4th Smilei user &training workshop 8-10 Nov 2023,Prague, Europe

Numerical Simulation of High Harmonic Generation Using Liquid Flat-Jet Targets

Hyeon Kim

Center for Relativistic Laser Science (CoReLS), Institute for Basic Science (IBS) Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST)

Center fOr Relativistic Laser Science

nature communications

9

Article

https://doi.org/10.1038/s41467-023-38087-3

High-harmonic generation from a flat liquid-sheet plasma mirror

Received: 4 January 2023	Yang Hwan Kim Hyeon Kim ^{1,2} Seong Cheol Park ^{1,2} , Yongjin Kwon ^{1,2} ,
Accepted: 14 April 2023	——— Kyunghoon Yeom [™] ⁻ , Wosik Cho ¹ , Taeyong Kwon ^{1,2} , Hyeok Yun ³ , Jae Hee Sung ^{1,3} , Seong Ku Lee ^{D^{1,3}} , Tran Trung Luu ^{D⁴} , Chang Hee Nam ^{D^{1,2}} &
Published online: 22 April 2023	Kyung Taec Kim 🕑 ^{1,2} 🖂

What is High-harmonic Generation (HHG)?

High-harmonic Generation?

➔ Phenomenon where high frequency photons are generated when intense laser light interacts with a medium.

- → Why we need High-harmonic generation?
 - → High-harmonic generation is a pulse with X-ray wavelengths in the spectral domain and an attosecond duration pulse($\sim 10^{-18} sec$) in the temporal domain
 - → Useful for the time resolution of ultrafast(attosecond) dynamics of electrons in the matter
 - ➔Industrially, it can be used as a table-top coherent X-ray source in fields such as semiconductor fabrication.

Research on high-harmonic generation in gases has been conducted.

- Limitation on driving laser intensity (Saturation of ionization rate.~10¹⁴W/cm2)
- >Low conversion efficiency $\sim 10^{-8}$

≻ High harmonic from gas is too weak!

High-harmonic generation (HHG) in plasma

- No limitation on driving laser intensity
 Higher conversion efficiency (> 10⁻⁶) than gas HHG
- There are two types of mechanism in plasma HHG
 - Coherent Wake Emission (CWE)
 - Relativistic Oscillating Mirror (ROM)
- Normalized vector potential a_0 , $a_0 < 1 \rightarrow CWE$ dominant $a_0 > 1 \rightarrow ROM$ dominant

Plasma HHG - Coherent wake emission (CWE)

- Plasma oscillation is driven by Brunel electrons which is responsible for CWE emission.
- > Driving laser intensity: $\sim 10^{16} W/cm^2$
- > Efficiency: pretty high ($\sim 10^{-6\sim -4}$)
- \succ Cutoff freq: $< w_p$

For kHz-repetition-rate lasers, damage issue becomes very critical.

- Target damage is okay for single-shot based experiment.
- But for 1-kHz lasers, further solutions for the damage issue is required.

A liquid jet would be a good solution for kHz-lasers.

Image from E. Fill et al.,

RSI 73 (2002).

• Tape targets

• Rotating wheel Plasma mirror at focus Rotating glass target Isolated attosecond Focusing EUV beams parabola EUV beam profiles on MCP detector Wavefront rotation (WFR) Pulse Waveform-controlled compression few-optical-cycle pulse

Image from Jonathan A. Wheeler et al., Nat. Photonics 6 (2002)

CoRels Center for Relativistic Laser Science • Liquid flat jet target

Images from Maria Ekimova et al., Structural Dynamics 2 (2015).

We tried to reproduce experimental results.

 \succ

We successfully reproduced experimental results.

We successfully reproduced experimental results.

Experimental result & Numerical simulation well-matched!

Plasma HHG – Relativstic Oscillating Mirror (ROM)

Gamma

Recent working- Isolated attosecond pulse gating -Motivation

Image from Zhong, Shiyang, et al. *Physical Review A* 93.3 (2016): 033854.

Isolated attosecond pulse gating from gas high harmonic

How about on plasma high harmonic?

Simulation Parameter

Geometry = 2D cartesian Simulation box size = 20 λ_L X 40 λ_L Maxwell solver = Bouchard solver dx = $\lambda_L/256$ dy = $\lambda_L/256$ dt = $T_L/512$

Main Pulse Intensity $(a_0) = 21 (10^{21}W/cm^2)$ FWHM = 8 T_L Focal spot size = 1 λ_L Incidence angle = 45°

Gating Pulse Intensity(a_0) = 3 ($1.9 \times 10^{19} W/cm^2$) FWHM = 1 T_L Focal spot size = 1 λ_L

15

Attosecond Pulse Train by Relativistic Oscillating Mirror(ROM)

Correls Correlativistic Laser Science

Separation of attosecond pulse when using gating pulse !

This single attosecond pulse can be employed in pump-probe experiment!

- We demonstrated that CWE harmonics successfully reproduced by PIC simulation .
- We demonstrated that single attosecond pulse can be separated via noncollinear gating of long pulse and short pulse.
- The single attosecond pulse obtained through noncollinear gating can be utilized in attosecond streaking experiment for
 - Temporal characterization of atto pulses generated through CWE and ROM
 - Ultrafast plasma dynamics

Yang Hwan Kim and Kyung Taec Kim et al., Nat. Com. **14** (2023). Hyeon Kim, To be sumitted (2024).

Attosecond science group at GIST / IBS

Group leader: Prof. Kyung Taec Kim

Prof. Tran Trung Luu, Hong Kong Univ.

Research fellows : Igor Ivanov, Kyungseung Kim, Hyeok Yun (APRI)
Post doc. Researchers: Yang Hwan Kim, Wosik Cho, Jeong-uk Shin
Ph. D. Candidates: Rajaram Shrestha (ELI ALPS), Kyung Hoon Yeom, Tae Yong
Kwon, Hyeon Kim, Bin Kim, Sung Chul Park, Jeong Ho Ha
Technical support: Wontae Ra

