Welcome to

Smile:)

4th User & Training Workshop

ELI Beamlines | November 8 - 10, 2023

Today's program

09:00	Check-in & Welcome coffee		
09:30	Smilei: Project review	Mickael Grech	Status and perspectives Smilei's ecosystem
		Frederic Perez	Smilei's ecosystem
10:40	Coffee		
11:00	Contributed talks	Hyeon Kim	Numerical Simulation of High Harmonic Generation Using Liquid Flat-Jet Targets
		Pierce Giffin	Kinetic Simulations of Collisionless Shock Formation in the Dark Sector
		Jan Psikal	Sophisticated studies of laser-driven ion acceleration with SMILEI code
		Vojtěch Horný	Simulations on Particle and Radiation Sources at ELI NP
12:40	Lunch	+ Lab tour @ 13	3:20 (limited places)
14:00	Smilei: Project review	Arnaud Beck	Supercomputing landscape
		Arnaud Beth	PIC simulation at boundaries of comets
14:40	Contributed talks	Francisco Javier Polanco Rodriguez	PIC simulations of electromagnetic emissions by solar radio bursts: a study of polarization characteristics of radiated waves
15:30	Coffee		
		Marianna Lytova	Scattered field formalism in the particle-in-cell method for tightly focused ultrashort laser beams
15:45	Contributed talks	Kevin Ambrogioni	Numerical Investigation of Laser-Driven Radiation Sources with Double-Layer Targets (DLTs) using Particle in-Cell (PIC) codes
		Yasmina Azamoum	Optical Probing of Ultrafast Laser-Induced Transitions from Solid to Overdense Plasma
		Mufei Luo	Kinetic modelling of autoresonant beat-wave excitation of plasma waves

Smilei)

Status and Perspectives

Mickael Grech, LULI
4th User & Training Workshop | ELI Beamlines | November 8 - 10, 2023

The Particle-In-Cell (PIC) simulation of plasmas

from Laboratory Plasmas ...

... to Space & Astrophysical Plasmas

The Particle-In-Cell (PIC) simulation of plasmas

from Laboratory Plasmas ...

... to Space & Astrophysical Plasmas

Smilei is an electromagnetic Particle-In-Cell (PIC) code

Maxwell Eqs - Electromagnetic Fields

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

Smilei is an electromagnetic Particle-In-Cell (PIC) code

Maxwell Eqs - Electromagnetic Fields

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

More on this in Fred's lecture tomorrow

Smilei allows for advanced physics simulation

Maxwell Eqs - Electromagnetic Fields

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \partial_t \mathbf{E} = -\frac{1}{\epsilon_0} \mathbf{J} + c^2 \nabla \times \mathbf{B}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \partial_t \mathbf{B} = -\nabla \times \mathbf{E}$$

Vlasov Eq - Species of the plasma

$$\partial_t f_s + \frac{\mathbf{p}}{m_s \gamma} \cdot \nabla f_s + \mathbf{F}_L \cdot \nabla_p f_s = 0$$

Physics Modules

- collisions (Fokker-Planck)
- ionization (field & impact)
- fusion reaction (DD)
- inverse Compton scattering
- Breit-Wheeler pair production
 Francesco's lecture tomorrow

Advanced Models

- Azimuthal mode (AM) decomposition
- Laser envelope model
- Perfectly Matched Layers
 Guillaume's lecture tomorrow

Smilei in a nutshell

2013 Start of the project*

2014 Gitlab release to co-dev

2016
1st physics studies & large scale simulations
Github

2018 Reference paper *objective: develop the first <u>open-source</u> PIC code harnessing new paradigms of <u>high-performance</u> computing

Open-source & Community-Oriented

documentation • chat • online tutorials • post processing & visualization training workshops • summer school & master trainings • issue reporting Fred's review this morning

advanced physics modules: geometries, collisions, ionization, QED broad range of applications: from laser-plasma interaction to astrophysics

Francesco & Guillaume's lectures tomorrow

High-performance

C++/Python • MPI/OpenMP/OpenACC/CUDA/HIP • SIMD • HDF5 designed for the latest architectures

Arnaud's review this afternoon & Charles' lecture tomorrow

What you get with Smilei

A high-performance PIC code running on various supercomputers worldwide

with dedicated **post-processing tools** (Happi) and an ensemble of **benchmarks** (Easi, for continuous integration)

An extensive documentation

with online tutorials

and a collaborative community

Smilei is a research & teaching platform

Scientific production is rich ...

130+ peer-reviewed papers have been published using Smilei

10+ PhD theses have already been defended

... and focuses on various applications

LPI/IFE: laser-plasma interaction / inertial fusion for energy

UHI: Ultra-high intensity

QED: Quantum electrodynamics (extreme light)

HPC: high-performance computing

Space plasmas & astrophysics

International Figure 2 School Wilder and Conference 2 School W

Teaching plasma physics

at the Master/doctoral levels in Europe in various winter/summer schools in user & training workshops via online tutorials

Smilei's user community is international & steadily growing

^{*}Dérouillat et al., Comp. Phys. Comm. 222, 351 (2018)

Smilei's user community is international & steadily growing

A project anchored in the French & European HPC landscape

Integration in the French & European HPC landscapes

- running on all super-computers in France and many in Europe
- 10s millions computing hours every year via GENCI & PRACE/EuroHPC
- GENCI technological survey
- French Project NumPEX, Exascale project

Special/early access to various machines

- 2015 IDRIS/Turing BlueGene-Q
- 2016 CINES/Occigen
- 2018 TGCC/Irene-Joliot-Curie
- 2019 IDRIS/Jean Zay
- 2021 RIKEN/Fugaku
- 2022 CINES/Adastra (GPU)

A few recent highlights ...

Code & HPC aspects

- optimization on ARM/RISC architectures*
- parallelization by task**
 - *Lobet et al., HPCAsia (2022) **Massimo et al., PASC (2022)

Additional physics modules (v4.7 and 4.8)

- upgrade of the Happi post-processing toolbox & diagnostic suit
- upgrade of the binary collision approach (nuclear reactions)
- advanced solvers for laser/particle-driven wakefield acceleration:
 - envelope models in various geometries & accounting for ionization
 - B-TIS3* interpolation scheme to mitigate numerical Cherenkov
- advanced boundary conditions:
 LaserOffset & Perfectly Matched Layers (also work with envelope)

*Bourgeois & Davoine, J. Plasma Phys. (2023)

More about it during Francesco's lecture tomorrow!

More also from our user community

- 30+ new articles published in peer-reviewed journal since our last workshop in March 2022!
- coupling with various codes / experimental data / Machine learning

... and a very big one!

Smilei 5.0 has just been released and it runs on NVIDIA & AMD GPUs!

OpenMP, HIP

Standard 2D and 3D simulations are supported

- extensive rewriting to run of both architectures & to insure performance!
- 2D and 3D cartesian geometries with various boundary conditions
- implementation is almost transparent to the user: Main(..., gpu_computing=True)
- porting of additional physics modules & advanced solvers is still work in progress
- additional releases will come regularly this year ... but there's already plenty you can do!

More info given during the workshop!

- see Francisco Rodriguez's contributed talk this afternoon (ADASTRA Grand Challenge)
- see also Arnaud's review this afternoon & Charles' lecture tomorrow
- you will try Smilei 5.0 on GPU during the tutorials on Friday!

Perspectives

Code & HPC aspects

- GPU porting: AM geometry, adv. phys. modules, load-balancing
- parallelization by task, asynchronism
- advanced IO management (AI approach)
- refactoring / streamlining (200 000 lines of codes!)

Additional physics modules

- coupling with the strong-field QED ToolKit (collab. with MPIK, Heidelberg)
- additional atomic physics processes (Bremsstrahlung & Bethe-Heitler)
- advanced laser field injectors (collab. with ELI Beamlines & CEA/DAM)
- additional nuclear fusion processes (collab. with CELIA)

Keep on building & animating the user community

- encouraging new developers to join in
- developing an online teaching platform (beyond the tutorial approach)
- preparing next user & training workshop!

The Smilei dev-team

Co-development between HPC specialists & physicists

Charles Prouveur***

Mathieu Lobet*

Julien Derouillat

Haïthem Kallala, Juan Jose Silva Cuevas

Arnaud Beck*
Guillaume Bouchard (now at CEA)

Imène Zemzemi

Francesco Massimo*

Mickael Grech*
Frederic Perez*
Tommaso Vinci*

Marco Chiaramello, Anna Grassi

*permanent staff **Code architect

*Code architect (CNRS DDOR, w.s.f. INP, INSU, IN2P3)

The Smilei dev-team

Co-development between physicists & HPC specialists

Charles Prouveur***

Mathieu Lobet*

Julien Derouillat

Haïthem Kallala, Juan Jose Silva Cuevas

NES

Olga Abramkina (also at MdIS) Marie Flé

Etienne Malaboeuf

Arnaud Beck*

Guillaume Bouchard (now at CEA)

Imène Zemzemi

Asma Farjallah* (add NVIDIA)

Francesco Massimo*

Nicolas Aunai Jérémie Dargent

Clément Caizergues Emmanuel d'Humières

Mickael Grech*
Frederic Perez*
Tommaso Vinci*
Marco Chiaramello, Anna Grassi

Illya Plotnikov

Paula Kleij Michèle Raynaud

*permanent staff **Code architect (CNRS DDOR, w.s.f. INP, INSU, IN2P3)

The Smilei dev-team

Co-development between physicists & HPC specialists

Charles Prouveur***

Mathieu Lobet*

Julien Derouillat

Haïthem Kallala, Juan Jose Silva Cuevas

Arnaud Beck*

Guillaume Bouchard (now at CEA)

Imène Zemzemi

Francesco Massimo*

Mickael Grech*

Frederic Perez*

Tommaso Vinci*

Marco Chiaramello, Anna Grassi

*we need you: join the Smilei dev-team!

Thanks & Keep Smileing!)

Thanks for supporting this event!

Contributing labs, institutions & funding agencies

