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Introduction

Why is a plasma physicist interested in comets?

Solar wind

Cometary ionosphere
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Figure: Beth et al. 2022, chapter in Comets IlI, to

be published

o Neutral gas environment dominated by
H>O and CO,, ionised by solar photons
and energetic electrons (e.g. accelerated
SW electrons, source of auroras, Galand
et al. 2020)
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Figure: Beth et al. 2022, chapter in Comets IlI, to

be published

o Neutral gas environment dominated by
H>O and CO,, ionised by solar photons
and energetic electrons (e.g. accelerated
SW electrons, source of auroras, Galand
et al. 2020)

@ As the distance to the Sun evolves, comets
develop a denser and more extended iono-
sphere
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Introduction

Comet-SW interaction at low activity

@ Large scale simulation with
iPIC3D (Deca et al. 2017,
m;/me = 100)
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through the fields between a fast
light plasma and an heavy slow
one replenished over time

Solar wind protons




Introduction

Comet-SW interaction at low activity

@ Large scale simulation with
iPIC3D (Deca et al. 2017,
m;/me = 100)

@ Collisionless interaction mediated
through the fields between a fast
light plasma and an heavy slow
one replenished over time

@ A potential well forms around the
nucleus trapping cometary elec-
trons and accelerating SW elec-
trons (Galand et al. 2020)
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An animation for the eyes
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Comet-SW interaction at large activity
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Figure: Modelled magnetic field around 1P/Halley, Rubin et al. 2014

@ For higher activity, we need a more MHD-like approach (larger scale, collisional)

@ Even if the comet is unmagnetised, the magnetic field starts to drap, pile-up, a bow shock
forms, as well as a cometosheath, and a region with no or extremely weak magnetic field

(<0.1nT)
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Plasma interaction as a function of time
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Figure: Schematic of the interaction at different activity (Goetz et al., 2022)
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The diamagnetic cavity: a puzzling region
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Figure: Magnetic field during diamagnetic cavity crossings

What is the pressure balance or properties at the kinetic scales that maintain this boundary?
Is it different depending on the activity?

What are the phenomena occurring down to the electron scale that are not captured by
MHD /Hybrid model (anisotropy, electron pressure tensor)?



Simulation setup

Using SMILEI for the diamagnetic cavity boundary (Beth+ 2022

arbr. units
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Figure: Initial setup
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Scaling was necessary because | was limited in
CPU time: 50 000 hr / month (please do not
laugh)



Simulation setup

Some warnings

@ lons and electrons are not replenished over time with photoionisation (not very handy
with SMILEI)

e n; =~ exp(—x/H) while nj = 1/r at comets = it allows to have a constant and very well
knowm ambipolar field through the box —V P /qn. ~ constant

o T.=10¢eV at comets => A p/Lesq = 0.01 in reality (10 here)

There was not a real aim to reproduce phenomena but more understanding the phenomenon



Electric pressure E?
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Magnetic pressure B2

e E2: larger fluctuations in the
unmagnetised part to be compared with
the ambipolar field
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Light and plasma waves in the unmagnetised region, electron Bernstein in the magnetised
region. Very tricky exercise to get them



Electron pressure P,
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Ohm's law
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A potential barrier forms, electrons are trapped on the left by the electric field (potential of
the order of kg T.) and by the magnetic field on the right — Double layer configuration?



Pressure balance and adiabaticity
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EVDF across the boundary

t = 18.16 ms t=2724 ms
0.2 0.2

0.2
0201 0 01 02

| | | | 1

0 : 0 '
q 220 240 260 280 300 320 q 220 240 260 280
x [km] x [km)]

300 320

EVDF gyrotropic in the magnetised region but completely anisotropic at the bottom of the

magnetic barrier
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tropicity
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Figure: Invariants and eigenvalues of P,

From the electron pressure tensor, | am looking
for eigenvalues (using Cardano's method)

@ 3 equal roots: isotropic (A = p =g =0)
@ 2 equal, 1 different: likely gyrotropic (the
eigenvector must be along B, A =0 but

p=q#0)
o 3 different eigenvalues: agyrotropic

(A #0)
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Conclusions

Take-Home messages

@ First time a PIC code is used to look at the diamagnetic cavity

o E~ —VP./qne + Je x B’/qene ~ 0: diamagnetic current at the boundary
@ Agyrotropic electrons in the weak magnetic field region
°

Double layer structure forming at the boundary and propagating inwards

e 2D

@ Bigger simulations to run longer

@ Looking at instabilities in 2D

!Most of the presentation is based on https://doi.org/10.1051/0004-6361/202243209


https://doi.org/10.1051/0004-6361/202243209
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