Bounded weak solutions to the thin film Muskat problem

Philippe Laurençot

LAMA, CNRS \& Université Savoie Mont Blanc
september 2023

Joint works with:
Bogdan-Vasile Matioc (Regensburg)

Outline

(1) A class of degenerate cross-diffusion systems
(2) Properties
(3) Bounded weak solutions

A class of degenerate cross-diffusion systems

$$
\begin{aligned}
\partial_{t} f=\operatorname{div}[f \nabla(a f+b g)] & \text { in }(0, \infty) \times \Omega, \\
\partial_{t} g=\operatorname{div}[g \nabla(c f+d g)] \quad & \text { in }(0, \infty) \times \Omega,
\end{aligned}
$$

where

- $\Omega \subset \mathbb{R}^{N}, N \geq 1$;
- $(a, b, c, d) \in(0, \infty)^{4}, a d-b c>0$;
- no-flux boundary conditions;
- non-negative and integrable initial conditions ($f^{\text {in }}, g^{i n}$).

Degenerate parabolic system with full diffusion matrix

Cross-diffusion system

Thin film Muskat problem

$$
\begin{aligned}
& \partial_{t} f=\operatorname{div}[f \nabla(a f+b g)] \\
& \partial_{t} g=\operatorname{div}[g \nabla(c f+d g)] \text { in }(0, \infty) \times \Omega, \\
& \text { in }(0, \infty) \times \Omega,
\end{aligned}
$$

- Reduced model (lubrication approximation) for the motion of two immiscible fluids with different densities $\rho_{ \pm}\left(\rho_{-}>\rho_{+}\right)$and viscosities $\mu_{ \pm}$in a porous medium $(N \in\{1,2\})$.
- $(a, b, c, d)=(1+R, R, \mu R, \mu R)$ with

$$
R=\frac{\rho_{+}}{\rho_{-}-\rho_{+}}, \quad \mu=\frac{\mu_{-}}{\mu_{+}}
$$

Escher, Matioc \& Matioc (2012), Jazar \& Monneau (2014), Woods \& Mason (2000)

Interacting biological species

$$
\begin{aligned}
\partial_{t} f & =\operatorname{div}[f \nabla(a f+b g)] \\
\partial_{t} g & =\operatorname{in}(0, \infty) \times \Omega, \\
\operatorname{div}[g \nabla(c f+d g)] & \text { in }(0, \infty) \times \Omega,
\end{aligned}
$$

- Two interacting biological species for which only dispersal is taken into account. The dispersal of each species is driven by a weighted sum of the densities of the densities f and g.
- $(a, b, c, d) \in(0, \infty)^{4}, a d-b c>0$

Bertsch, Gurtin, Hilhorst \& Peletier (1985), Galiano \& Selgas (2014)

- $(a, b, c, d) \in(0, \infty)^{4}, a d-b c=0$ (proportional velocity dispersal)

Bertsch, Gurtin \& Hilhorst (1987), Burger, Di Francesco, Fagioli \& Stevens (2018), Carrillo, Huang \& Schmidtchen (2018)

Limit case

$$
\begin{aligned}
\partial_{t} f & =\operatorname{div}[f \nabla(a f+b g)] \quad \text { in } \quad(0, \infty) \times \Omega, \\
\partial_{t} g & =\operatorname{div}[g \nabla(c f+d g)]
\end{aligned} \text { in }(0, \infty) \times \Omega .
$$

If $a=1$ and $(b, c, d) \rightarrow 0$ (corresponding to the limit $R \rightarrow 0$ in the thin film Muskat problem), then reduction to the porous medium equation (PME)

$$
\partial_{t} f=\operatorname{div}(f \nabla f) \quad \text { in }(0, \infty) \times \Omega .
$$

Two-phase generalization of the PME

Outline

(1) A class of degenerate cross-diffusion systems
(2) Properties
(3) Bounded weak solutions

Conservative properties and energy

- $f \geq 0$ and $g \geq 0$,
- $\|f(t)\|_{1}=\left\|f^{i n}\right\|_{1}$ and $\|g(t)\|_{1}=\left\|g^{i n}\right\|_{1}$,
- Energy functional:

$$
\begin{aligned}
\mathcal{E}_{2}(f, g) & :=\int_{\Omega}\left(\frac{a}{2} f^{2}+b f g+\frac{b d}{2 c} g^{2}\right) \mathrm{d} x \\
& =\frac{a d-b c}{2}\|f\|_{2}^{2}+\frac{b}{2 c d}\|c f+d g\|_{2}^{2}
\end{aligned}
$$

with

$$
\begin{aligned}
\frac{d}{d t} \mathcal{E}_{2}(f, g)= & -\|\sqrt{f} \nabla(a f+b g)\|_{2}^{2} \\
& -\frac{b}{c}\|\sqrt{g} \nabla(c f+d g)\|_{2}^{2} \leq 0 .
\end{aligned}
$$

Properties

- Entropy functional:

$$
\mathcal{E}_{1}(f, g):=\|f \ln f-f+1\|_{1}+\frac{b^{2}}{a d}\|g \ln g-g+1\|_{1}
$$

with

$$
\begin{aligned}
\frac{d}{d t} \mathcal{E}_{1}(f, g)=- & \frac{1}{a}\left\|\nabla\left(a f+\frac{b(a d+b c)}{2 a d} g\right)\right\|_{2}^{2} \\
& -\frac{b^{2}(a d-b c)(3 a d+b c)}{4 a^{3} d^{2}}\|\nabla g\|_{2}^{2} \leq 0
\end{aligned}
$$

Variational structure

Energy: $\mathcal{E}_{2}(f, g):=\frac{a d-b c}{2}\|f\|_{2}^{2}+\frac{b}{2 c d}\|c f+d g\|_{2}^{2}$

$$
\begin{aligned}
\partial_{t} f & =\operatorname{div}\left[f \nabla\left(\frac{\delta \mathcal{E}_{2}}{\delta f}(f, g)\right)\right] \quad \text { in }(0, \infty) \times \Omega \\
\frac{c}{b} \partial_{t} g & =\operatorname{div}\left[g \nabla\left(\frac{\delta \mathcal{E}_{2}}{\delta g}(f, g)\right)\right] \quad \text { in }(0, \infty) \times \Omega
\end{aligned}
$$

supplemented with no-flux boundary conditions and non-negative initial conditions $\left(f^{i n}, g^{i n}\right) \in L^{1}\left(\Omega, \mathbb{R}^{2}\right),\left\|f^{i n}\right\|_{1}=\left\|g^{i n}\right\|_{1}=1$.

Gradient flow of \mathcal{E}_{2} with respect to the 2 -Wasserstein distance W_{2} in $\mathcal{P}_{2}\left(\Omega, \mathbb{R}^{2}\right)$

Existence

Given $\left(f^{\text {in }}, g^{\text {in }}\right) \in L^{1}\left(\Omega ; \mathbb{R}^{2}\right) \cap \mathcal{P}_{2}\left(\Omega ; \mathbb{R}^{2}\right)$ and

$$
(a, b, c, d) \in(0, \infty)^{4}, \quad a d-b c>0
$$

there is a weak solution (f, g) satisfying
(1) $(f, g) \in L^{\infty}\left(0, \infty ; L^{2}\left(\Omega ; \mathbb{R}^{2}\right)\right),(f, g) \in L^{2}\left(0, t ; H^{1}\left(\Omega ; \mathbb{R}^{2}\right)\right)$;
(2) $(f, g) \in C\left([0, \infty) ; H^{-3}\left(\Omega ; \mathbb{R}^{2}\right)\right)$ with $(f, g)(0)=\left(f^{i n}, g^{i n}\right)$;
(3) $\|f(t)\|_{1}=\left\|f^{i n}\right\|_{1}$ and $\|g(t)\|_{1}=\left\|g^{\text {in }}\right\|_{1}$ for $t \geq 0$;
(4) Energy and entropy inequalities.

L \& Matioc (2013): $N=1$, Ait Hammou Oulhaj, Cancès, Chainais-Hillairet \& L (2019): $N=2$

- The regularity of f and g do not ensure that the quadratic terms $f \nabla f, f \nabla g, g \nabla f, g \nabla g$ belong to $L^{2}(\Omega)$: not an H^{1}-weak solution. Not enough to show finite speed of propagation.
- Formal derivation of an estimate in $L^{3}(\Omega)$.

Other existence results: weak solutions

- $(a, b, c, d)=(1+R, R, \mu R, \mu R), N=1, \Omega=(0, L)$: compactness method

Escher, L \& Matioc (2011)

- $(a, b, c, d) \in(0, \infty)^{4}, N \in\{1,2,3\}, \Omega$ bounded: compactness method when $4 a d-(b+c)^{2}>0$

Galiano \& Selgas (2014)

- Strong ellipticity condition on $(a, b, c, d), N \geq 1, \Omega=\mathbb{T}^{N}$. compactness method

Alkhayal, Issa, Jazar \& Monneau (2018)

Other existence results

(1) Classical solutions: $(a, b, c, d)=(1+R, R, \mu R, \mu R), N=1$, $\Omega=(0, L)$: local well-posedness of classical solutions
Escher, Matioc \& Matioc (2012)
(2) Strong solutions: $(a, b, c, d)=(1+R, R, \mu R, \mu R), N=1, \Omega=\mathbb{T}$: weak solutions with components in

$$
L^{\infty}((0, T) \times \mathbb{T}) \times L^{2}\left((0, T), W^{1, \infty}(\mathbb{T})\right) \cap L^{1}\left((0, T), C^{1+\alpha}(\mathbb{T})\right)
$$

for all $T>0$ and $\alpha \in[0,1 / 2)$, provided the initial conditions are suitably small, and conditional uniqueness
Bruell \& Granero-Belinchón (2019)

Outline

(1) A class of degenerate cross-diffusion systems
(2) Properties
(3) Bounded weak solutions

Additional estimates: Liapunov functionals

$$
(a, b, c, d) \in(0, \infty)^{4}, \quad a d-b c>0
$$

For each integer $n \geq 3$, there is $\Phi_{n} \in \mathbb{R}_{n}[X, Y]$ such that

- Φ_{n} is convex and non-negative on $(0, \infty)^{2}$ and

$$
\mathcal{E}_{n}(F, G):=\int_{\Omega} \Phi_{n}(F(x), G(x)) \mathrm{d} x \in\left[c_{n}\|F+G\|_{n}^{n}, C_{n}\|F+G\|_{n}^{n}\right]
$$

for some $0<c_{n}<C_{n}$;

- Consider $\left(f^{i n}, g^{i n}\right) \in L^{n}\left(\Omega ; \mathbb{R}^{2}\right)$. Then (formally)

$$
\mathcal{E}_{n}(f(t), g(t)) \leq \mathcal{E}_{n}\left(f^{i n}, g^{i n}\right), \quad t \geq 0
$$

and $\{(f(t), g(t)): t \geq 0\}$ is bounded in $L^{n}\left(\Omega ; \mathbb{R}^{2}\right)$.

Additional estimates: $n \rightarrow \infty$

$$
(a, b, c, d) \in(0, \infty)^{4}, \quad a d-b c>0,
$$

- There are $0<c_{\infty}<C_{\infty}$ such that

$$
c_{\infty}\|F+G\|_{\infty} \leq \liminf _{n \rightarrow \infty} \mathcal{E}_{n}(F, G)^{1 / n}
$$

$$
\limsup _{n \rightarrow \infty} \mathcal{E}_{n}(F, G)^{1 / n} \leq C_{\infty}\|F+G\|_{\infty}
$$

for $(F, G) \in L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)$;

- Then (formally) $\{(f(t), g(t)): t \geq 0\}$ is bounded in $L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)$.

Construction of $\Phi_{n}, n \geq 3$

Set

$$
u=(f, g) \text { and } \quad M(u)=\left(\begin{array}{cc}
a f & b f \\
c g & d g
\end{array}\right)
$$

so that

$$
\partial_{t} u=\operatorname{div}(M(u) \nabla u) \quad \text { in } \quad(0, \infty) \times \Omega
$$

If $\Phi \in C^{2}\left([0, \infty)^{2}\right)$ is a convex function, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \Phi(u) \mathrm{d} x+\sum_{i=1}^{N} \int_{\Omega}\left\langle D^{2} \Phi(u) M(u) \partial_{i} u, \partial_{i} u\right\rangle \mathrm{d} x=0
$$

and we are left with looking for Φ such that the matrix $D^{2} \Phi(u) M(u)$ is symmetric and definite positive.

Construction of $\Phi_{n}, n \geq 3$

Let $n \geq 3$.

$$
\Phi_{n}\left(X_{1}, X_{2}\right)=\sum_{j=0}^{n} a_{j, n} X_{1}^{j} X_{2}^{n-j}
$$

with $a_{0, n}=1$ and, for $1 \leq j \leq n$,

$$
a_{j, n}=\prod_{k=0}^{j-1} \frac{(n-k)[a k+c(n-k-1)]}{(k+1)[b k+d(n-k-1)]}=\binom{n}{j} \prod_{k=0}^{j-1} \frac{a k+c(n-k-1)}{b k+d(n-k-1)}
$$

Bounded weak solutions

Let $\left(f^{i n}, g^{i n}\right) \in L^{1}\left(\Omega, \mathbb{R}^{2}\right) \cap L^{\infty}\left(\Omega, \mathbb{R}^{2}\right), f^{i n} \geq 0, g^{i n} \geq 0$.
There exists a weak solution (f, g) :

- $(f, g) \in L^{\infty}\left((0, \infty) ; L^{1}\left(\Omega, \mathbb{R}^{2}\right) \cap L^{\infty}\left(\Omega ; \mathbb{R}^{2}\right)\right)$;
- $(f, g) \in L^{2}\left(0, t ; H^{1}\left(\Omega ; \mathbb{R}^{2}\right)\right), t>0$;
- $(f, g) \in C\left([0, \infty) ; H^{-1}\left(\Omega ; \mathbb{R}^{2}\right)\right)$ with $(f, g)(0)=\left(f_{0}, g_{0}\right)$;
- $\|f(t)\|_{1}=\left\|f_{0}\right\|_{1}$ and $\|g(t)\|_{1}=\left\|g_{0}\right\|_{1}, t \geq 0$;
- Entropy estimate;
- Let $n \in \mathbb{N}, n \geq 2$. Then

$$
\mathcal{E}_{n}(f(t), g(t)) \leq \mathcal{E}_{n}\left(f^{i n}, g^{i n}\right), \quad t \geq 0
$$

Bounded weak solutions: proof

- implicit time scheme;
- approximation by truncature complying with the a priori estimates;
- compactness method;

Observe that all quadratic terms $f \nabla f, f \nabla g, g \nabla f$, and $g \nabla g$ now belong to $L^{2}((0, T) \times \Omega)$, so that (f, g) is an H^{1}-weak solution.

