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Nonlinear diffusion equations

Nonlinear diffusion partial differential equations with a
Wasserstein gradient flow structure have received rapidly
growing attention.
Well-known examples are

I porous medium equation

I fast diffusion equation

I lubrication equations describing thin viscous films

I fluid-type quantum models for semiconductors

Apart from their obvious relevance in theoretical physics and
engineering applications, they are of great interest in
mathematical analysis:

I behaviour of their solutions is very rich

I open questions on qualitative properties of the solutions

I accurate and efficient numerical solution is challenging



Motivation: structure-preserving discretisations

When it comes to solving nonlinear diffusion equations
numerically, it is natural to ask for schemes which preserve
certain properties at a discrete level:

I positivity-preserving

I mass-preserving

I energy-dissipating

I gradient-flow structure

I ...



Large numerics literature (non-exhaustive list)

Many(!) approaches tackling nonlinear diffusions numerically,
I FEM, in part. Cahn-Hilliard, Allen-Cahn, ... [Elliott ’86–],

[Barrett], [Garcke], [Styles] & co-workers
I Particle methods based on suitable regularizations of the

flux of the continuity equation [Degond-Mustieles ’90],
[Russo ’90], [Lions-Mas-Gallic ’01], [Mas-Gallic ’02]

I discrete self-similar solutions for PME [Budd et al. ’98, ...]
I high-resolution schemes for nonlinear convection-diffusion

problems [Kurganov-Tadmor ’00].
I high-order relaxation schemes [Cavalli et al. ’07]
I FV methods preserving decay of energy at semi-discrete

level (non-negativity, mass conservation)
[Bessemoulin-Chatard-Filbet ’12], [Cances-Guichard ’16],
[Carrillo et al. ’15].

I blob methods [Carrillo et al. ’17a,’17b]



Class of nonlinear diffusion equations

In this talk consider the following class of equations

∂tρ = ∆P (ρ) +∇ · (ρ∇V ) on R>0 × Rd,

ρ(·, 0) = ρ0 on Rd.

where P (r) = rh′(r)− h(r) for all r ≥ 0 with some
non-negative and convex h ∈ C1(R≥0) ∩ C∞(R>0), and a
non-negative potential V ∈ C2(Rd).
This encompasses large class of diffusion equations, e.g.

I P (r) = r: heat equation

I P (r) = rm,m > 1: porous medium equation

I P (r) = rm,m < 1: fast diffusion equation



Lagrangian formulation

Equation can be written as a transport equation,

∂tρ+∇ ·
(
ρv[ρ]

)
= 0,

with a velocity field v that depends on the solution ρ itself,

v[ρ] = −∇
(
h′(ρ) + V

)
.

Note: further evolution equations can be written in this form,
e.g. non-local aggregation equations [Ambrosio et al. ’08],
Keller-Segel type models [Blanchet et al. ’08], fourth-order
thin film equations [Otto ’98] or quantum diffusion equations
[Gianazza et al. ’09].



Variational structure: Wasserstein gradient flow

A celebrated results is (see [Otto ’98] or [Ambrosio et al.’01])
that this problem is a gradient flow for the relative Renyi
entropy functional

E(ρ) =

ˆ
Rd

[
h(ρ(x)) + V (x)ρ(x)

]
dx,

with respect to the L2-Wasserstein metric on the space
Pac

2 (Rd) of probability densities on Rd with finite second
moment.
An important consequence (see [JKO 98], [Ambrosio
et al. ’08]) is that the unique flow can be obtained as the limit
for τ ↘ 0 of the time-discrete minimizing movement scheme

ρnτ := argmin
ρ∈Pac

2 (Rd)

Eτ (ρ; ρn−1
τ ), Eτ (ρ, ρ̂) :=

1

2τ
W2(ρ, ρ̂)2 + E(ρ).



Numerical scheme based on minimizing movements

The minimizing movement scheme

ρnτ := argmin
ρ∈Pac

2 (Rd)

Eτ (ρ; ρn−1
τ ), Eτ (ρ, ρ̂) :=

1

2τ
W2(ρ, ρ̂)2 + E(ρ).

has originally been used as a tool for the analysis of the
equations.

Q: can it be the basis for a practical, structure-preserving
discretisation to approximate solutions of the nonlinear
diffusion equations?



Related results in the literature

The numerical approximation of the minimizing movement
scheme has been tackled by different methods:

I using pseudo-inverse distributions in one dimension, e.g.
in [Carrillo-Toscani ’05], [Blanchet-Calvez-Carrillo ’08],
[Carrillo-Moll ’09], [Westdickenberg-Wilkening ’10]

I solving for the optimal map in a minimizing movement
step [Benamou et al. ’15], [Junge et al. ’15]

I methods in one dimension for higher-order, drift diffusion
and Fokker–Planck equations in [Düring et al. ’10],
[Matthes-Osberger ’14,’15a,’15b]

I and many more...

 remains challenging in higher space dimensions

Aim: Developing a structure-preserving algorithm based on
minimizing movement scheme in multiple space dimensions



Lagrangian formulation

Let ρ be a smooth positive solution of the transport equation,
and ρ a reference density , i.e. a probability density supported
on some compact set K ⊂ Rd. Let G#ρ denote the
push-forward of ρ under a map G : K → Rd.
Now, let G0 : K → Rd be a given map such that G0

#ρ = ρ0.

Further, let G : [0, T ]× Rd → Rd be the flow map associated
to the transport

∂tGt = v[ρt] ◦Gt, G(0, ·) = G0,

where ρt := ρ(t, ·) and Gt := G(t, ·) : Rd → Rd.
Then, one can show that at any t ∈ [0, T ],

ρt = (Gt)#ρ

 solution G is a Lagrangian map for the solution ρ



Evolution equation for G and L2 gradient flow

We can now insert ρt = (Gt)#ρ for ρ in the expression for the
velocity, v[ρ] = −∇

(
h′(ρ) + V

)
, and obtain an evolution

equation for G:

∂tGt = −∇
[
h′
(

ρ

det DGt

)]
◦Gt −∇V ◦Gt.

Moreover (see [Evans et al. ’05], [Carrillo/Moll ’09],
[Carrillo/Lisini ’10]), this is also a gradient flow, namely for
the functional

E(G|ρ) := E(G#ρ) =

ˆ
K

[
h̃

(
det DG

ρ

)
+ V ◦G

]
ρ dω,

with h̃(s) := s h(s−1) on the Hilbert space L2(K → Rd; ρ) of
square integrable maps from K to Rd.
 related approach in [Carrillo-Moll ’09], [Carrillo et al. ’16]

who discretise the above equation by FD/FEM



Minimizing movement scheme for L2 gradient flow

[Ambrosio, Lisini and Savaré ’06] proved that the gradient flow
for

E(G|ρ) := E(G#ρ) =

ˆ
K

[
h̃

(
det DG

ρ

)
+ V ◦G

]
ρ dω,

is globally well-defined, and can again be approximated by the
minimizing movement scheme:

Gn
τ : = argmin

G∈L2(K→Rd;ρ)

Eτ

(
G;Gn−1

τ

)
,

Eτ (G; Ĝ) =
1

2τ

ˆ
K

‖G− Ĝ‖2 dρ+ E(G|ρ).

 in the following we present a discretize-then-optimize
where we adapt this minimizing movement scheme for a
numerical algorithm



Idea of the discretize-then-optimize algorithm in 2d

For simplicity; restrict ourselves to 2d in the following
I Spatial discretisation: triangulation in R2

I ansatz space AT for G: on each triangle ∆m ⊂ K, let
G(ω) = Amω + bm for some matrix Am ∈ R2×2 and some
vector bm ∈ R2

I this affine ansatz for G corresponds to piecewise constant
ansatz for its derivatives g := DG
→ density function ρ is piecewise constant

I define inductively discrete maps Gn
� ∈ AT by solution of

the minimisation problems

Gn
� : = argmin

G∈AT

E�
(
G;Gn−1

�

)
,

with E�(G;G∗) =
1

2τ
‖G−G∗‖2

L2(K;ρT ) + E(G|ρT ).



Discrete maps in 2d
reference triangulation (fixed) triangulation related to Gn

�
(changes in time)

△2

(1, 0)

(0, 1)

(0, 0)

∆m

ωm,0

ωm,1

ωm,2

Gm,0

Gm,1

Gm,2

rm
qm

G

standard triangle

We introduce the linear interpolation maps
rm : 42 → K, rm(ξ) = ωm,0 +

∑2
j=1(ωm,j − ωm,0)ξj, and

qm : 42 → R2, qm(ξ) = Gm,0 +
∑2

j=1(Gm,j −Gm,0)ξj
 the affine map equals to Gm(ω) = qm ◦ r−1

m



Derivation of the discrete minimisation problem

We introduce the linear interpolation maps
rm : 42 → K, rm(ξ) = ωm,0 +

∑2
j=1(ωm,j − ωm,0)ξj, and

qm : 42 → R2, qm(ξ) = Gm,0 +
∑2

j=1(Gm,j −Gm,0)ξj
 the affine map equals to Gm(ω) = qm ◦ r−1

m

We have

detAm =
det Dqm
det Drm

=
detQm

T [G]

2|∆m|

where Qm
T [G] :=

(
Gm,1 −Gm,0

∣∣Gm,2 −Gm,0

)
 we can express the maps via the coordinates of the

triangulation



Derivation of the discrete minimisation problem II

Substitution of the special form G(ω) = Amω + bm produces

E(G|ρT ) =
∑

∆m∈T µmT
[
Hm

T (G) + Vm
T (G)

]
with internal energy Hm

T (G) := h̃
(

detAm

ρmT

)
= h̃

(
detQm

T [G]

2µmT

)
and potential energy

Vm
T (G) =

ffl
∆m

V (Amω + bm) dω =
ffl
4 V

(
rm(ω)

)
dω.

Further, we can show

‖G−G∗‖2
L2(K;ρT ) =

´
K
‖G−G∗‖2ρT dω =

∑
∆m∈T µmT LmT (G,G∗)

where

LmT (G,G∗) :=
ffl

∆m
‖G(ω)−G∗(ω)‖2 dω =

ffl
4‖rm(ω)− r∗m(ω)‖2 dω

= 1
6

∑
0≤i≤j≤2(Gm,i −G∗m,i) · (Gm,j −G∗m,j)



Practical algorithm for finding minimizers

I Now we can compute the discrete Euler-Lagrange
equations (for each node in the triangulation)

I outer (time stepping) and inner (Newton) iteration
I initialising G(0) := Gn−1 with Gn−1, the solution at

previous time step, define inductively

G(s+1) := G(s) + δG(s+1),

where the update δG(s+1) is the solution to

H[G(s)]δG(s+1) = −Z[G(s);Gn−1].

I if norm of δG(s+1) drops below given stopping criterion,
define Gn := G(s+1) as approximate solution in the nth
time step.

I effort of each inner iteration step is essentially determined
by the effort to invert the sparse Hessian matrix H



Numerical example: porous medium equation

Example: porous medium equation

∂tu = div
(
u∇
( m

m− 1
um−1

))
= ∆um

Behaviour in the long-time limit t→∞:

u∗(t, x) = t−dαB
(
t−αx

)
with α =

1

d+ (m− 1)
,

where B is the Barenblatt profile

B(z) =
(
C − (m− 1)α

4m
‖z‖2

) 1
m−1

+



Numerical example: porous medium equation

Evolution of the support of the Barenblatt profile (m = 3):

→ good agreement between analytical and numerical solution,
at least visually



Numerical example: porous medium equation
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Decay of the energy of the discrete solution in comparison with
the analytical decay t−2/3 of the Barenblatt solution (left).
Numerical convergence for fixed ratio τ/h2

max = 0.4 (right).



Numerical analysis: overview of results

I sequence of fully discrete minimization problems is
well-posed, we obtain sequence (Gn

�)n=0,1,... for each
sufficiently fine discretization �.

I induced densities ρ̃� converge weakly to an absolutely
continuous limit trajectory ρ

I fluxes ρ̃�ṽ� converge weakly to a limit of the form ρv

I identification of the limit velocity v, however, is only
possible under strong additional hypotheses

I for d = 2, we prove numerical consistency, i.e. if G is a
smooth solution, then its restriction to the mesh �
satisfies fully discrete Euler–Lagrange equations
associated to the minimizing movement scheme, with a
quantifiable error that vanishes in suitable continuous
limit (requires certain assumptions on triangulation)



Numerical example: porous medium equation

A few more numerical results...



Summary & Outlook

Summary:

I variational numerical scheme for non-linear diffusion
equations that respects their gradient flow structure

I applicable to a wide range of nonlinear diffusion problems

I dissipates energy ‘as fast as possible’ — just like the
original gradient flow

I built-in conservation of mass and non-negativity

I efficient solution also for two-dimensional problems

Outlook:

I modified scheme with improved convergence analysis

MERCI BEAUCOUP!


