 > 0, we solve
the recursive minimization problems

1
0 0 k . 2 k—1
pr=0p, Py € argmin | Fs[p] + =— W5 (p, )’ k €N,
IM(s[] P 5 (pypr )

and we prove that piecewise constant in time interpolations p, of minimizers
do converge to a weak solution to (1) as 7 — 0 along a suitable vanishing
sequence (7n)nen- A weak solution that is constructed in this way, that is, as a
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

o if 8 > 0, forevery T > 0 there holds

1=s
S

;
4 Y (pr (1, x))™22 dx dt < C}+CE(T+7)+C3(T+7) xS (M) )
m /g &N 28

where C}, i = 1,2,3, are a suitable explicit constants, only depending on
x, M, m, s,d, 8, and on p°.
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

o if 8 > 0, forevery T > 0 there holds

1—s
s

;
4 Y (pr (1, x))™22 dx dt < C}+CE(T+7)+C3(T+7) xS (M) )
m /g &N 28

where C}, i = 1,2,3, are a suitable explicit constants, only depending on
x, M, m, s, d, B, and on p°.
0 iff=0,letN>2s¢€[1/2,1). Let T > 0. Then

.
/ / [V (or(t,x))™ "2 dxdt < C* + (T +7)C3*
0 JRN

where Cy*, C3* are a suitable explicit constants, only depending on x, M, m, s, d
and the initial datum p°.
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Singular limits of the Keller-Segel equation

First step: existence of gradient flow solutions

o if 8 > 0, forevery T > 0 there holds

1—s
s

;
4 Y (pr (1, x))™22 dx dt < C}+CE(T+7)+C3(T+7) xS (M) )
m /g &N 28

where C}, i = 1,2,3, are a suitable explicit constants, only depending on
x, M, m, s, d, B, and on p°.
0 iff=0,letN>2s¢€[1/2,1). Let T > 0. Then

.
/ / [V (or(t,x))™ "2 dxdt < C* + (T +7)C3*
0 JRN

where Cy*, C3* are a suitable explicit constants, only depending on x, M, m, s, d
and the initial datum p°.

Remark: The estimates pass to the limit as 7 — 0. The red constant is
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Singular limits of the Keller-Segel equation

Some simulations

L 05
0.25
2 10 1 2 2 4.0 1 2 2 4.0 1 2 2 1 0 1 2 2 1.0 1 2
0.4 0 t=15 t=3 t=10 t=50
03
02

2 0 1 > o 1 o PR R
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Singular limits of the Keller-Segel equation

Open problems

@ A rigorous proof that every solution to the Cauchy problem associated to the KS
equation does converge to the unique stationary state. We mention that a similar
result is available in the two dimensional setting, in the case of aggregation with
the Newtonian potential instead of the Riesz potential, with 8 = 0and m > 1 (i.e.,
diffusion-dominated regime), see CHVY, 2019:
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Singular limits of the Keller-Segel equation

Open problems

@ Arigorous proof that every solution to the Cauchy problem associated to the KS
equation does converge to the unique stationary state. We mention that a similar
result is available in the two dimensional setting, in the case of aggregation with
the Newtonian potential instead of the Riesz potential, with 8 = 0and m > 1 (i.e.,
diffusion-dominated regime), see CHVY, 2019:

@ show that the family of solutions ps to the Cauchy problem associated to the KS
equation converges as s — 0 to a solution (in an appropriate sense) to the
equation

pt = Dp™ + (B —x/2) £p® = Ap(p),
where if B < x/2 the nonlinearity ¢ is nonmonotone and the equation (31) is of
forward-backward type.
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Thank you for your attention!
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