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Image Segmentation

Motivation

@ Image data is one of the largest and fastest growing sources of
information

o Partitioning an image into disjoint regions with certain
characteristics

@ One of the most fundamental and ubiquitous tasks in image analysis

e Examples: Object detection, scene parsing, organ reconstruction,
tumor detection, etc.

e Mathematical model for image segmentation
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Variational models for image segmentation

Question: How to incorporate boundary in segmentation problem?
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Variational models for image segmentation

Question: How to incorporate boundary in segmentation problem?
= Implicit/explicit representation of boundaries, e.g. active contours,
level-sets, graph cut, etc.

Variational approaches:
@ Mumford-Shah model
@ Chan-Vese active contour model without edges

@ Chan-Vese multiphase level set framework

Implementation via the level set method of Osher and Sethian
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Mumford-Shah model

o Notation:
o Domain Q < RY with d > 1
o Given image ug: Q — R™ with m > 1 to be segmented into two
regions, e.g. bounded scalar (gray-scale) or vector-valued (color) image
o Closed subset C in €2, made up of a finite set of smooth curves
o Connected components Q; of Q\C, i.e. Q = u;Q; U C

@ Goal: Find a decomposition Q; of Q and an optimal piecewise smooth
approximation u of a given image ug such that

e u varies smoothly within each €;
e v varies rapidly or discontinuously across the boundaries of Q;

o Mathematical formulation: Minimisation of the energy functional
EMS(C,u) = J (u— ug)? dx + uf IVul? dx + v|C]|
Q Q\C

for fixed parameters u, v > 0
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Mumford-Shah model

e Mathematical formulation: Minimisation of the energy functional
EMS(C,u) = J (u — up)? dx +MJ IVul? dx + v|C]|
Q Q\C

e Interpretation: For minimizer (u, C):
e uis an ‘optimal’ piecewise smooth approximation of the possibly noisy
image ug
o C can be regarded as approximating the edges of up
@ Theoretical results on the existence/regularity of minimizers:
Mumford and Shah, Morel and Solimini and De Giorgi et al., ...
@ Analysis based on weak formulation of Mumford-Shah model:
Ambrosio, Chambolle, Dal Maso, De Giorgi, March, Tortorelli, ...
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Chan-Vese active contours model

Motivation:

@ particular case of the Mumford-Shah model by restricting the
segmented image u to piecewise constant functions
= Neglect ;LSQ\C |Vul? dx for now, i.e.

EMS(C,u) = f (u— up)?dx + v[C]|
Q

@ motivates the generalized, widely used multiphase level set model
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Chan-Vese active contours model

Motivation:

@ particular case of the Mumford-Shah model by restricting the
segmented image u to piecewise constant functions
= Neglect ;LSQ\C |Vul? dx for now, i.e.

EMS(C,u) = f (u— up)?dx + v[C]|
Q

@ motivates the generalized, widely used multiphase level set model

Mathematical model: Minimisation of the energy

EPC(C,cW, @) = J

(c® — up)?dx + J (c® — up)?dx + v[C]|
E

Q\E

with respect to ¢, ¢(® and C where v > 0 is a given parameter and set
E c Q depends on C
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Chan-Vese active contours model

o Notation: Let E < Q be an open subset of Q such that the set E is
the area inside the boundary curve C = JE of length |C| and let
¢, ¢ be unknown constants

@ Minimisation of the energy functional

EPC(C,cM, @) = J (c® — up)?dx + J (c® — up)?dx + v[C|
E Q\E

with respect to constants ¢(Y), ¢(® and C where v > 0 is a given
parameter
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Level set formulation of the Chan-Vese model

Original energy:

EPC(C, D) (@) _ J

(c® — up)2dx + f (c® — up)?dx + v[C]|
E

O\E

Representation of C as the zero-crossing of a level set function
$: Q- R, ie C={xeQ: ¢(x) =0} and

¢(x) >0 inE, d(x) <0 in Q\E, ¢(x) =0 on JE.
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Level set formulation of the Chan-Vese model

Original energy:

EPC(C, D) (@) _ J

(c® — up)2dx + f (c® — up)?dx + v[C]|
E

O\E

Representation of C as the zero-crossing of a level set function
$: Q- R, ie C={xeQ: ¢(x) =0} and

¢(x) >0 inE, d(x) <0 in Q\E, ¢(x) =0 on JE.

Level-set energy £7C (¢, c1), c(?)

- [ - w2h@ ax+ |

(c® — ug2(1— H()) dx + f IVH($)| dx
Q Q

for u(x) = cVH(¢(x)) + c® (1 — H(é(x))) and Heaviside function H
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Level set formulation of the Chan-Vese model

E'DC(@, C(l), C(Z))

L(C(l) — up)?H(¢) dx + J

Q

(c® — up)?(1 — H(¢)) dx + uf IVH($)|dx
Q

for u(x) = cCMH(¢(x)) + c® (1 — H(¢(x))) and Heaviside function H:

(a) Input image

Figure: Image segmentation results for different parameter values v > 0
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Extension of the model to piecewise smooth segmentations

o Replacing the constants c(!), ¢(?) by smooth functions on E and
Q\E proposed independently by Vese and Chan, and Tsai et al.

o Extension to vector-valued functions such as color images

e Energy functional:

EPS (¢, M), c?)

- f 1D — w2 H(6) dx + f 1€~ up2(1— H(4)) dx
Q Q

fu j VeOPH() + V@ P — H($) dx + v f VH(@)| dx
Q Q

@ Numerical results have been obtained independently and
contemporaneously by Vese and Chan, and Tsai et al.

@ Very good reconstruction of piecewise smooth regions possible with
the model, jumps are well located and without smearing, and the
piecewise constant case can be recovered.
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Reformulation of the energy functional via the

Ambrosio-Tortorelli approximation

o Numerical minimization difficult:

o Non-smoothness of energy functional, particularly v §, [VH(¢)|dx
= Replace by suitable approximation
o Dependency on the unknown form of the level set function ¢

@ Ambrosio-Tortorelli approximation

o one of the most computationally efficient approximations of the
Mumford-Shah functional
o uses the Ginzburg-Landau functional

1
ECL(v) = L el Vv + ~W(v)dx

where € > 0 is a positive constant and W: R — [0, +00) is a double
well potential with wells at 0 and 1, e.g. W(x) = x2(x —1)2

Lisa Maria Kreusser (Bath) Image segmentation September 12, 2023 11/33



Reformulation of the energy functional via the

Ambrosio-Tortorelli approximation

o Reformulated energy functional
By e, ®) = [ e = olelv] + e = wol?[1 — v]ax
Q

1
“ff VD Ply] + [V@PIL = v]dx + ”f Vv + 2w (v) dx
Q w Jo €

where cyy = 2Sé VW(t)dt >0

e Aim: Study convergence of minimisers as ¢ — 0 to show consistency
of numerical method

o Problem: For piecewise smooth approximations ¢(), ¢(® any
I-convergence result requires ¢, ¢ to be defined onIy for x e Q
such that v(x) # 0 and 1 — v(x) # 0, respectively
= introduce appropriate definition of differentiability, appropriate
definition of domain functions, ...
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Energy functionals for I'-convergence

Approximative energy functional:
Eﬂeyé(va C(l)’ C(2)>

= ™ — w0l oy mmy + € = w0l oy i) + “CHC(DHZ’F(VW

v 1
+M€HC HLlpyu W) WVJQE|VV2+ ;W(V)dX

Two cases: pe — p with >0, and pe — +o0 as e —» 0

Limiting energy functional (as € — 0):
Elt(vv C(l)v C(z)) = Hc(l) - UOHLP (V)v;R™M) + HC(Z) - UOHLP (V1—v;R™M)
+:U‘HC HLlp VH +NHC HL1P 7 +VTV< )

for any v = xg € BV(Q; {0,1}) with £ = {x € Q: v(x) = 1},
cWe WLP((Q,1,(); R™) and c@e WP ((Q,v1_y(); R™), and
E.(v,c®, @) = oo otherwise.
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[-convergence

Definition
Let (X, d) be a metric space and let E, be a sequence of functions
En: X — [—00, +0]. We say that {E,} I-converges to a function
E: X — [—0, +0o0] if the following two properties are satisfied:
o (Liminf inequality) For every x € X and every sequence {x,} < X
such that x, — x with respect to d,

E(x) < liminfE,(x,).

n—00

o (Limsup inequality) For every x € X there exists a sequence
{xn} © X such that x, — x with respect to d and

limsupE,(x,) < E(x).

n—00

The limit function E is called the I'-limit of the sequence {E,}.

V.
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Compactness property

Definition

A sequence of nonnegative functionals {E,} satisfies the compactness
property if for any increasing subsequence {ny} of natural numbers and
any bounded sequence {xx} = X such that

supEp, (xk) < o0,
keN

the sequence {xx} is relatively compact in X.
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Compactness, [-convergence and the convergence of

minimizers

Let E,: X — [0,00] be a sequence of nonnegative functionals which are
not identically equal to +o0, satisfy the compactness property and
[-converge to the functional E: X — [0, c0] which is not identically equal
to +o0. Then,

lim inf E,(x) = min E(x).

n—o0 xe X xeX
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[-convergence for piecewise constant segmentations

e For constants c(M), c¢(®), we define E.: L1(Q;R) x R™ x R™ by

Ee(v,cM, c®)y: = J 1c® — wlPlv] + [c® — wp|P|1 — v|dx
Q

1
+ L v+ S w(v)dx,
cw Ja €

SE |C(1) — uo|Pdx + SQ\E |C(2) — uplPdx + v TV(v),
E(v,c®, @)y .= v = xe € BV(Q;{0,1}),
7 / 400,

otherwise.

o I-convergence of E, to [E for piecewise constant segmentations
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Compactness property for piecewise constant approximations

Theorem (Compactness)

Let Q < RY be an open set with finite measure, let €, — 0 and let
{va} € WE2(Q;R), {c{V}, {cP} < R™ such that

M := supE,, (v,, c,(,l),c,(,z)) < +00.

neN

Then, there exist a subsequence {vp, } of {v,} and v € BV(Q; {0, 1}) with
v = xg for some Lebesgue measurable set E — 2 such that v, — v in

LY R). IfAY(E) > 0, then there exists a converging subsequence {c\"}
of {c\V} with limit cD) e R™. [f AXY(Q\E) > 0 then there exists a
converging subsequence {c,(,f)} of {c,(,2)} with limit ¢ e R™.
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|dea of compactness proof

o Set
v [t
f(t):= —j VWi(s)ds, teR.
w Jo

@ For every ne N we have

1
M=E,. c (o, ™, c,(,z)) > LJ e|Vv]? + =W(v)dx
w Jo €

> 2—VJ VW(vp) Vv dx = f |V (f o vp)|dx
cw Ja Q

@ Rellich-Kondrachov theorem implies that {f o v,} has a converging
subsequence, i.e. there exists a subsequence {v,} (not relabeled) and a
function w € BV(Q; R) such that w,, := fov, — win L} _(Q;R)

loc
@ Hence, f~1 is continuous with

Vo(x) = F Y (wa(x) = FH(w(x) =: v(x) A-ae xeQ

e Since W(v,) — 0 \9-a.s., we have v(x) € {0,1} for \9-a.e. x € Q
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Liminf inequality for piecewise constant approximations

Theorem (Liminf inequality)

Let Q  RY be an open, bounded set. Let v € L}(;R), ¢V, c(® e R™
and consider a sequence €, — 0. Assume that {v,} = L}(Q;R) such that
Vo — v in LY(Q; R). Further, let {c,(,l)}, {c,(,z)} < R™ such that ¢V — ¢,
c,(,z) — c@) Then

E(v,c®, c®) <liminf B, (va, YV (2)).

n 5Cn
n— 00
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Limsup inequality for piecewise constant approximations

Theorem (Limsup inequality)

Let Q = RY be an open, bounded set with Lipschitz boundary. For every
ve LY (QR) and ¢, c(® € R™, there exist sequences {v,}  L}(Q;R)
and {c,(,l)}, {c,(,z)} < R™ such that v, — v in [}(Q;R), oM =,
c,(,z) — ¢, and

(1)

lim sup Be, (va, ¢, o82) < B(v, ¢, @),
n—0o0

where €, — 0 as n — 0.
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Characterization of WP functions

Standard definitions of Sobolev spaces:

WHP(Q) = (feD/(Q) : felP(Q),VFelP(Q),
[YP(Q) = {feD'(Q) : VfelP(Q)}

Theorem (Characterization of W1P)

Let Q — RY be a bounded domain with smooth boundary and
1< p<+ow. Then f € WHP(Q), where 1 < p < +c0, if and only if
f e LP(Q) and there is 0 < g € LP(Q) so that

[f(x) = fy)l < [x—yl(g(x) + &(y)) a-e

Moreover, |f| 1, ~ infg |g]| e, i.e. there exists a constant C > 1 such that
%||f\|,_1,p <infg |g|ce < C||f| 1.0, where the infimum is taken over the
class of all functions g satisfying the above inequality.

v
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Definition of metric measure spaces

Let (Q,d,v) be a metric space (2, d) with finite diameter

diamQ = sup d(x,y) < +©
x,y€Q

and a finite positive Borel measure v. Let 1 < p < +00. The Sobolev
spaces L1P(Q,d,v) and WLP(Q,d, ) are defined as

LYP(Q,d,v) = {f: Q — R: f is measurable and there exists 0 < g € LP(v)
such that |£(x) — F(y)] < d(x,y)(g(x) + g(y)) a.e.}

and
WLP(Q,d,v) = {f e LYP(Q,d,v) : felP(v)},

respectively.

4
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Definition of the space CLP

@ For open set Q < RY define function space

CLP(Q) := {(v,cM, c@): ve (N q);R),cV) e LP((Q,v,)); R™),
c@ e LP((Qup_, )i R™)}

where v|,| and v|;_,| are probability measures which have Lebesgue

densities —— and 2= restricted to Q, respectively.
”VHLI(Q;R) ”1_VHL1(Q;]R)

o Metric for (v,c®, c®) and (7,1, &?) in CLP(Q)

1
inf (j J \x—yu\c<1><x>—e<1><x>|”dw<x,y>>n
mel(v)y,v)9)) QxQ
1

inf <J LXQ Ix — y|P +|c®(x) — &®@ (X)|pd7T(XvY)) !

meM(v)i_y|1-9)
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Properties of the space CLP

We can show:
o (CLP(R2),dcrp) is a metric space.

o Characterization of the convergence in CLP(Q2): Convergence in
CLP(2) can be regarded as a generalization of

e weak convergence of measures
e LP convergence of functions
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Transportation theory

Definition

Given a Borel map T: Q — Q and v € P(Q) the push-forward of v by T
is denoted by Txv € P(Q2) and is given by

Tuv(E) = v(T7YE)), E e B(Q).

For any bounded Borel function ¢: 2 — R the following change of

variables holds:
| dt0a(mn = | o(Te) avt)

A Borel map T: Q — Q is called a transportation map between the
measures v € P(2) and 7 € P(Q) if ¥ = Tyv.

Definition
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Compactness property for piecewise smooth approximations

Theorem (Compactness)

Let Q = RY with d = 2 be an open set with finite measure. Let ¢, — 0
and let {v,} = WE2((Q, M) R), {c\V}, {2} such that
ot € WEo((Q,1y,):R™), P € WEP((Q,1_y,)i R™) and

SuPpen Epe o (Vs c,(,l), c,(,z)) < 400 where limp_,o pie, € (0,+0]. Then

there exist a subsequence {v,, } of {v,} and v e BV(Q;{0,1}) with v = xg
for some Lebesgue measurable set E = Q such that v, — v in L}(;R).
For appropriate assumptions on the perimeter of E and Q\E,

0 < M (E) < A\(Q) and transportation maps {T,gkl)}, { T,(,f)} satisfying
0o | T2 = 110 = limip, oo | T2
subsequence (v,, . i), c\2)) converging to (v, ¢V, c?)) e CLP(Q) in
CLY(Q) for any 1 < v < p.

— I||;= =0, there exists a
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Liminf inequality for piecewise smooth approximations

Theorem (Liminf inequality)

Let Q c RY be an open, bounded set. Let (v,cM) c(?) e CLP(Q) and
consider positive sequences {€n}, {1, } with Iimn_,go €n = 0 and

liMmp—oo fte, € (0, +00]. Assume that {(vn, c,(,l), @ )} < CLP(Q2) such that

(v, V), )

— (v,cM, c@) in CLP(Q). Then,

E,(v, c(l),c(z)) I|m|nf]EM€ En(v,,,c,(,l), ()).

n
n—0o0
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Limsup inequality for piecewise smooth approximations

Theorem (Limsup inequality)

Let Q = RY be an open, bounded set with Lipschitz boundary. Let
(v,cM, @) e CLP(Q) and consider positive sequences {e,}, {jc,} with
lim, o€, =0 and lim,_ i, € (0, +00]. Then, there exists a sequence
{(Vn, M, cﬁz))} c CLP(Q) such that (v,, Y, c,(,z)) — (v, c®, c@) in
CLP(Q2), and

(2)

limsupE,, e, (v, ), cf ) <SEu(v, c@ @),
n—00
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[-convergence for piecewise smooth approximations

Let Q < RY be an open, bounded set, let 1 < p < +00. Then, the
functional E,,_ .: CLP(Q2) — [0, + 0] I'-converges with respect to the
CLP(Q) topology to the functionals E,,(v,c), c(?)) whose form depends
on pe — p with p >0, and p. — +00, respectively, as € — 0.
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Convergence of minimisers for piecewise smooth
approximations

Corollary (Convergence of minimisers)

Let Q — RY be an open, bounded set with d > 2. Suppose that

(Vn, c,(,l), c,(,z)) € CLP(Q) is a minimizer of the energy E,,_ ., for positive
sequences {€n}, {fte,} with lim,_o€n =0 and limp_o0 pte, = p € (0, +00].
If there exists v = xg for some Lebesgue measurable set E — ), if there
exist k > 0, ro > 0 such that P(E; B,(x)) = kr9 for every x € 0*E, if there
exist k > 0, rp > 0 such that P(Q\E B,(x)) = kr? for every x € 0*(Q\E),
and if there exists a subsequence {vy, } of {v,} such that v, — v in
Ll(Q;R), then there exists (v, c ( ) c2 )) € CLP(Q2) such that, up to a
subsequence (not relabeled), (v,, c,(,l), c? )) converges to (v, cM), () in
CLP(Q), and (v, cW), c®)) minimizes the energy E,, for i < +o0 and

p = +o, respectively, over CLP(2).

1
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Conclusion

o Challenging mathematical models, requiring the development of
new mathematical tools

o Diverse applications of image segmentation

e Rigorous analysis of the Mumford-Shah model
@ Combining techniques from a variety of fields of mathematics

@ Theoretical foundations for substantial progress in applications
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Thank you very much for your attention!

Happy to answer any questions!
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