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Nonlocal approximation of PME

Quadratic porous medium equation

∂tρ = div(ρ∇ρ) , ρ = ρ(x , t) ≥ 0 , x ∈ Rd , t ≥ 0 . (PME)

Special case of

∂tρ =
1

m
∆(ρm) with m = 2 .

Main applications:

Filtration in a porous medium.

Nonlinear heat transfer. Radiation in plasmas.

Population dynamics, localised repulsive drift.

Selected properties:

Finite speed of propagation of the support.

Well posed in L1
+.

L1-L∞ smoothing effect, consequence of the Aronson - Bénilan estimate (1979).

Measure initial trace, Aronson-Caffarelli 1983.

Main ref: the book by J. L. Vázquez (2007).
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Nonlocal approximation of PME

Nonlocal approximation

Think of (PME) as a continuity equation for a density ρ (e. g. of a population)

∂tρ+ div (ρv) = 0

v = −∇ρ

Drift is opposite to ∇ρ: local repulsive movement.

Replace v by

v = −∇Wε ∗ ρ

Wε(x) = ε−1W (ε−1x) , W (x) ≥ 0 ,

∫
Rd

W (x)dx = 1 .

(PME) become the nonlocal repulsive equation

∂tρ = div (ρ∇Wε ∗ ρ) (NL)

Formally,
Wε ∗ ρ ⇀ ρ as ε↘ 0

Problem: recover (PME) from (NLR) as ε↘ 0. This problem may be interpreted as a
small interaction range limit.
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Nonlocal approximation of PME

Particle approximation

(NL) has a natural deterministic N-particle version

ẋi (t) = − 1

N

N∑
j=1

∇Wε(xi (t)− xj(t)) , i = 1, . . . ,N . (DP)

How to recover (DP) from (NL):

Take an (empirical measure) initial condition

ρ̃N(·, 0) = 1

N

N∑
i=1

δxi (0)

Ansatz: look for a solution ρ to (NL) of the form

ρ̃N(·, t) = 1

N

N∑
i=1

δxi (t)

Fact: if xi (t) satisfy (DP) for all i = 1, . . . ,N then ρ̃N solves (NL).

This is consequence of

− 1

N

N∑
j=1

∇Wε(xi (t)− xj(t)) = ∇Wε ∗ ρ̃N(xi (t), t)
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ẋi (t) = − 1

N

N∑
j=1

∇Wε(xi (t)− xj(t)) , i = 1, . . . ,N . (DP)

How to recover (DP) from (NL):

Take an (empirical measure) initial condition

ρ̃N(·, 0) = 1

N

N∑
i=1

δxi (0)

Ansatz: look for a solution ρ to (NL) of the form

ρ̃N(·, t) = 1

N

N∑
i=1

δxi (t)

Fact: if xi (t) satisfy (DP) for all i = 1, . . . ,N then ρ̃N solves (NL).

This is consequence of

− 1

N

N∑
j=1

∇Wε(xi (t)− xj(t)) = ∇Wε ∗ ρ̃N(xi (t), t)

M. Di Francesco (L’Aquila) Nonlocal particle approximation GFFTF3 2023 - Lyon 6 / 22



Nonlocal approximation of PME

Particle approximation

(NL) has a natural deterministic N-particle version
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Nonlocal approximation of PME

A commutative diagram

Deterministic particles

ẋi (t) = − 1

N

N∑
k=1

∇Wε(xi (t)− xk(t))
Nonlocal interaction equation

∂tρ = div(ρ∇Wε ∗ ρ)

Porous Medium equation
∂tρ = div(ρ∇ρ)

N ↗ +∞
ε↘ 0

N ↗ +∞

ε↘ 0

Note that one can consider the joint limit as ε↘ 0 and N ↗ +∞
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Nonlocal approximation of PME

Some related literature

From (DP) to (NL) as N → +∞

Dobrušin (1979) - smooth W

Ambrosio, Gigli, and Savaré (2008) - Carrillo, DF, Figalli, Laurent, and Slepčev
(2011) - λ-convex W , Wasserstein GF theory

Carrillo, Choi, and Hauray (2014) - Singular W

From (NL) to (PME)

Lions and Mas-Gallic (2001) - Numerical scheme, bounded domain, periodic data

Carrillo, Craig, and Patacchini (2019) - Sandier-Serfaty approach, smooth W

van Meurs (2018) - Γ-convergence approach for singular potentials

Burger and Esposito (2022) - Relaxing the regularity of W

From (DP) to (PME) - Joint limit

Oleschläger (1990) - (2001) & Capasso et al. (2005) - Stochastic particles

Philipowski (2007) & Figalli and Philipowski (2008) - Viscous PME

Carrillo, Craig, and Patacchini (2019) - Blob method.
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Nonlocal approximation of PME

An interesting case: the 1d Morse interaction potential

W (x) =
1

2
e−|x| , Wε(x) = ε−1W (ε−1x)

Properties:

Repulsive potential∫
R Wε(x)dx = 1

ε2W ′′
ε = Wε − δ0

Lack of regularity at x = 0.

Previous results in the literature do not include Morse due to the repulsive singularity at
the origin.

Particles diffusion: a smoothing effect

Smooth potential W implies ρ(·, 0) = δ0 is a stationary solution.

Morse type W implies particles do not remain particles.

Evidence suggests that initial delta measures instantaneously regularise to L∞ in
(NL).
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Nonlocal approximation of PME

Existing results related to the repulsive Morse potential

We observe

W (x) =
1

2
e−|x| = N(x) + S(x)

N(x) =
1

2
(1− |x |) , S ′′(x) = W (x) ≥ 0

The (DP) to (NL) limit with W (x) = |x | was studied in
Bonaschi-Carrillo-DF-Peletier with initial data in the space of probability measures.

Carrillo-Ferreira-Precioso covered the case of 1d interaction potentials which are
convex on (0,+∞) (which includes Morse) for the existence of gradient flow
solutions.

Recent results involving system with two species, where cross-diffusion is obtained
as limit of a nonlocal tissue growth mode, see David, Dȩbiec, Mandal, and
Schmidtchen (2023) and refs. therein. A direct (NL) to (PME) result could be
obtained with the techniques in David et al.

A direct (DP) to (PME) result with Morse potential seems to be missing in the
literature.
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Main results, key estimates and facts

A modified particle scheme

Let ρ be a probability measure on R with finite second moment.

For a given N ∈ N, let (x0, . . . , xN) be a suitable atomization of ρ satisfying

ρ([x i , x i+1)]) =
1

N
for all i = 0, . . . ,N − 1

We replace the usual scheme

ẋi (t) = − 1

N

N−1∑
k=0

W ′
ε(xi (t)− xk(t))

by

ẋi (t) = − 1

N

N−1∑
k=0

(
Wε(xi (t)− xk+1(t))−Wε(xi (t)− xk(t))

xk(t)− xk+1(t)

)
(Scheme)

Setting

di (t) = xi+1(t)− xi (t) , Ri (t) =
1

Ndi (t)
, ρNε (x , t) =

N−1∑
i=0

Ri (t)1[xi (t),xi+1(t))(x)

(Scheme) becomes

ẋi (t) = −W ′
ε ∗ ρNε (xi (t), t)
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Main results, key estimates and facts

Why the modified scheme?

Recalling the empirical measure ρ̃N

ẋi (t) = −W ′
ε ∗ ρ̃N(xi (t), t) ẋi (t) = −W ′

ε ∗ ρNε (xi (t), t)
replaced by

Due to the singularity of Wε we need weak Lp compactness to give sense to weak
solutions in the limit (see below, weak solutions should be absolutely continuous
w.r.t. Lebesgue in order to be uniquely determined). As we shall see, Lp estimate
come almost for free with this scheme.

This scheme works better with our (piecewise constant) approximated density ρNε ,
in that is eases the consistency in the limit of the particle scheme.

This scheme is not totally new, see the recent paper by Radici and Stra (2022) for
nonlocal interaction equations with nonlinear mobility.

The use of the piecewise constant approximating density is reminiscent of
DF-Rosini (2015) for scalar conservation laws.
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ẋi (t) = −W ′
ε ∗ ρ̃N(xi (t), t) ẋi (t) = −W ′
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Main results, key estimates and facts

Main results (DF, Iorio, Schmidtchen - in preparation)

Theorem (Many particle limit for fixed ε > 0)

Let ρ be a probability measure with finite second moment. Then, for fixed ε > 0

ρNε → ρε

where ρε is the unique weak solution to the Cauchy problem{
∂tρ− ∂x

(
ρW ′

ε ∗ ρ
)
= 0

ρ(·, 0) = ρ

Theorem (Joint ε→ 0 / N → +∞ limit)

Let ρ ∈ L1(R) ∩ L∞(R) be nonnegative, with finite first moment and such that
ρ log ρ ∈ L1(R). Let ε = εN be a sequence such that 1

ε3N
≤ C for some C ≥ 0. Then,

ρNεN → ρ0

where ρ0 is the unique weak solution to the Cauchy problem{
∂tρ = ∂x(ρ∇ρ)
ρ(·, 0) = ρ
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Main results, key estimates and facts

Some comments on interaction scales

This is a multiscale problem:

Interaction range ε→ 0

Number of particles N → +∞

Our results can be framed in the notation introduced by Oleschläger and collaborators:

In the second Theorem, condition 1
ε3N

≤ C can be interpreted as a moderate
interaction regime: particles interact with those present in a small segment with
length degenerating not faster than N−1/3, which implies interaction with as many

as O
(
N2/3

)
particles, which grows to +∞ as N → +∞.

The result in the first theorem is instead framed in the co called macroscale regime
(or McKean-Vlasov regime), in which all particles keep interacting with O(N)
particles in the N → +∞ limit.

Other results consider hydrodynamic interactions, in which the range of interaction
is of order 1/N, e.g. nearest neighbour interaction with O(1) particles, see
Gosse-Toscani (2006) extending the first pioneering paper by G. Russo (1990),
various papers by D. Matthes and collaborators, and a recent paper by Daneri,
Radici and Runa (2022).
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In the second Theorem, condition 1
ε3N

≤ C can be interpreted as a moderate
interaction regime: particles interact with those present in a small segment with
length degenerating not faster than N−1/3, which implies interaction with as many

as O
(
N2/3

)
particles, which grows to +∞ as N → +∞.

The result in the first theorem is instead framed in the co called macroscale regime
(or McKean-Vlasov regime), in which all particles keep interacting with O(N)
particles in the N → +∞ limit.

Other results consider hydrodynamic interactions, in which the range of interaction
is of order 1/N, e.g. nearest neighbour interaction with O(1) particles, see
Gosse-Toscani (2006) extending the first pioneering paper by G. Russo (1990),
various papers by D. Matthes and collaborators, and a recent paper by Daneri,
Radici and Runa (2022).

M. Di Francesco (L’Aquila) Nonlocal particle approximation GFFTF3 2023 - Lyon 15 / 22



Main results, key estimates and facts

Some comments on interaction scales

This is a multiscale problem:

Interaction range ε→ 0

Number of particles N → +∞
Our results can be framed in the notation introduced by Oleschläger and collaborators:
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Main results, key estimates and facts

The discrete particle setting

Unlike the classical (DP), our (Scheme) is not a gradient flow. However, using the
W = N + S decomposition we can write it as Lipschitz perturbation of a gradient
flow.

This allows to obtain an existence and uniqueness theorem with initial particles
that are possibly overlapping.

We prove the estimate

di (t) ≥ di (0)e
− t

2ε3 +
2ε

N

[
1− e

− t
2ε3

]
which shows that particles detach instantaneously as t > 0.

Consequence: L∞ bound for positive times

∥ρNε (t)∥L∞(R) ≤
1

2ε

(
1− e

− t
ε3

)−1

Estimate is uniform for initial data in the space of probability measures:
measure-to-L∞ smoothing effect
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Main results, key estimates and facts

Uniform estimates

Consider a C 1 function φ : [0,+∞) → R let us set

ψ(ρ) =
φ(ρ)

ρ
.

Proposition

ρNε satisfies the estimate

d

dt

∫
φ(ρNε (y , t))dy =

1

ε2

∫
ρNε (y , t)

2ψ′(ρNε (y , t))
[
Wε ∗ ρNε (y , t)− ρNε (y , t)

]
dy .

Corollary

All Lp norms of ρNε for p ∈ [1,+∞] and the functional∫
R
ρNε (y , t) log ρ

N
ε (y , t)dy

are contractive in time.

We also observe that our atomisation scheme is contractive in all Lp norms.
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Main results, key estimates and facts

More estimates

While estimates are relatively simple for ρ-depending functionals, things get more
complicated when we include space depending test functions in the functional.

However, we can prove the following

Proposition

Let φ ∈ Lip(R). Then, ρNε satisfies

d

dt

∫
R
φ(x)ρNε (x , t)dx = −

∫
R
φ′(x)ρNε (x , t)W

′
ε ∗ ρNε (x , t)dx + [φ]LipO

(
1

Nε2

)
This has several consequences:

Convergence to weak solutions of (NL) for fixed ε > 0.

Uniform control of ∫
R
|x |ρNε (x , t)dx

1

2

∫
R
ρNε (x , t)Wε ∗ ρNε (x , t)dx

assuming 1
ε3N

≤ C .
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Main results, key estimates and facts

Strong compactness in the joint limit

Strong compactness of Wε ∗ ρNε , achieved from

Uniform L2x,t estimate of W ′
ε ∗ ρNε , using the dissipation of the

(contractive) functional
∫
ρNε log ρNε dx ,

H−1 estimate of Wε ∗ ∂tρNε ,
Aubin-Lions lemma.

Proving that the strong L2 limit of Wε ∗ ρNε concides with the weak limit ρ of ρNε .

Proving that Wε ∗ ρNε − ρNε is infinitesimal in L2, using the elliptic equation
satisfied by Wε, trick is courtesy of David et al. [2023].

M. Di Francesco (L’Aquila) Nonlocal particle approximation GFFTF3 2023 - Lyon 19 / 22



Main results, key estimates and facts

Strong compactness in the joint limit

Strong compactness of Wε ∗ ρNε , achieved from

Uniform L2x,t estimate of W ′
ε ∗ ρNε , using the dissipation of the

(contractive) functional
∫
ρNε log ρNε dx ,

H−1 estimate of Wε ∗ ∂tρNε ,
Aubin-Lions lemma.

Proving that the strong L2 limit of Wε ∗ ρNε concides with the weak limit ρ of ρNε .

Proving that Wε ∗ ρNε − ρNε is infinitesimal in L2, using the elliptic equation
satisfied by Wε, trick is courtesy of David et al. [2023].

M. Di Francesco (L’Aquila) Nonlocal particle approximation GFFTF3 2023 - Lyon 19 / 22



Main results, key estimates and facts

Strong compactness in the joint limit

Strong compactness of Wε ∗ ρNε , achieved from

Uniform L2x,t estimate of W ′
ε ∗ ρNε , using the dissipation of the

(contractive) functional
∫
ρNε log ρNε dx ,

H−1 estimate of Wε ∗ ∂tρNε ,
Aubin-Lions lemma.

Proving that the strong L2 limit of Wε ∗ ρNε concides with the weak limit ρ of ρNε .

Proving that Wε ∗ ρNε − ρNε is infinitesimal in L2, using the elliptic equation
satisfied by Wε, trick is courtesy of David et al. [2023].

M. Di Francesco (L’Aquila) Nonlocal particle approximation GFFTF3 2023 - Lyon 19 / 22



Main results, key estimates and facts

Uniqueness of (weak) limiting solutions

Nonlocal Interaction Equation, fixed ε > 0

∫ T

0

∫
R

(
ρ(x , t)φt(x , t)− ρ(x , t)W ′

ε ∗ ρ(x , t)φx(x , t)
)
dxdt +

∫
R
φ(x , 0)dρ(x , 0) = 0

Due to the discontinuity of Wε at x = 0, possibility of singular solutions.

Equation for F (x , t) =
∫ x

−∞ ρ(y , t)dy

Ft +
1

2ε2
(2F − 1)Fx + (S ′

ε ∗ ρ)Fx = 0

Increasing shocks for F do not satisfy Lax entropy condition.

To select the correct solution we use the (gradient flow) pseudo-inverse (or
quantile) equation

∂tX (z , t) = −
∫ 1

0

W ′
ε(X (z , t)− X (ζ, t))dζ

We prove that having the pseudo-inverse equation satisfied a.e. is equivalent to
having ρ in L∞ for positive times, which we have from the smoothing effect.
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Main results, key estimates and facts

Final comments and future work

The result is not totally satisfactory in that we would like to catch the initial
measure to L∞ smoothing effect in the (DP) to (PME) limit. Indeed, weak
solutions to (PME) have an initial trace in the weak ∗ measure sense (think of the
Barenblatt solution).

However, we can catch the smoothing effect in the result with fixed ε, thus
showing that the Morse potential is a good candidate to approximate (PME) with
initial data in the space of probability measures.

Another argument in favour of the Morse potential for the joint limit is that the
corresponding energy functional is 0-convex in the Wasserstein sense for all ε. So,
there is room for proving the ε→ 0 limit in the gamma-convergence framework,
possibly by catching the case of measure initial conditions.

Extension to two species, in the spirit of DF-Esposito-Schmidtchen (2021) for
Newtonian potentials: in progress.
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Main results, key estimates and facts

End of the talk

Thank you!
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