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Introduction

In a metric measure space (X, d , ν).

L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric
measure spaces and applications to spaces with Ricci bounds from below.
Invent. Math. 195 (2014), 289–391.

Define the Heat Flow as the gradient flow in L2(X, ν) of the
Dirichlet-Cheeger energy

L. Ambrosio, N. Gigli and G. Savaré, Density of Lipschitz function and
equivalence of weak gradients in metric measure spaces, Rev. Mat.
Iberoam. 29 (2013), 969–996.

Define the p-Heat flow as the gradient flow in L2(X, ν) of the p-Cheeger
energy for 1 < p <∞.

M. Kell, q-Heat flow and the gradient flow of the Renyi entropy in the
p-Wasserstein space. Journal Funct. Anal. 271 (2016), 2045-2089.
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Preliminaries (Sobolev Spaces)

We charactrize these subdifferential using the first-order differential
structure on a metric measure space introduced by Gigli

N. Gigli, Nonsmooth differential geometry - an approach tailored for
spaces with Ricci curvature bounded from below, Mem. Amer. Math.
Soc. 251 (2018), no. 1196, v+161 pp.

From now on we will assume that (X, d , ν) is a complete and separable
metric space and ν is a nonnegative Radon measure.

We say that a Borel function g is an upper gradient of a Borel function
u : X→ R if for all curves γ : [0, lγ ]→ X we have

|u(γ(lγ))− u(γ(0))| ≤
∫
γ

g :=

∫ lγ

0

g(γ(t))|γ̇(t)|dt ds,

where

|γ̇(t)| := lim
τ→0

γ(t + τ)− γ(t)

τ

is the metric speed of γ.
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Preliminaries (Sobolev Spaces)

The Sobolev-Dirichlet class D1,p(X) consists of all Borel functions
u : X→ R for which there exists an upper gradient which lies in
Lp(X, ν). The Sobolev space W 1,p(X, d , ν) is defined as

W 1,p(X, d , ν) := D1,p(X) ∩ Lp(X, ν).

For every u ∈ D1,p(X), there exists a minimal p-upper gradient
|Du| ∈ Lp(X, ν), i.e. we have

|Du| ≤ g ν − a.e.

for all p-upper gradients g ∈ Lp(X, ν). It is unique up to a set of measure
zero.

The space W 1,p(X, d , ν) is endowed with the norm

‖u‖W 1,p(X,d,ν) =

(∫
X
|u|p dν +

∫
X
|Du|p dν

)1/p

,
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Preliminaries (The differential structure)

An Lp(ν)-normed module is the structure (M, ‖ · ‖M, ·, | · |) where:
(M, ‖ · ‖M is a Banach space, · is a multiplication of elements of M
with L∞(ν) functions satisfying

f (gv) = (fg)v , and 1v = v for every f , g ∈ L∞(ν), v ∈M,

where 1 is the function identically equal to 1, and | · | :M→ Lp(ν) is the
pointwise norm, i.e. a map assigning to every v ∈M a non-negative
function in Lp(ν) such that

‖v‖M = ‖|v |‖Lp(ν), |fv | = |f ||v |, ν − a.e.

for every f ∈ L∞(ν) and v ∈M.

Let M be an Lp(ν)-normed module. The dual module M∗ is defined by

M∗ = HOM(M, L1(X, ν)),

where, T ∈ HOM(M, L1(X, ν)) if T : M → L1(X, ν) is a bounded linear
map satisfaying

T (f · v) = f · T (v) ∀v ∈ M, f ∈ L∞(X, ν). (1)
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Preliminaries (The differential structure)

To define the cotangent module to X we consider

PCMp =

{
{(fi ,Ai )}i∈N : (Ai )i∈N ⊂ B(X), fi ∈ D1,p(Ai ),

∑
i∈N

∫
Ai

|Dfi |p dν <∞

}
,

where Ai is a partition of X.

We define the equivalence relation ∼ as

{(Ai , fi )}i∈N ∼ {(Bj , gj)}j∈N if |D(fi − gj)| = 0 ν − a.e. on Ai ∩ Bj .

Consider the map | · |∗ : PCMp/ ∼→ Lp(X, ν) given by

|{(fi ,Ai )}i∈N|∗ := |Dfi | ν-a.e. on Ai , ∀ i ∈ N

ν-everywhere on Ai for all i ∈ N, namely the pointwise norm on PCMp/ ∼.
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Preliminaries (The differential structure)

In PCMp/ ∼ we define the norm ‖ · ‖ as

‖{(fi ,Ai )}i∈N‖p =
∑
i∈N

∫
Ai

|Dfi |p

and set Lp(T ∗X) to be the closure of PCMp/ ∼ with respect to this
norm, i.e. we identify functions which differ by a constant and we identify
possible rearranging of the sets Ai .

Lp(T ∗X) is called the cotangent module and its elements will be called
p-cotangent vector field. Lp(T ∗X) is a Lp(ν)-normed module.

We will assume that 1
p + 1

q = 1 and we denote by Lq(TX) the dual

module of Lp(T ∗X), namely Lq(TX) := HOM(Lp(T ∗X), L1(X, ν)),
which is a Lq(ν)-normed module. Lq(TX) is called the tangent module.

The elements of Lq(TX) will be called q-vector fields on X.
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Preliminaries (The differential structure)

The duality between ω ∈ Lp(T ∗X) and X ∈ Lq(TX) will be denoted by
ω(X ) ∈ L1(X, ν).

Definition

Given f ∈ D1,p(X) we can define its differential df as an element of
Lp(T ∗X) given by the formula df = (f ,X).

from the definition of the pointwise norm, it is clear that

|df |∗ = |Df | ν-a.e. on X for all f ∈W 1,p(X, d , ν).

If X ∈ Lq(TX), we have |X | ∈ Lq(X, ν). From now on, to simplify, we
will write

‖X‖q := ‖|X |‖Lq(X,ν).
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Preliminaries (Divergence of vector field)

For q ∈ (1,∞] and 1
r + 1

s = 1, we set

Dq,r (X) =

{
X ∈ Lq(TX) : ∃f ∈ Lr (X, ν) ∀g ∈W 1,p(X, d , ν)∩Ls(X, ν)

∫
X
fg dν = −

∫
X
dg(X ) dν

}
.

The function f , which is unique by the density of W 1,p(X, d , ν) in
Lp(X, ν), will be called the (q, r)-divergence of X . We will write
div(X ) = f .

∫
X
g div(X ) dν = −

∫
X
dg(X ) dν, ∀g ∈W 1,p(X, d , ν) ∩ Ls(X, ν).

Furthermore, whenever Lipschitz functions are dense in W 1,p(X, d , ν),
then the divergence does not depend on r in the following sense: if f is
the (q, r)-divergence of X and f ∈ Lr

′
(X, ν), then it is also the

(q, r ′)-divergence of X .
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The p-Laplacian evolution equation

Let 1 < p <∞ and we assume that (X, d) is complete and separable and
that ν is a nonnegative measure which is finite on bounded sets.

The p-Cheeger energy (restricted to L2(X, ν)) Chp : L2(X, ν)→ [0,+∞]
is defined by the formula

Chp(u) =


1

p

∫
X
|Du|p dν u ∈W 1,p(X, d , ν) ∩ L2(X, ν)

+∞ u ∈ L2(X, ν) \W 1,p(X, d , ν).
(2)

The abstract Cauchy problem{
u′(t) + ∂Chp(u(t)) 3 0, t ∈ [0,T ]

u(0) = u0

(3)

has a unique strong solution for any initial datum u0 ∈ L2(X, ν).
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The p-Laplacian evolution equation

Definition

(u, v) ∈ Ap if and only if u, v ∈ L2(X, ν), u ∈W 1,p(X, d , ν) and there
exists a vector field X ∈ Dq,2(X) such that the following conditions
hold:

−div(X ) = v in X; (4)

du(X ) = |du|p∗ = |X |q ν-a.e. in X. (5)

Theorem

∂Chp = Ap. Furthermore, the operator Ap is completely accretive and
the domain of Ap is dense in L2(X, ν).
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The p-Laplacian evolution equation

Sketck of the proof. First we probe that

Ap ⊂ ∂Chp

Then, if we show that Ap is maximal monotone, we have ∂Chp = Ap.

The more diffucult part is to prove that Ap satisfies the range condition,
i.e.

Given g ∈ L2(X, ν), ∃ u ∈ D(Ap) s.t. g ∈ u +Ap(u). (6)

We prove (6) by means of the Frenchel-Rockafellar duality Theorem.

Finally we show that Ap is complely accretive in L2(X, ν).
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The p-Laplacian evolution equation

Corollary

The following conditions are equivalent:
(a) (u, v) ∈ ∂Chp;
(b) u, v ∈ L2(X, ν), u ∈W 1,p(X, d , ν) and there exists a vector field
X ∈ Dq,2(X) with |X |q ≤ |du|p∗ ν-a.e. such that −div(X ) = v in X and
for every w ∈ L2(X, ν) ∩W 1,p(X, d , ν)∫

X
v(w − u) dν ≤

∫
X
dw(X ) dν −

∫
X
|du|p∗ dν; (7)

(c) u, v ∈ L2(X, ν), u ∈W 1,p(X, d , ν) and there exists a vector field
X ∈ Dq,2(X) with |X |q ≤ |du|p∗ ν-a.e. such that −div(X ) = v in X and
for every w ∈ L2(X, ν) ∩W 1,p(X, d , ν)∫

X
v(w − u) dν =

∫
X
dw(X ) dν −

∫
X
|du|p∗ dν. (8)

J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



The p-Laplacian evolution equation

Definition

We define in L2(X, ν) the multivalued operator ∆p,ν by

(u, v) ∈ ∆p,ν if and only if −v ∈ ∂Chp(u).

We have that the abstract Cauchy problem (3) corresponds to the
Cauchy problem for the p-Laplacian, i.e.,{

∂tu(t) ∈ ∆p,ν(u(t)), t ∈ [0,T ]

u(0) = u0.
(9)
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The p-Laplacian evolution equation

Definition

Given u0 ∈ L2(X, ν), we say that u is a weak solution of the Cauchy
problem (9) in [0,T ], if u ∈W 1,1(0,T ; L2(X, ν)), u(0, ·) = u0, and for
almost all t ∈ (0,T )

ut(t, ·) ∈ ∆p,νu(t, ·). (10)

In other words, if u(t) ∈W 1,p(X, d , ν) and there exist vector fields
X (t) ∈ Dq,2(X) such that for almost all t ∈ [0,T ] the following
conditions hold:

div(X (t)) = ut(t, ·) in X;

|X (t)|q = du(t)(X (t)) = |du(t)|p∗ ν-a.e. in X.

J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



The p-Laplacian evolution equation

Theorem

For any u0 ∈ L2(X, ν) and all T > 0 there exists a unique weak solution
u(t) of the Cauchy problem (9) in [0,T ], with u(0) = u0. Moreover, the
following comparison principle holds: if u1, u2 are weak solutions for the
initial data u1,0, u2,0 ∈ L2(X, ν) ∩ Lr (X, ν), respectively, then

‖(u1(t)− u2(t))+‖r ≤ ‖(u1,0 − u2,0)+‖r for all 1 ≤ r ≤ ∞. (11)
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Some important particular cases

p-Laplacian in weighted Euclidean spaces
Endow RN with the Euclidean distance dEucl . For a nonnegative Radon
measure ν in (RN , dEucl), we refer to the metric measure space
(RN , dEucl , ν) as a weighted Euclidean space.

p-Laplacian in Finsler manifolds
Let (M,F ) by a geodesically complete, reversible Finsler manifold, with
metric with metric

dF (x , y) := inf
{
`F (γ) : γ : [0, 1]→ M piecewise C 1 with γ(0) = x , γ(1) = y

}
,

where

`F (γ) :=

∫ 1

0

F (γ(t), γ̇(t)) dt.

If ν is non-negative Radon measure on (M, dF ), the metric measure
space (M, dF , ν) satisfes our assumptions
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The total variation flow

The Cauchy problem{
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
in (0,T )× X,

u(0, x) = u0(x) in X.
(12)

We need to assume that the metric space (X, d) is complete, separable,
equipped with a doubling measure ν, and that the metric measure space
(X, d , ν) supports a weak (1, 1)-Poincaré inequality.

For u ∈ L1(X, ν), we define the total variation of u on an open set
Ω ⊂ X by the formula

|Du|ν(Ω) := inf

{
lim inf
n→∞

∫
Ω

|∇un| dν : un ∈ Liploc(Ω), un → u in L1(Ω, ν)

}
,

(13)

|∇u|(x) := lim sup
y→x

|u(y)− u(x)|
d(x , y)

,

is the slope of u, and

BV (X, d , ν) := {u ∈ L1(X, ν) : |Du|ν(X) <∞}.
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The total variation flow

The energy functional T V : L2(X, ν)→ [0,+∞] defined by

T V(u) :=

 |Du|ν(X) if u ∈ BV (X, d , ν) ∩ L2(X, ν),

+∞ if u ∈ L2(X, ν) \ BV (X, d , ν).
(14)

We need a Green formula of the Anzellotti type.

Definition

Suppose that the pair (X , u) satisfies

div(X ) ∈ Lp(X, ν), u ∈ BV (X, d , ν) ∩ Lq(X, ν),
1

p
+

1

q
= 1. (15)

Then, given a Lipschitz function f ∈ Lip(X) with compact support, we
set

〈(X ,Du), f 〉 := −
∫
X
u df (X ) dν −

∫
X
uf div(X ) dν.
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The total variation flow

Theorem

Suppose that the pair (X , u) satisfies the condition (15). Then∫
X
u div(X ) dν +

∫
X

(X ,Du) = 0.

Definition

(u, v) ∈ A1 if and only if u, v ∈ L2(X, ν), u ∈ BV (X, d , ν) and there
exists a vector field X ∈ D∞,2(X) with ‖X‖∞ ≤ 1 such that the
following conditions hold:

−div(X ) = v in X;

(X ,Du) = |Du|ν as measures.
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The total variation flow

Theorem

∂T V = A1. Furthermore, the operator A1 is completely accretive and
the domain of A1 is dense in L2(X, ν).

Definition

We define in L2(X, ν) the multivalued operator ∆1,ν by

(u, v) ∈ ∆1,ν if and only if, −v ∈ ∂T V(u).
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The total variation flow

Definition

Given u0 ∈ L2(X, ν), we say that u is a weak solution of the Cauchy
problem (12) in [0,T ], if u ∈W 1,1(0,T ; L2(X, ν)), u(0, ·) = u0, and for
almost all t ∈ (0,T )

ut(t, ·) ∈ ∆1,ν(t, ·). (16)

In other words, u(t) ∈ BV (X, d , ν) and there exist vector fields
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The total variation flow

Theorem

For any u0 ∈ L2(X, ν) and T > 0 there exists a unique weak solution
u(t) of the Cauchy problem (12) with u(0) = u0. Moreover, the following
comparison principle holds: if u1, u2 are weak solutions for the initial data
u1,0, u2,0 ∈ L2(X, ν) ∩ Lr (X, ν), respectively, then

‖(u1(t)− u2(t))+‖r ≤ ‖(u1,0 − u2,0)+‖r for all 1 ≤ r ≤ ∞. (17)

We also have∥∥∥∥ d

dt
u(t)

∥∥∥∥
L2(X,ν)

≤
‖u0‖L2(X,ν)

t
, for every t > 0, (18)

and
d

dt
u(t) ≤ u(t)

t
, ν-a.e. on X for every t > 0 if u0 ≥ 0. (19)
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Asymptotic Behaviour

L. Bungert and M. Bunger, Asymptotic Profiles of Nonlinear
Homogeneous Evolution. Journal of Evolution Equation 20 (2020),
1061–1092.

Assume ν(X) <∞, we have that Chp is coercive if satisfies to the
following Poincaré inequality

‖u − u‖pL2(X,ν) ≤ M Chp(u) ∀ u ∈W 1,p(X, d , ν) ∩ L2(X, ν), (20)

where

u :=
1

ν(X)

∫
X
udν

for 1 < p <∞; and

‖u − u‖L2(X,ν) ≤ M T V(u) ∀ u ∈ BV (X, d , ν) ∩ L2(X, ν), (21)

for p = 1.
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Asymptotic Behaviour

Theorem

Assume that ν(X) <∞ and the Poincaré inequality (20) holds, for
1 < p <∞ and (21), for p = 1. For u0 ∈ L2(X, ν), let u(t) be the weak
solution of the Cauchy problem (9), for 1 < p <∞, and the weak
solution of the Cauchy problem (14), for p = 1. Then, we have

(i) (Finite extinction time) For 1 ≤ p < 2,

Tex(u0) ≤
‖u0 − u0‖p−2

L2(X,ν)

(2− p)λ1(Chp)
,

where
Tex(u0) := inf{T > 0 : u(t) = u0, ∀ t ≥ T}.

(ii) (Infinite extinction time) For p ≥ 2,

Tex(u0) = +∞.
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Total variation flow on bounded domains

We consider the Neumann problem, i.e.
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
in (0,T )× Ω;

∂u
∂η := Du

|Du|ν · η = 0 in (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

(22)

In order to study the Neumann problem (22), consider the associated
energy functional T VN : L2(Ω, ν)→ [0,+∞] defined by

T VN (u) :=

 |Du|ν(Ω) if u ∈ BV (Ω, d , ν) ∩ L2(Ω, ν);

+∞ if u ∈ L2(Ω, ν) \ BV (Ω, d , ν).
(23)

Then, by the Brezis-Komura theorem there exists a unique strong
solution of the abstract Cauchy problem{

u′(t) + ∂T VN (u(t)) 3 0 for t ∈ [0,T ];

u(0) = u0,
(24)

where u0 ∈ L2(Ω, ν).

J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



Total variation flow on bounded domains

We consider the Neumann problem, i.e.
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
in (0,T )× Ω;

∂u
∂η := Du

|Du|ν · η = 0 in (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

(22)

In order to study the Neumann problem (22), consider the associated
energy functional T VN : L2(Ω, ν)→ [0,+∞] defined by

T VN (u) :=

 |Du|ν(Ω) if u ∈ BV (Ω, d , ν) ∩ L2(Ω, ν);

+∞ if u ∈ L2(Ω, ν) \ BV (Ω, d , ν).
(23)

Then, by the Brezis-Komura theorem there exists a unique strong
solution of the abstract Cauchy problem{

u′(t) + ∂T VN (u(t)) 3 0 for t ∈ [0,T ];

u(0) = u0,
(24)

where u0 ∈ L2(Ω, ν).

J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



Total variation flow on bounded domains

We consider the Neumann problem, i.e.
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
in (0,T )× Ω;

∂u
∂η := Du

|Du|ν · η = 0 in (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω.

(22)

In order to study the Neumann problem (22), consider the associated
energy functional T VN : L2(Ω, ν)→ [0,+∞] defined by

T VN (u) :=

 |Du|ν(Ω) if u ∈ BV (Ω, d , ν) ∩ L2(Ω, ν);

+∞ if u ∈ L2(Ω, ν) \ BV (Ω, d , ν).
(23)

Then, by the Brezis-Komura theorem there exists a unique strong
solution of the abstract Cauchy problem{

u′(t) + ∂T VN (u(t)) 3 0 for t ∈ [0,T ];

u(0) = u0,
(24)

where u0 ∈ L2(Ω, ν).
J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



Total variation flow on bounded domains

Theorem

For any u0 ∈ L2(Ω, ν) and all T > 0, there exists a unique weak solution
of the Neumann problem (22) in [0,T ]. Moreover, the following
comparison principle holds: for all q ∈ [1,∞], if u1, u2 are weak solutions
for the initial data u1,0, u2,0 ∈ L2(Ω, ν) ∩ Lq(Ω, ν) respectively, then

‖(u1(t)− u2(t))+‖q ≤ ‖(u1,0 − u2,0)+‖q. (25)

We also have∥∥∥∥du(t)

dt

∥∥∥∥
L2(Ω,ν)

≤
‖u0‖L2(Ω,ν)

t
for every t > 0,

and if u0 ≥ 0, then additionally

du(t)

dt
≤ u(t)

t
ν − a.e. on Ω for every t > 0.
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Total variation flow on bounded domains

We consider the Dirichlet problem
ut(t, x) = div

(
Du(t,x)
|Du(t,x)|ν

)
in (0,T )× Ω;

u(t, x) = f (x) in (0,T )× ∂Ω;

u(0, x) = u0(x) in Ω,

(26)

Theorem

Let f ∈ L1(∂Ω, |Dχ
Ω
|ν). For any u0 ∈ L2(Ω, ν) and T > 0 there exists a

unique weak solution of the Dirichlet problem (26) in [0,T ]. Moreover,
the following comparison principle holds: for any q ∈ [1,∞], if u1, u2 are
weak solutions for the initial data u1,0, u2,0 ∈ L2(Ω, ν) ∩ Lq(Ω, ν)
respectively, then

‖(u1(t)− u2(t))+‖q ≤ ‖(u1,0 − u2,0)+‖q. (27)
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Applications to related problems

The techniques we have developed have served us for study the following
problems:

(1) Least gradient functions on metric measure spaces

(2) The Cheeger problem: Cheeger and calibrable sets in metric measure
spaces

(3) The eigenvalue problem associated with the 1-Laplacian

(4) The Cheeger cut problem in metric mesure spaces
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W.Górny and J.M. Mazón, Weak solutions to gradient flows in metric
measure spaces. Forcommig book.

J.M. Mazón, joint works with W. Gorny Weak solutions to gradient flows in metric measure spaces



References
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W.Górny and J.M. Mazón, The Anzellotti-Gauss-Green formula and least
gradient functions in metric measure spaces. Commun. Contemp. Math.
(2023), ahead of print, doi.org/10.1142/S021919972350027X.

J.M. Mazón, The Cheeger cut and Cheeger problem in metric measure
spaces. ArXiv:2203.07760v1
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