
Parallel computing

1

9 November 2023

Francesco Massimo ( z10f          )
francesco.massimo@universite-paris-saclay.fr

Workshop

Session 2: The PIC method 
and its parallelization



Outline

Smilei Workshop – Parallelization

• What is parallel computing?

• Basic Supercomputer Architecture 

• Splitting your simulation domain

• MPI+OpenMP parallelization

• Balancing the load between OpenMP threads

• Balancing the load between MPI processes

• F.A.Q: how to setup a simulation?



3

What is parallel computing?

Smilei Workshop – Parallelization



Example: serial program

Computing unit 1:

A=A+1  (10 s)
B=B*2  (10 s)
C=C/3   (15 s)
D=D*D (10 s)

Total time to execute the program: 45 s

Smilei Workshop – Parallelization

1 Computing unit  = 1 node or 1 socket or 1 GPU, etc



Example of (almost) balanced program:
Using 4 computing units the execution time is reduced

Computing unit 1
A=A+1  (10 s)
Total computing time: 10 s

Computing unit 2
B=B*2  (10 s)
Total computing time: 10 s

Total time to execute the program: 15s 

Computing unit 3
C=C/3   (15 s)
Total computing time: 15 s

Computing unit 4
D=D*D (10 s)
Total computing time: 10 s

Smilei Workshop – Parallelization



Total time to execute the program: 15s 

Smilei Workshop – Parallelization

The total execution time is determined 
by the slowest computing unit

Computing unit 1
A=A+1  (10 s)
Total computing time: 10 s

Computing unit 2
B=B*2  (10 s)
Total computing time: 10 s

Computing unit 3
C=C/3   (15 s)
Total computing time: 15 s

Computing unit 4
D=D*D (10 s)
Total computing time: 10 s



Extreme example of program with unbalanced load

Computing unit 1
Total core time: 1 s

Computing unit 2
Total core time: 2 s

Total time to execute the parallel program: 1000s 

Computing unit 3
Total core time: 5 s

Computing unit 4
Total core time: 1000 s

Total time to execute the serial program:   1008s 

Smilei Workshop – Parallelization



Conclusion: keep load balance between computing units

It’s totally useless 
to use more parallel computing units 

if only one or a few 
are doing all the work 

Decompose your program in small 
parallelizable units and
distribute them evenly 

between computing units
working in parallel 

Smilei Workshop – Parallelization



9

Basic Supercomputer Architecture

Smilei Workshop – Parallelization



Example of computing unit: 
compute node with shared memory system 

4 cores 
for computation

Shared
memory 
for data

Smilei Workshop – Parallelization



Example: distributed machine made of many compute nodes, 
each with shared memory system

Smilei Workshop – Parallelization

Running a Smilei simulation on a distributed machine, 
- how do we distribute the operations?
- How do we keep load balance?

Communications in Smilei

- Intranode communications: 
OpenMP

- Internode communications: 
MPI



12

Splitting your simulation domain

Smilei Workshop – Parallelization



Remember: a PIC discretizes space with cells

Smilei Workshop – Parallelization

What you see:
Laser Wakefield Acceleration

What the computer sees: 
a collection of cells (figure not in scale)
populated by fields and macro-particles



In Smilei, cells are grouped in patches

Smilei Workshop – Parallelization

What you see:
Laser Wakefield Acceleration

What the computer sees: 
a collection patches made of cells 

(figure not in scale)
populated by fields and macro-particles



15
Smilei Workshop – Parallelization

MPI+OpenMP parallelization



In Smilei, patches are grouped
in different memory locations = MPI domains

Smilei Workshop – Parallelization

Example of Cartesian 
MPI decomposition

(possible in Smilei but not default)

MPI domains are made 
of contiguous patches

MPI 
Domain 3

MPI 
Domain 0

MPI
Domain 1

MPI 
Domain 2



In Smilei, 1 MPI process handles 1 MPI domain

Smilei Workshop – Parallelization

MPI 
Domain 3

MPI 
Domain 0

MPI
Domain 1

MPI 
Domain 2

Total computing cores 
= # MPI processes x # OpenMPthreads

Note: 1 computing node can have more than 1 MPI process

1 MPI process includes
a fixed number of OpenMP threads



MPI domain decomposition à need for MPI communications

Smilei Workshop – Parallelization

MPI domains must communicate with each other at their borders

MPI 
Domain 3

MPI 
Domain 0

MPI
Domain 1

MPI 
Domain 2

OpenMP threads share the memory
MPI processes do not share the memory



More common MPI decomposition in Smilei

Smilei Workshop – Parallelization

Hilbertian MPI decomposition
(good for patch exchange)

MPI 
Domain 3

MPI 
Domain 0

MPI
Domain 1

MPI 
Domain 2

MPI 
Domain 4



MPI domains are assigned to computing nodes

Smilei Workshop – Parallelization

MPI 
Domain 4

MPI 
Domain 1

MPI
Domain 2

MPI 
Domain 3

MPI 
Domain 5



Ok, but where are the patches in the supercomputer?

Smilei Workshop – Parallelization

All patches of the MPI domain owned by the local node 
are stored in the memory 



How do we keep the everything balanced?

Smilei Workshop – Parallelization

- between OpenMP threads?          OpenMP dynamic scheduling

- between MPI processes?              Dynamic MPI load balancing



23

Balancing the load between OpenMP threads

Smilei Workshop – Parallelization



The OpenMP scheduler distributes patches to threads 

Smilei Workshop – Parallelization

The OpenMP scheduler assigns cores to patches via the openMP threads.
The number of OpenMP threads is fixed by the user and should be one per core. 

1 
ti

m
es

te
p

Then handle
other 4 patches

First handle
4 patches

Initial state

Smilei Workshop – Parallelization



OpenMP threads and load imbalance

Smilei Workshop – Parallelization

Imbalance of patch loads induces idle time 

Idle Idle

Idle

1 
ti

m
es

te
p

Only 1 patch remainsThe first seven patches are treated



The OpenMP dynamic scheduler balances the load 

Smilei Workshop – Parallelization

- Generally, number of threads = number of cores (no hyper threading)

- More threads, better balance only if many more patches than threads 

in order to hopefully average the load. 



The OpenMP dynamic scheduler balances the load 

Smilei Workshop – Parallelization

Example with increasing load imbalance: 
Laser Wakefield Acceleration

Note: no MPI load balancing 
is used for this figure! 
(See following slides)



28

Balancing the load between MPI processes

Smilei Workshop – Parallelization



Load imbalance also occurs at the MPI level à between computing nodes

Smilei Workshop – Parallelization

At first order, 
total number of macro-particles à computing load

Macro-particles can change MPI domain 
and their number in a MPI domain can evolve in time. 

To maintain balance between MPI domains, we 
must change the number of macro-particles in a 
MPI domain 

The number of macro-particles in a MPI domain 
can be done through patch exchange



Smilei Workshop – Parallelization

MPI domains still with their initial shape

Patches are exchanged between MPI domains 
through dynamic load balancing between MPI processes 

MPI domains with
Irregular shape
after patch exchanges



Effects of Dynamic Load Balancing (DLB) between MPI

Smilei Workshop – Parallelization

Example with increasing load imbalance: 
Laser Wakefield Acceleration

128 MPI x 6 OpenMP
64 MPI x 12 OpenMP
128 MPI x 6 OpenMP + DLB
64MPI x 12 OpenMP + DLB 



Dynamic load balance between MPI

Smilei Workshop – Parallelization

Smilei feature:
Single Domain, Multiple Decompositions (SDMD)

Use small patches without heavy synchronization costs
Very useful for heavy operation on fields e.g. current filters

J. Derouillat and A. Beck,
Phys.: Conf. Ser. 1596, 012052 (2020)

http://dx.doi.org/10.1088/1742-6596/1596/1/012052
http://dx.doi.org/10.1088/1742-6596/1596/1/012052


Dynamic load balance between MPI

Smilei Workshop – Parallelization

Glossary

Hardware Software Associated Data 
structure

Node MPI process Group of Patches

Core OpenMP thread 1 Patch



34

F.A.Q: how to setup a simulation?

Smilei Workshop – Parallelization



Dynamic load balance between MPI

Smilei Workshop – Parallelization

Which MPI+OpenMP set-up should I use?

- 1 or few MPI per socket (usually 2 per node)

- 1 OpenMP thread per core in the socket:

export OMP_NUM_THREADS = …

- Use OpenMP dynamic scheduler if your case is imbalanced:

export OMP_SCHEDULE=dynamic



Thank you for your attention!

Contributing labs, institutions & funding agencies

Thanks for supporting this event


