Session 3: Beyond PIC

Smilei) Workshop

Physics Modules

9 November 2023

Francesco Massimo (z10f 1) francesco.massimo@universite-paris-saclay.fr

Motivation: missing physics in PIC codes

Vlasov \rightarrow no interaction between individual particles Maxwell equations \rightarrow no quantum effects Finite grid size \rightarrow no high-frequency photons Fixed charge \rightarrow no atomic physics Fixed mass \rightarrow no nuclear physics

Added Physics in Smilei

lonization

Collisions (interaction at close range)

Nuclear reactions

Radiation by accelerated charges at small scales

Electron-positron pair creation

Field Ionization

Smilei Workshop – Physics Modules

Ionization: concept

Example with laser wakefield ionization

Ionization in Smilei: tunnel ionization

- Multi-level ADK model from [R. Nuter et al., PoP 19, 033107 (2011)]
- Ionization rate Γ from theoretical formula
- Outermost electron is stripped if random number U > exp(- $\Gamma \Delta t$)
- Multiple ionization in 1 timestep is accounted for
- Envelope ionization discussed in Advanced Modules

Ionization in Smilei: tutorial Field Ionization

Laser interacting with carbon plasma


```
Species(
    name = 'carbon',
    ionization_model = 'tunnel',
    ionization_electrons = 'electron',
    atomic_number = 6,
    charge = 0.,
    ...
)
```


Collisions

Smilei Workshop – Physics Modules

Collisions alter the electron behaviour

- Electron beam divergence and energy deposition
- Resistive heating by a strong current
- Heat transport (fusion research)

Adding collisions to your namelist:

```
Collisions(
    species1 = ['ions1', 'ions2'],
    species2 = ['electrons'],
    #coulomb_log = 3,
)
```

Collisions numerical implementation: a binary process

- Macro-particles are associated 2-by-2 randomly

- The collision rate is computed for each pair. It corresponds to a small-angle Rutherford cross-section. [F. Prez et al., PoP 19, 083104 (2012)]

- A random deflection is computed accordingly

Collisions: comparing the numerical implementation with theory

Thermalization between electrons and ions

e-e stopping power

Collisions: be careful with high collision rates

Collisions are not correctly computed if s > 2The value of s can be monitored in a debug file

Nuclear Reactions

Smilei Workshop – Physics Modules

Occurrence of nuclear reactions in laser-plasma interaction

- Inertial fusion studies
- Neutron sources
- Isotope production

Nuclear reactions occur during collisions

- Adapted from [D. P. Higginson et al., JCP 388, 439 (2019)]
- Cross-section is tabulated. Currently available: $D + D \rightarrow He3 + n$
- New macro-particles creation is sampled randomly
- A rate multiplier R is introduced to produce more reactions but with less statistical weight.
- R may be automatically calculated to produce ~ as many macroparticles as in the reactants.

Add nuclear reactions in your namelist

```
Species (
    name = "Deuterium",
    atomic number = 1,
    mass = 3870.5,
    . . .
Species(
    name = "Helium",
    atomic number = 2,
    mass = 5497.9,
    . . .
Species (
    name = "neutron",
    atomic number = 0,
    mass = 1838.7,
    . . .
```

```
Collisions(
    species1 = ['Deuterium'],
    species2 = ['Deuterium'],
    nuclear_reaction = ['Helium', 'neutron'],
)
```

Radiation and energy losses by accelerated charges

Accelerated charges emit radiation

- Charge loses energy and emits photons
- Probability increases with particle energy and field strength
- In Smilei:
- Inverse Compton Scattering
- fast electron + strong field \rightarrow high-energy photon
- Bremsstrahlung (not yet)

fast electron + nucleus \rightarrow high-energy photon

Inverse Compton Scattering assumptions

- Relativistic particle $\gamma \gg 1$
- Relativistic field $\alpha_0 \gg 1$
- Fields below the Schwinger limit ~ 10^{18} V/m $\,$, $\,4*10^{29}$ W/cm2 $\,$
- Incoherent radiation between neighbors

Quantum parameter χ decides the regime

$$\chi = \frac{\gamma}{E_s} \sqrt{(\vec{E} + \vec{v} \times \vec{B})^2 - (\vec{v} \cdot \vec{E})^2 / c^2} \sim \gamma \frac{E}{E_s}$$

- Classical regime $\chi \sim 10^{-3} \rightarrow$ **Landau-Lifshitz** model, deterministic
- Semi-classical regime $\chi \sim 10^{-2} \rightarrow$ corrected Landau-Lifshitz
- Weak quantum regime $\chi \sim 10^{-1} \rightarrow \text{Niel model}$, stochastic
- Quantum regime $\chi \sim 1 \rightarrow$ **Monte-Carlo model**, stochastic

Produces high-energy macro-photons

Examples of Inverse Compton Scattering

Photon energy distribution emitted by an ultra-relativistic electron bunch in a constant magnetic field. $\chi = 1$

Electron bunch traveling in a constant magnetic field and losing energy over time.

Add radiation in your namelist

```
Species(
    name = "electron",
    . . .
    radiation model = "Monte-Carlo",
    radiation_photon_species = "photon",
Species(
    name = "photon",
    mass = 0,
    . . .
RadiationReaction (
    . . .
```

Electron-positron pair creation

Smilei Workshop – Physics Modules

Add pair creation in your namelist

```
Species(
    name = "electron",
    . . .
    radiation model = "Monte-Carlo",
    radiation_photon_species = "photon",
Species (
    name = "positron",
    . . .
    radiation model = "Monte-Carlo",
    radiation photon species = "photon",
Species (
    name = "photon",
    mass = 0,
    . . .
    multiphoton Breit Wheeler = ["electron", "positron"],
```

```
RadiationReaction(
...)
MultiphotonBreitWheeler(
...)
```

Various quantum effects could be included

- Breit-Wheeler pair creation

high-energy photon + strong field \rightarrow e- / e+ pair

- Bethe-Heitler pair creation (not yet)

high-energy photon + nucleus \rightarrow e- / e+ pair

- Photon-photon interaction ...

Breit-Wheeler effect creates e+/e- pairs

- High-energy photons exist as macro-particles (from inverse Compton scattering)
- Photon + strong field \rightarrow e- / e+ pair

- Probability increases with photon energy and field strength
- Assumptions: $\chi_{\gamma} > 10^{-2}$, $\gamma_{\gamma} > 2$, $a_0 \gg 1$

Stochastic scheme (purely quantum effect)

- Maximum optical depth randomly sampled for each photon (given by theoretical formula)
- When optical depth is reached, pair is created
- Electron / positron energy randomly sampled
- Photon deleted

Examples of Breit-Wheeler pair creation

Photon bunch traveling in a constant magnetic field

Smilei Workshop – Physics Modules

Summary: available physics modules

- **Ionization** by fields and by collisions
- Collisions between macro-particles(correction for

degenerate plasmas)

- Nuclear reactions
- Radiation of accelerated charges (classical + QED)
- Breit-Wheeler pair production
- Projects: Bremsstrahlung, Bethe-Heitler pairs

Thank you for your attention!

Thanks for supporting this event

Contributing labs, institutions & funding agencies

