Session #2: The PIC method and its parallelization

Smilei) workshop 2023 PIC basics

Frédéric Perez – LULI, CNRS frederic.perez@polytechnique.edu

What is a PIC code supposed to do?

- Simulate a plasma with kinetic effects (not hydrodynamics)
- Neglect particle-particle interactions (collisions)
- Electromagnetic effects

Distribution function
$$f_s(t, \mathbf{x}, \mathbf{p})$$

Bolt What has now equation $\partial_t f_s + \mathbf{v} \cdot \nabla f_s + \mathbf{F} \cdot \nabla_p f_s = (\partial_t f_s)$ collisions
Maxwell equations $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$ $\partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$
 $\nabla \cdot \mathbf{B} = 0$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

The Maxwell-Vlasov system

Particles (Vlasov) $\partial_t \mathbf{f}_s + \mathbf{v} \cdot \nabla \mathbf{f}_s + \mathbf{F} \cdot \nabla_p \mathbf{f}_s = 0$ Current & density $oldsymbol{
ho}(t,\mathbf{x}) = \int d^3 \mathbf{p} \; f_s(t,\mathbf{x},\mathbf{p})$ Lorentz Force $\mathbf{F}_L = q_s \left(\mathbf{E} + \mathbf{v} imes \mathbf{B}
ight)$ $\mathbf{J}(t,\mathbf{x}) = q_s \int d^3 \mathbf{p} \ \mathbf{v} \ \mathbf{f}_s(t,\mathbf{x},\mathbf{p})$ Fields (Maxwell) $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \qquad \qquad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$ $\nabla \cdot \mathbf{B} = 0$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

There is a natural set of units

Velocity	c
Charge	e
Mass	m_{e}
Momentum	$m_e c$
Energy, Temperature	$m_e c^2$

 ω_r is the reference angular frequency. The code does not need to know its value. Results of the simulation can be scaled *a posteriori*.

Maxwell equations	
$ abla \cdot \mathbf{E} = ho$	$\partial_t \mathbf{E} = -\mathbf{J} + \nabla \times \mathbf{B}$
$ abla \cdot \mathbf{B} = 0$	$\partial_t \mathbf{B} = - abla imes \mathbf{E}$

The units of density n_r is not equal to $(c/\omega_r)^{-3}$

How to choose $\,\omega_r\,?\,$

 ω_r is generally an important frequency of the problem

- laser frequency (in this case, $n_r = n_c$)
- plasma frequency (in this case, $n_r=n$)
- cyclotron frequency (in this case, $B_r=B/\gamma$)

Again, the code does not need to know its value (unless you need collisions, ionization, ...)

The Maxwell-Vlasov system

Particles (Vlasov) $\partial_t \mathbf{f}_s + \mathbf{v} \cdot \nabla \mathbf{f}_s + \mathbf{F} \cdot \nabla_p \mathbf{f}_s = 0$ Current & density $ho(t,\mathbf{x}) = \int d^3\mathbf{p} \, \mathbf{f}_s(t,\mathbf{x},\mathbf{p})$ Lorentz Force $\mathbf{F}_L = q_s \left(\mathbf{E} + \mathbf{v} imes \mathbf{B}
ight)$ $\mathbf{J}(t,\mathbf{x}) = q_s \int d^3 \mathbf{p} \ \mathbf{v} \ \mathbf{f}_s(t,\mathbf{x},\mathbf{p})$ Fields (Maxwell) $abla \cdot \mathbf{E} =
ho \qquad \partial_t \mathbf{E} = -\mathbf{J} +
abla imes \mathbf{B}$ $\nabla \cdot \mathbf{B} = 0 \qquad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

Solving Maxwell

We need only 2 of Maxwell's equations

We do not need to solve Maxwell-Poisson and Maxwell-Gauss, (provided they are satisfied initially)

Towards the PIC loop

The fields are defined on a grid

There are several ways to solve Maxwell on a grid. Let us illustrate with the most common technique "*Finite Difference Time Domain*" (FDTD)

Maxwell-Ampere in 1D:

The grid is "staggered": Yee's grid

The grid is "staggered": Yee's grid

The grid is "staggered": Yee's grid

The grid is also staggered in time!

"Leap-frog" scheme

Towards the PIC loop

Solving Vlasov

A simplified distribution function

Vlasov = partial differential equation in a 6D space.

$$\partial_t \mathbf{f}_s + \mathbf{v} \cdot \nabla \mathbf{f}_s + \mathbf{F} \cdot \nabla_p \mathbf{f}_s = 0$$

Direct integration (Vlasov codes) has a tremendous computational cost.

In a PIC code, the distribution function is approximated as a sum over macro-particles

$$f_s(t, \mathbf{x}, \mathbf{p}) = \sum_{p=1}^N w_p S(\mathbf{x} - \mathbf{x}_p(t)) \, \delta(\mathbf{p} - \mathbf{p}_p(t))$$

Shape function

From Vlasov to the macro-particle motion

$$f_s(t, \mathbf{x}, \mathbf{p}) = \sum_{p=1}^N w_p S(\mathbf{x} - \mathbf{x}_p(t)) \,\delta(\mathbf{p} - \mathbf{p}_p(t)) \qquad \& \qquad \partial_t f_s + \mathbf{v} \cdot \nabla f_s + \mathbf{F} \cdot \nabla_p f_s = 0$$

Integrate over $p \ o \ \partial_t \mathbf{x}_p = \mathbf{v}_p$

Multiply by p then integrate over p and x ightarrow $\partial_t \mathbf{p}_p = q_s \, \mathbf{E}_p + q_s \, \mathbf{v}_p imes \mathbf{B}_p$

The movement of macro-particles is essentially that of real particles

But ...
$$\begin{cases} \mathbf{E}_p = \int \mathbf{E}(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p) \, d^3 \mathbf{x} \\ \mathbf{B}_p = \int \mathbf{B}(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p) \, d^3 \mathbf{x} \end{cases}$$

The fields are "averaged" around the particle position.

We have discovered pusher & interpolation !

Pusher = macro-particle motion

$$\left\{ egin{array}{l} \partial_t \mathbf{x}_p &= \mathbf{v}_p \ \partial_t \mathbf{p}_p &= q_s \, \mathbf{E}_p + q_s \, \mathbf{v}_p imes \mathbf{B}_p \end{array}
ight.$$

Field interpolation = calculate fields at macro-particle location

$$egin{aligned} \mathbf{E}_p &= \int \mathbf{E}(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p) \, d^3 \mathbf{x} \ \mathbf{B}_p &= \int \mathbf{B}(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p) \, d^3 \mathbf{x} \end{aligned}$$

Towards the PIC loop

Particle pusher $\partial_t \mathbf{x}_p = \mathbf{v}_p$ $\partial_t \mathbf{p}_p = q_s \, \mathbf{E}_p + q_s \, \mathbf{v}_p \times \mathbf{B}_p$ **Field interpolation** Current $\mathbf{E}_p = \int \mathbf{E}(\mathbf{x}) \, S(\mathbf{x} - \mathbf{x}_p) \, d^3 \mathbf{x}$ $\mathbf{J}(t,\mathbf{x}) = q_s \int d^3 \mathbf{p} ~~ \mathbf{v} ~ \mathbf{f}_s(t,\mathbf{x},\mathbf{p})$ $\mathbf{B}_p = \int \mathbf{B}(\mathbf{x}) \, S(\mathbf{x}-\mathbf{x}_p) \, d^3 \mathbf{x}$ Fields (Maxwell) $\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mathbf{J}$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

A few details about the **pusher**

$$egin{aligned} & rac{d\mathbf{x}_p}{dt} = \mathbf{v}_p & & \mathbf{x}_p^{n+1} - \mathbf{x}_p^n = \mathbf{v}_p^{n+1/2} \Delta t \ & rac{d\mathbf{p}_p}{dt} = \mathbf{F}_p & & \mathbf{p}_p^{n+1/2} - \mathbf{p}_p^{n-1/2} = \mathbf{F}_p^n \Delta t \end{aligned}$$

A few details about the pusher

 $\frac{d{\bf p}_p}{dt}$ $= q_s \mathbf{E}_p + q_s \mathbf{v}_p imes \mathbf{B}_p$ addition + rotation

Naïve method

Boris' method (more accurate)

A few details about the interpolation

Fields have values on grid points

$$\left\{ egin{array}{l} \mathbf{E}_p = \int \mathbf{E}(\mathbf{x}) S^{(m)}(\mathbf{x}_i - \mathbf{x}_p) \ \mathbf{B}_p = \int \mathbf{B}(\mathbf{x}) S^{(m)}(\mathbf{x}_i - \mathbf{x}_p) \end{array}
ight.$$

$$egin{aligned} \mathbf{E}_p &= \sum_{i \in S} \mathbf{E}(\mathbf{x}_i) S^{(m+1)}(\mathbf{x}_i - \mathbf{x}_p) \ \mathbf{B}_p &= \sum_{i \in S} \mathbf{B}(\mathbf{x}_i) S^{(m+1)}(\mathbf{x}_i - \mathbf{x}_p) \end{aligned}$$

Each grid point surrounding the macro-particle contributes to the field it sees

Towards the PIC loop

Particle pusher $\partial_t \mathbf{x}_p = \mathbf{v}_p$ $\partial_t \mathbf{p}_p = q_s \, \mathbf{E}_p + q_s \, \mathbf{v}_p \times \mathbf{B}_p$ **Field interpolation** Current $\mathbf{E}_p = \sum_{i \in S} \mathbf{E}(\mathbf{x}_i) \ S(\mathbf{x}_i - \mathbf{x}_p)$ $\mathbf{J}(t,\mathbf{x}) = q_s \int d^3 \mathbf{p} ~~ \mathbf{v} ~ \mathbf{f}_s(t,\mathbf{x},\mathbf{p})$ $\mathbf{B}_p = \sum_{i \in S} \mathbf{B}(\mathbf{x}_i) \; S(\mathbf{x}_i - \mathbf{x}_p)$ Fields (Maxwell) $\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mathbf{J}$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

Calculate the current

Calculate the current "directly"

$$\begin{cases} f_s(t, \mathbf{x}, \mathbf{p}) = \sum_{p=1}^N w_p \, S(\mathbf{x} - \mathbf{x}_p(t)) \, \delta(\mathbf{p} - \mathbf{p}_p(t)) \\ \mathbf{J}(t, \mathbf{x}) = q_s \int d^3 \mathbf{p} \ \mathbf{v} \ f_s(t, \mathbf{x}, \mathbf{p}) \end{cases} \quad \mathbf{J}(\mathbf{x}_i) = \sum_{\text{particles}} q_s w_p \ \mathbf{v}_p \ S(\mathbf{x}_i - \mathbf{x}_p) \\ \text{particles} \end{cases}$$

macro-particles surrounding a grid point "deposit" their current

Unfortunately, this does not satisfy the charge-conservation equation

Forcing charge conservation

$$egin{aligned} &f_s(t,\mathbf{x},\mathbf{p}) = \sum_{p=1}^N w_p \, S(\mathbf{x}-\mathbf{x}_p(t)) \, \delta(\mathbf{p}-\mathbf{p}_p(t)) \ & eta(t,\mathbf{x}) = \int d^3 \mathbf{p} \, f_s(t,\mathbf{x},\mathbf{p}) \ & \partial_t eta +
abla \cdot \mathbf{J} = 0 \end{aligned}$$

$$\mathbf{J}(\mathbf{x}_i + d\mathbf{x}/2) - \mathbf{J}(\mathbf{x}_i - d\mathbf{x}/2) = \dots$$

Esirkepov's method

The PIC loop ... at last !

Field interpolation

 $\mathbf{E}_p = \sum_{i \in S} \mathbf{E}(\mathbf{x}_i) \; S(\mathbf{x}_i - \mathbf{x}_p)$

 $\mathbf{B}_p = \sum_{i \in S} \mathbf{B}(\mathbf{x}_i) \; S(\mathbf{x}_i - \mathbf{x}_p)$

Particle pusher $\partial_t \mathbf{x}_p = \mathbf{v}_p$ $\partial_t \mathbf{p}_p = q_s \mathbf{E}_p + q_s \mathbf{v}_p \times \mathbf{B}_p$

Current deposition

$$\mathbf{J}(\mathbf{x}_i + d\mathbf{x}/2) - \mathbf{J}(\mathbf{x}_i - d\mathbf{x}/2) = \ldots$$

Fields (Maxwell) $\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mathbf{J}$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

Limitations

The numerical vacuum is dispersive and anisotropic !

FDTD equations + search for wave-like solutions **Dispersion relation** $\Delta t^{-2} \sin^2(\omega \Delta t/2) = \sum_{a=x,y,z} \Delta a^{-2} \sin^2(k_a \Delta a/2)$

From the dispersion relation, one can show that **stability requires**:

$$\Delta t^{-2} > \sum_{a=x,y,z} \Delta a^{-2}$$

$$\Delta t < \left(\sum_{a=x,y,z} \Delta a^{-2}
ight)^{-1/2}$$

Courant-Friedrich-Levy (CFL) condition

Depending on the situation you may need to resolve:

- ✓ The Debye length (or the simulation will have numerical heating)
- ✓ The laser wavelength (or it won't propagate)
- ✓ The skin depth

Often, a PIC simulation won't crash when the results are meaningless. Users must understand the limitations and test.

Thank you for your attention!

Particle pusher $\partial_t \mathbf{x}_p = \mathbf{v}_p$ $\partial_t \mathbf{p}_p = q_s \mathbf{E}_p + q_s \mathbf{v}_p \times \mathbf{B}_p$

Field interpolation

$$egin{aligned} \mathbf{E}_p &= \sum_{i \in S} \mathbf{E}(\mathbf{x}_i) \; S(\mathbf{x}_i - \mathbf{x}_p) \ \mathbf{B}_p &= \sum_{i \in S} \mathbf{B}(\mathbf{x}_i) \; S(\mathbf{x}_i - \mathbf{x}_p) \end{aligned}$$

Current deposition

$$\mathbf{J}(\mathbf{x}_i + d\mathbf{x}/2) - \mathbf{J}(\mathbf{x}_i - d\mathbf{x}/2) = \ldots$$

Fields (Maxwell) $\partial_t \mathbf{E} = \nabla \times \mathbf{B} - \mathbf{J}$ $\partial_t \mathbf{B} = -\nabla \times \mathbf{E}$

Thanks & Keep Smileing!

Thanks for supporting this event

Contributing labs, institutions & funding agencies

