
Workshop
Prague,November 2023

Achieving Performance
Charles Prouveur
CNRS | MDLS

2Smilei workshop - Achieving Performance

What is performance in HPC?

● Two ways to look at it: fastest time to result and
least energy to result

● In both case you will need:

- Node-level efficiency

- Efficient weak scaling (staying >75%)

3Smilei workshop - Achieving Performance

Configuration

● Specifying the best compilation options is the
first step to optimal runs

● -O2, -O3, -Ofast but also -arch / -gpu and
-maxrregcount for nvcc (see for reference in the
compilation scripts in scripts/compile/machine/)

● Optimize vectorization at compile time
● GPU acceleration

4Smilei workshop - Achieving Performance

Vectorization

Single Instruction Multiple Data (SIMD)
vectorization consists in performing on a
contiguous set of data, usually called vector, the
same operation(s) in a single instruction

5Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

To sum vector A with vector B:

A[0]A[0] A[1]A[1] A[2]A[2] A[3]A[3] A[4]A[4] A[5]A[5] A[6]A[6] A[7]A[7]

B[0]B[0] B[1]B[1] B[2]B[2] B[3]B[3] B[4]B[4] B[5]B[5] B[6]B[6] B[7]B[7]

+

6Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

In a scalar loop, the core will perform each sum one by one…

A[0]A[0]

B[0]B[0]

C[0]C[0]

=

+

7Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

In a scalar loop, the core will perform each sum one by one…

A[0]A[0]

B[0]B[0]

C[0]C[0]

=

+
A[1]A[1]

B[1]B[1]

C[1]C[1]

=

+

8Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

In a scalar loop, the core will perform each sum one by one…

A[0]A[0]

B[0]B[0]

C[0]C[0]

=

+
A[1]A[1]

B[1]B[1]

C[1]C[1]

=

A[2]A[2]

B[2]B[2]

C[2]C[2]

=

++

9Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

In a scalar loop, the core will perform each sum one by one until the end

A[0]A[0] A[1]A[1] A[2]A[2] A[3]A[3] A[4]A[4] A[5]A[5] A[6]A[6] A[7]A[7]

B[0]B[0] B[1]B[1] B[2]B[2] B[3]B[3] B[4]B[4] B[5]B[5] B[6]B[6] B[7]B[7]

C[0]C[0] C[1]C[1] C[2]C[2] C[3]C[3] C[4]C[4] C[5]C[5] C[6]C[6] C[7]C[7]

+ + +

= = =

+

=

+

=

+

=

+

=

+

=

10Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

The vectorized version performs the sum of all elements at once

A[0]A[0] A[1]A[1] A[2]A[2] A[3]A[3] A[4]A[4] A[5]A[5] A[6]A[6] A[7]A[7]

B[0]B[0] B[1]B[1] B[2]B[2] B[3]B[3] B[4]B[4] B[5]B[5] B[6]B[6] B[7]B[7]

C[0]C[0] C[1]C[1] C[2]C[2] C[3]C[3] C[4]C[4] C[5]C[5] C[6]C[6] C[7]C[7]

+ + +

= = =

+

=

+

=

+

=

+

=

+

=

11Smilei workshop - Achieving Performance

Understand the vectorized treatment of data

● Most modern processors perform both an addition and
a multiplication in a single vectorized cycle (referred o
as FMA for Fused-Add-Multiply instruction)

● If-branch can also be vectorized using masks
● Largest vectors are composed of 8 double-precision

floats (AVX512 for instance)

AA BB CCxDD = +

12Smilei workshop - Achieving Performance

How to change the vecto

● Specify at compile time the proper options:
– the architecture (-march=haswell for

example)
– The instruction sets: -xCORE-AVX2 for

example
● There are plenty of examples in

/scripts/compile_tools/machine
● Namelist: activate it with the bloc Vectorization()

in your namelist (more details in the doc)

13Smilei workshop - Achieving Performance

Vectorized versus scalar operator implementations

Thermal plasma 3D benchmark on a Skylake node (2 MPIs x 24 OMPs)

[1] A. Beck, et al. , Adaptive SIMD optimizations in particle-in-cell codes with fine-grain particle sorting, Computer Physics
 Communications 244, 246-263 (2019) arXiv:1810.03949

Lower is
better

http://dx.doi.org/10.1016/j.cpc.2019.05.001
http://dx.doi.org/10.1016/j.cpc.2019.05.001
http://dx.doi.org/10.1016/j.cpc.2019.05.001
https://arxiv.org/abs/1810.03949

14Smilei workshop - Achieving Performance

Vectorization results

Particle computational cost as a function of the number of particles per cell. Vectorized operators are
compared to their scalar versions on various cluster architectures. Note that the Skylake compilations
accepts both AVX512 and AVX2 instruction sets.

15Smilei workshop - Achieving Performance

Adaptive vectorization

16Smilei workshop - Achieving Performance

GPU Acceleration

As most new supercomputers are GPU based, A
lot of the development effort of SMILEI has been
focused on offloading computations on GPUs.
Either using Pragmas (with OpenAcc or OpenMP) or using
CUDA/HIP.

(6 team members so far involved in this
endeavour)

17Smilei workshop - Achieving Performance

What is a GPU?

A GPU works as an accelerator and needs a CPU
for system tasks (IO, network communication…)

18Smilei workshop - Achieving Performance

State of GPU support (5.0)

Currently supported:
● Both AMD & NVIDIA GPUs
● Cartesian geometry: 2D & 3D
● Order 2
● Moving window
● Diagnostics

Not yet supported:
● AM geometry
● Envelope
● PML
● Additional physics modules: Ionization, QED, collisions
● Dynamic load balancing

19Smilei workshop - Achieving Performance

How to accelerate your computations
with GPU?

● Options need to be specified at compile time:

- architecture with -arch=SM_70 for example
- -acc &/or -cuda, or nothing depending on the
CUDA & NVHPC version

● In the namelist: add “gpu_computing = True” to
main()

● Additional information:

- https://smileipic.github.io/Smilei/index.html

- see the doc with sphinx + make doc

https://smileipic.github.io/Smilei/index.html

20Smilei workshop - Achieving Performance

Scaling intra node

Case used:

3D thermal plasma
N cells in every direction
8 ppc
2 species

21Smilei workshop - Achieving Performance

Scaling intra node

Note: CPU node’s RAM capacity is much bigger than a GPU’s

22Smilei workshop - Achieving Performance

Weak scaling

Example on Adastra:

- 2D case
- Scaling done from 4 to
2048 GPUs
- 128 x 128 x (900pcc) x 3
species ~45e6 particles per
GPU

23Smilei workshop - Achieving Performance

Measuring energy efficiency
Tracking the energy of your job can be done with, for example on Jean-ZAY:

sacct -j JOBID --format=elapsed,consumedenergy,consumedenergyraw

24Smilei workshop - Achieving Performance

GPU offloading guidelines
Guidelines On CPU:

● Have reasonably small patches. Small
patches are beneficial to efficient load
balancing and cache use, but they
increase the synchronization costs. The
optimal patch size depends strongly on
the type of simulation. Use small patches
(down to 6x6x6 cells) if your simulation
has small regions with many particles. Use
larger patches (typically 100x100 or
25x25x25 cells) otherwise.

● For high performances, each process
should own more patches than threads.

● Have only as many MPI processes as
sockets

Guidelines On GPU:

● One patch, 4 is certain circumstances

● One MPI process per GPU

● Fill the GPU as much as possible

● Increasing the number of patch allows
the possibility to fill more RAM

For both: create as little as possible outputs/diagnostics because of their overhead
If you do, use the fastest filesystem available (scratch)

25Smilei workshop - Achieving Performance

Thank you for your attention
modules

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

