Toroflux in non-centrosymmetric superconductors Vortex magnetic field inversion and applications

Julien Garaud with M. Chernodub, D. Kharzeev and also A. Samoilenka, E. Babaev, A. Korneev, A. Molochkov

Institut Denis-Poisson, CNRS/UMR 7013, Université de Tours, France

March 21, 2024

Topological defects in non-centrosymmetric superconductors

based on

- JG, A. Korneev, A. Samoilenka, A. Molochkov, E. Babaev, and M. Chernodub *Toroflux: A counterpart of the Chandrasekhar-Kendall state in noncentrosymmetric superconductors, Phys. Rev. B* 108, 014504 (2023). arXiv:2208.08180 [cond-mat]
 - JG, M. N. Chernodub and D. E. Kharzeev Vortices with magnetic field inversion in non-centrosymmetric superconductors, Phys. Rev. B 102, 184516 (2020). arXiv:2003.10917 [cond-mat]
- M. N. Chernodub, JG and D. E. Kharzeev
 Chiral Magnetic Josephson junction: a base for low-noise superconducting qubits?,
 Universe 8,12:657 (2022).
 arXiv:1908.00392 [cond-mat]

Introduction	Parity breaking and non-centrosymmetricity
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconductors

Outline

Introduction

- Parity breaking and non-centrosymmetricity
- Superconductivity
- Non-centrosymmetric superconductors

Toroflux in non-centrosymmetric superconductors

- Chandrasekhar-Kendall states
- Derivation of toroflux solution sourced by magnetic dipole
- Toroflux properties and observation

Vortices and applications in non-centrosymmetric superconductors

- Vortex solutions, field inversion
- Applications: Chiral Magnetic Josephson junctions
- Conclusion

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Parity-breaking phenomena in physics

Parity under space inversion is a fundamental symmetry: $P(x) \rightarrow -x$

- conserved: gravitational, electromagnetic, strong interaction, ...
- broken: weak interactions, chirality of molecules, toplogical materials, ...

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Parity-breaking phenomena in physics

Parity under space inversion is a fundamental symmetry: $P(x) \rightarrow -x$

- conserved: gravitational, electromagnetic, strong interaction, ...
- broken: weak interactions, chirality of molecules, toplogical materials, ...

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Parity-breaking phenomena in physics

Parity under space inversion is a fundamental symmetry: $P(x) \rightarrow -x$

- conserved: gravitational, electromagnetic, strong interaction, ...
- broken: weak interactions, chirality of molecules, toplogical materials, ...

Non-centrosymmetricity in materials

Crystals or molecules lacking an inversion center

- \Rightarrow piezoelectricity, ferroelectricity, nonlinear optical effects, Weyl semimetals, ...
- ⇒ chiral magnets, non-centrosymmetric superconductors

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetricity in (chiral) magnets

Antisymmetric exchange [Dzyaloshinskii 1958; Moriya 1960]

 \Rightarrow relativistic spin-orbit coupling effect, which couples the magnetic moments with the crystal lattice

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetricity in (chiral) magnets

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetricity in (chiral) magnets

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetric superconductors

Novel effects in non-centrosymmetric superconductors

Earlier theoretical works: [Bulaevskii, Guseinov, Rusinov 1976; Levitov, Nazarov, Éliashberg 1985; Mineev, Samokhin 1994]

• unusual magnetoelectric transport, helical states, exotic vortex lattices, unconventional Josephson effect, ...

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetric superconductors

Novel effects in non-centrosymmetric superconductors

Earlier theoretical works: [Bulaevskii, Guseinov, Rusinov 1976; Levitov, Nazarov, Éliashberg 1985; Mineev, Samokhin 1994]

• unusual magnetoelectric transport, helical states, exotic vortex lattices, unconventional Josephson effect, ...

Various known noncentrosymmetric superconductors

- With cubic *O*-point group symmetry: Li₂Pd₃B [Yuan, Agterberg, et al. 2006; Badica, et al. 2005], Mo₃Al₂C [Karki, et al. 2010; Bauer, et al. 2010], PtSbS [Mitzutani, et al. 2019]
- With tetragonal C_{4ν}-point group symmetry: CePt₃Si [Bauer, et al. 2004] CeRhSi₃ [Kimura, et al. 2005], CeIrSi₃ [Tateiwa, et al. 2007]
- With tetrahedral *T_d*-point group symmetry: Y₂C₃ [Amano, et al. 2004], KOs₂O₆ [Schuck et al. 2006]

Pt2

Li₂Pd₃B/Li₂Pd₃B

Reviews: [Bauer, Sigrist 2003], [Smidan, et al. 2017], [Yip 2014],...

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Non-centrosymmetric superconductors

Novel effects in non-centrosymmetric superconductors

Earlier theoretical works: [Bulaevskii, Guseinov, Rusinov 1976; Levitov, Nazarov, Éliashberg 1985; Mineev, Samokhin 1994]

• unusual magnetoelectric transport, helical states, exotic vortex lattices, unconventional Josephson effect, ...

Various known noncentrosymmetric superconductors

- With cubic *O*-point group symmetry: Li₂Pd₃B [Yuan, Agterberg, et al. 2006; Badica, et al. 2005], Mo₃Al₂C [Karki, et al. 2010; Bauer, et al. 2010], PtSbS [Mitzutani, et al. 2019]
- With tetragonal C_{4ν}-point group symmetry: CePt₃Si [Bauer, et al. 2004] CeRhSi₃ [Kimura, et al. 2005], CeIrSi₃ [Tateiwa, et al. 2007]
- With tetrahedral *T_d*-point group symmetry: Y₂C₃ [Amano, et al. 2004], KOs₂O₆ [Schuck et al. 2006]

Li₂Pd₃B/Li₂Pd₃B

CePt₃Si

Here: O-point group

Introduction

Toroflux in non-centrosymmetric superconductors Vortices and applications in non-centrosymmetric superconductors Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Topological defects and vortices

Topological defects are ubiquitous in modern physics

superfluid, superconductors, cold atoms BEC, (chiral) magnets, ferroelectric, (liquid) crystals, spin ices,... also in models of early universe cosmology, high-energy, ...

e.g. dislocations, monopoles, domain-walls, skyrmions, ...

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Topological defects and vortices

Topological defects are ubiquitous in modern physics

superfluid, superconductors, cold atoms BEC, (chiral) magnets, ferroelectric, (liquid) crystals, spin ices,... also in models of early universe cosmology, high-energy, ...

e.g. dislocations, monopoles, domain-walls, skyrmions, ...

(quantum) vortices (superfluid, superconductors)

- [Onsager 1949; Feynman 1955]: circulation of the superflow is quantized;
- [London 1948, Abrikosov 1957]: magnetic vortices in superconductors
- [Onsager 1949; Peskin 1978; Dasgupta, Halperin 1981]: phase transitions: thermal proliferation of vortex loops
- [Berezinskii 1971; Kosterlitz, Thouless 1972]: in 2d (V/AV)

Vortex [Helmholtz 1858]

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Topological defects and vortices

Topological defects are ubiquitous in modern physics

superfluid, superconductors, cold atoms BEC, (chiral) magnets, ferroelectric, (liquid) crystals, spin ices,... also in models of early universe cosmology, high-energy, ...

e.g. dislocations, monopoles, domain-walls, skyrmions, ...

(quantum) vortices (superfluid, superconductors)

- [Onsager 1949; Feynman 1955]: circulation of the superflow is quantized;
- [London 1948, Abrikosov 1957]: magnetic vortices in superconductors
- [Onsager 1949; Peskin 1978; Dasgupta, Halperin 1981]: phase transitions: thermal proliferation of vortex loops
- [Berezinskiĭ 1971; Kosterlitz, Thouless 1972]: in 2d (V/AV)

Overall, vortices are topological defects that control the thermal, rotational/magnetic responses of superfluids and superconductors

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Generalities

Conventional mechanism [Bardeen, Cooper, Schrieffer 1957]

- in a metal Fermi sphere of occupied states
- states near Fermi surface can interact via phonons

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Generalities

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Generalities

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Generalities

At mean field, one single macroscopic wave function

Ginzburg-Landau: effective classical mean field theory near Tc

Introduction

Toroflux in non-centrosymmetric superconductors Vortices and applications in non-centrosymmetric superconductors Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Properties & Ginzburg-Landau

$$E = \int_{\mathbb{R}^3} |\nabla \times \boldsymbol{A}|^2 + D_{\mu} \Psi^* D^{\mu} \Psi + \kappa (|\Psi|^2 - 1)^2, \text{ with } D_{\mu} = \nabla_{\mu} - i A_{\mu}$$

Classical field theory

- at the mean field level, one macroscopic wave function (density of Cooper pairs), the gap function $\Psi = |\Psi|e^{i\varphi}$
- Ψ: charged bosonic scalar field; **A** gauge field (photon)
- longitudinal component of the photon becomes massive
- Anderson-Higgs mechanism [Anderson 1962; Higgs 1964]

Introduction

Toroflux in non-centrosymmetric superconductors Vortices and applications in non-centrosymmetric superconductors Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Superconductivity – Properties & Ginzburg-Landau

$$E = \int_{\mathbb{R}^3} | \boldsymbol{\nabla} imes \boldsymbol{A} |^2 + D_\mu \Psi^* D^\mu \Psi + \kappa (|\Psi|^2 - 1)^2, \text{ with } D_\mu = \nabla_\mu - i \boldsymbol{A}$$

Classical field theory

- at the mean field level, one macroscopic wave function (density of Cooper pairs), the gap function $\Psi = |\Psi|e^{i\varphi}$
- Ψ: charged bosonic scalar field; A gauge field (photon)
- longitudinal component of the photon becomes massive
- Anderson-Higgs mechanism [Anderson 1962; Higgs 1964]

Properties of superconductors

- dissipationless current
- perfect diamagnetism (Meissner effect): B is screened by the superflow of Cooper pairs J = 2e|Ψ|²(∇φ + A)
- Massive photon \Rightarrow London eq.: $\lambda \nabla \times \nabla \times B = B$ (Proca)
- Quantized flux= $\frac{\Phi_0}{2\pi} \oint \nabla \varphi \cdot d\ell = n\Phi_0$ and $n \in \pi_1(S^1) = \mathbb{Z}$
- ⇒ vortices [London 1948; Onsager 1949; Abrikosov 1957]

Introduction	Parity breaking and non-centrosymmetricity
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconductors

Ginzburg-Landau theory for NCS [Agterberg 2003; Samoilenka, Babaev 2020]

Origin of parity-odd terms in microscopic single-particle Hamiltonian

antisymmetric SO couplings $g_k \cdot \sigma$ with $g_k = -g_{-k}$ and σ acting on the spin space

Introduction	Parity breaking and non-centrosymm
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconducto

Ginzburg-Landau theory for NCS [Agterberg 2003; Samoilenka, Babaev 2020]

Origin of parity-odd terms in microscopic single-particle Hamiltonian

antisymmetric SO couplings $g_k \cdot \sigma$ with $g_k = -g_{-k}$ and σ acting on the spin space

Parity-odd superconductor with O point group symmetry

$$\mathcal{F} = \frac{\mathbf{B}^2}{8\pi} + \frac{k}{2} \sum_{a=\pm} |\mathcal{D}_a \psi|^2 + \frac{\beta}{2} (|\psi|^2 - \psi_0^2)^2$$

where
$${\cal D}_{\pm}\equiv oldsymbol{
abla}-{\it i} e oldsymbol{{\cal A}}+{\it i} e_{oldsymbol{arkappa}_{\pm}}oldsymbol{B}$$

$$\boldsymbol{j} = \boldsymbol{e} \operatorname{Im}(\psi^* \boldsymbol{D} \psi)$$

• $\psi = |\psi|e^{i\varphi}$ cplx (bosonic) scalar field; **A** gauge field

Introduction	Parity breaking and non-co
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric sup

Ginzburg-Landau theory for NCS [Agterberg 2003; Samoilenka, Babaev 2020]

Origin of parity-odd terms in microscopic single-particle Hamiltonian

antisymmetric SO couplings $g_k \cdot \sigma$ with $g_k = -g_{-k}$ and σ acting on the spin space

Parity-odd superconductor with O point group symmetry

$$\mathcal{F} = \frac{\mathbf{B}^2}{8\pi} + \frac{k}{2} \sum_{a=+} |\mathcal{D}_a \psi|^2 + \frac{\beta}{2} (|\psi|^2 - \psi_0^2)^2$$

where
$$\mathcal{D}_{\pm} \equiv \boldsymbol{\nabla} - i \boldsymbol{e} \boldsymbol{A} + i \boldsymbol{e} \varkappa_{\pm} \boldsymbol{B}$$
 $\boldsymbol{j} = \boldsymbol{e} \operatorname{Im}(\psi^* \boldsymbol{D} \psi)$

• $\psi = |\psi| e^{i\varphi}$ cplx (bosonic) scalar field; **A** gauge field

Parity-odd superconductor with O point group

$$\frac{1}{2}\sum_{a=\pm}\left|\boldsymbol{\mathcal{D}}_{a}\psi\right|^{2}=\left|\boldsymbol{\mathcal{D}}\psi\right|^{2}+\chi\boldsymbol{\boldsymbol{j}}\cdot\boldsymbol{\boldsymbol{\mathcal{B}}}+e^{2}(\chi^{2}+\nu^{2})|\psi|^{2}\boldsymbol{\boldsymbol{\mathcal{B}}}^{2}$$

Lifshitz invariants $\propto \gamma_{\mu\nu} B_{\mu} \text{Im}(\psi^* D_{\nu} \psi)$

Introduction	Parity breaking an
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymme

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

Ginzburg-Landau theory for NCS [Agterberg 2003; Samoilenka, Babaev 2020]

Origin of parity-odd terms in microscopic single-particle Hamiltonian

antisymmetric SO couplings $g_k \cdot \sigma$ with $g_k = -g_{-k}$ and σ acting on the spin space

Parity-odd superconductor with O point group symmetry

$$\mathcal{F} = \frac{\mathbf{B}^2}{8\pi} + \frac{k}{2} \sum_{a=+} |\mathcal{D}_a \psi|^2 + \frac{\beta}{2} (|\psi|^2 - \psi_0^2)^2$$

where
$$\mathcal{D}_{\pm} \equiv \boldsymbol{\nabla} - i \boldsymbol{e} \boldsymbol{A} + i \boldsymbol{e} \varkappa_{\pm} \boldsymbol{B}$$
 $\boldsymbol{j} = \boldsymbol{e} \operatorname{Im}(\psi^* \boldsymbol{D} \psi)$

• $\psi = |\psi| e^{i\varphi}$ cplx (bosonic) scalar field; **A** gauge field

Parity-odd superconductor with O point group

$$\frac{1}{2} \sum_{a=\pm} |\mathcal{D}_a \psi|^2 = |\mathbf{D}\psi|^2 + \chi \mathbf{j} \cdot \mathbf{B} + e^2 (\chi^2 + \nu^2) |\psi|^2 \mathbf{B}^2$$

Finite-k pairing

Lifshitz invariants

 $\propto \gamma_{\mu\nu} B_{\mu} \text{Im}(\psi^* D_{\nu} \psi)$

Parity inversion, P(x) = -x, **B** is parity-even: P(B) = B

Energy is not invariant under the parity inversion: $P(\mathcal{F}) = \mathcal{F} - 2ek(\varkappa_{+} + \varkappa_{-})\mathbf{B} \cdot \operatorname{Im}(\psi^* \mathbf{D} \psi)$
 Introduction
 Parity breaking and non-centrosymmetricity

 Toroflux in non-centrosymmetric superconductors
 Superconductivity

 Vortices and applications in non-centrosymmetric superconductors
 Non-centrosymmetric superconductors

Ginzburg-Landau theory for noncentrosymmetric superconductors

Ginzburg-Landau equation

 $\boldsymbol{J}_{\boldsymbol{a}} = \operatorname{Im}(\psi^* \boldsymbol{\mathcal{D}}_{\boldsymbol{a}} \psi)$

Length-scales

$$\frac{\delta \mathcal{F}}{\psi^*} \Rightarrow \qquad \qquad k \sum_{a=\pm} \mathcal{D}_a \mathcal{D}_a \psi = 2\beta (|\psi^2| - \psi_0^2) \psi$$

$$rac{\delta \mathcal{F}}{\delta \mathbf{A}} \Rightarrow \nabla imes \left(rac{\mathbf{B}}{4\pi} + k \mathbf{e} \sum_{a=\pm} \varkappa_a \mathbf{J}_a
ight) = k \mathbf{e} \sum_{a=\pm} \mathbf{J}_a$$

$$\lambda_{L} = \lambda_{0} \sqrt{1 + \frac{\varkappa_{+}^{2} + \varkappa_{-}^{2}}{2\lambda_{0}^{2}}},$$
$$\lambda_{0}^{2} = \frac{1}{8\pi k e^{2} \psi_{0}^{2}}, \ \xi^{2} = \frac{k}{2\beta \psi_{0}^{2}}$$

Introduction	Parity breaking and non-centrosymmetricity
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconductors

Ginzburg-Landau theory for noncentrosymmetric superconductors

Ginzburg-Landau equation $\boldsymbol{J}_{\boldsymbol{a}} = \operatorname{Im}(\psi^* \boldsymbol{\mathcal{D}}_{\boldsymbol{a}} \psi)$ Length-scales $rac{\delta \mathcal{F}}{\delta \psi^*} \Rightarrow \qquad k \sum_{a \to \pm} \mathcal{D}_a \mathcal{D}_a \psi = 2\beta (|\psi^2| - \psi_0^2) \psi$ $\lambda_L = \lambda_0 \sqrt{1 + \frac{\varkappa_+^2 + \varkappa_-^2}{2\lambda_0^2}},$ $\frac{\delta \mathcal{F}}{\delta \mathbf{A}} \Rightarrow \qquad \mathbf{\nabla} \times \left(\frac{\mathbf{B}}{4\pi} + ke\sum_{a=\pm} \varkappa_a \mathbf{J}_a\right) = ke\sum_{a=\pm} \mathbf{J}_a$ $\lambda_0^2 = \frac{1}{8\pi k e^2 \psi_0^2}, \ \xi^2 = \frac{k}{2\beta \psi_0^2}$ **Dimensionless** London limit of the free energy $|\psi| = \psi_0$ $0 \leq \Gamma = \frac{\chi}{\chi} \leq 1$ $ilde{\mathcal{F}}_L = \left\{ oldsymbol{B}^2 + \hat{oldsymbol{j}}^2 + 2\Gamma \hat{oldsymbol{j}} \cdot oldsymbol{B}
ight\}$ $\hat{j} = \frac{J}{2\lambda_1 e^2 \psi_2^2}$

 $\tilde{\boldsymbol{x}} = \boldsymbol{x}/\lambda_{l}$, $\tilde{\boldsymbol{\nabla}} = \lambda_{l} \boldsymbol{\nabla}$

 $\tilde{\mathcal{F}}_L := \frac{\mathcal{F}_L}{k\lambda_L^2 e^2 \psi_0^2}$

Introduction	Parity breaking and non-centrosymmetricity
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconductors

Ginzburg-Landau theory for noncentrosymmetric superconductors

Ginzburg-Landau equation $\boldsymbol{J}_{\boldsymbol{\partial}} = \operatorname{Im}(\psi^* \boldsymbol{\mathcal{D}}_{\boldsymbol{\partial}} \psi)$ Length-scales $\frac{\delta \mathcal{F}}{\delta \psi^*} \Rightarrow$ $k\sum_{2=\pm} \mathcal{D}_a \mathcal{D}_a \psi = 2\beta(|\psi^2| - \psi_0^2)\psi$ $\lambda_L = \lambda_0 \sqrt{1 + \frac{\varkappa_+^2 + \varkappa_-^2}{2\lambda_0^2}},$ $\frac{\delta \mathcal{F}}{\delta \mathbf{A}} \Rightarrow \quad \nabla \times \left(\frac{\mathbf{B}}{4\pi} + ke\sum_{a=1} \varkappa_a \mathbf{J}_a\right) = ke\sum_{a=1} \mathbf{J}_a$ $\lambda_0^2 = \frac{1}{8\pi k e^2 \psi_0^2}, \ \xi^2 = \frac{k}{2\beta \psi_0^2}$ **Dimensionless** London limit of the free energy $|\psi| = \psi_0$ $0 \leq \Gamma = \frac{\chi}{\chi} \leq 1$ $ilde{\mathcal{F}}_L = \left\{ oldsymbol{B}^2 + \hat{\jmath}^2 + 2\Gamma\hat{\jmath}\cdotoldsymbol{B}
ight\}$ $\hat{j} = \frac{J}{2\lambda_I e^2 \psi_0^2}$ Ampère-Maxwell yields the London equations $\tilde{\boldsymbol{x}} = \boldsymbol{x}/\lambda_{l}$, $\tilde{\boldsymbol{\nabla}} = \lambda_{l} \boldsymbol{\nabla}$ $\tilde{\boldsymbol{\nabla}} \times \boldsymbol{H} = \tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} - 4\pi \boldsymbol{M}) = \hat{\mathbf{J}},$ $\tilde{\mathcal{F}}_L := \frac{\mathcal{F}_L}{k\lambda_L^2 e^2 \psi_0^2}$ where $H = B + \lceil \hat{j} \rangle$, $\hat{J} = \hat{j} + \lceil B \rangle$, and $M = -\frac{\lceil \hat{j} \rangle}{4\pi}$,

Introduction	Parity breaking and non-centrosymmetricity
Toroflux in non-centrosymmetric superconductors	Superconductivity
Vortices and applications in non-centrosymmetric superconductors	Non-centrosymmetric superconductors

Ginzburg-Landau theory for noncentrosymmetric superconductors

Ginzburg-Landau equation $\boldsymbol{J}_{\boldsymbol{\partial}} = \operatorname{Im}(\psi^* \boldsymbol{\mathcal{D}}_{\boldsymbol{\partial}} \psi)$ Length-scales $\frac{\delta \mathcal{F}}{\delta \psi^*} \Rightarrow$ $k\sum_{a=\pm} \mathcal{D}_a \mathcal{D}_a \psi = 2\beta (|\psi^2| - \psi_0^2)\psi$ $\lambda_L = \lambda_0 \sqrt{1 + \frac{\varkappa_+^2 + \varkappa_-^2}{2\lambda_0^2}},$ $\frac{\delta \mathcal{F}}{\delta \mathbf{A}} \Rightarrow \qquad \mathbf{\nabla} \times \left(\frac{\mathbf{B}}{4\pi} + k \mathbf{e} \sum_{a=\pm} \varkappa_a \mathbf{J}_a \right) = k \mathbf{e} \sum_{a=\pm} \mathbf{J}_a$ $\lambda_0^2 = \frac{1}{8\pi k e^2 \psi_0^2}, \ \xi^2 = \frac{k}{2\beta \psi_0^2}$ **Dimensionless** London limit of the free energy $|\psi| = \psi_0$ $0 \leq \Gamma = \frac{\chi}{\chi} \leq 1$ $ilde{\mathcal{F}}_L = \left\{ oldsymbol{B}^2 + \hat{oldsymbol{j}}^2 + 2\Gamma \hat{oldsymbol{j}} \cdot oldsymbol{B}
ight\}$ $\hat{j} = \frac{J}{2\lambda_I e^2 \psi_0^2}$ Ampère-Maxwell yields the London equations $\tilde{\mathbf{x}} = \mathbf{x}/\lambda_l$, $\tilde{\mathbf{\nabla}} = \lambda_l \mathbf{\nabla}$ $\tilde{\boldsymbol{\nabla}} \times \boldsymbol{H} = \tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} - 4\pi \boldsymbol{M}) = \hat{\boldsymbol{J}},$ $\tilde{\mathcal{F}}_L := \frac{\mathcal{F}_L}{k\lambda_L^2 e^2 \psi_0^2}$ where $\boldsymbol{H} = \boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}, \quad \hat{\boldsymbol{J}} = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}, \text{ and } \boldsymbol{M} = -\frac{\boldsymbol{I} \boldsymbol{\jmath}}{4\pi},$

Now everything depends on the single (dimensionless) parity-breaking parameter $\Gamma \Rightarrow \Gamma$ is expected to be small (theor. and exper.)

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

London theory for noncentrosymmetric superconductors

the Ampère-Maxwell eq.: $\tilde{\nabla} \times (\boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}) = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}$

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

London theory for noncentrosymmetric superconductors

the Ampère-Maxwell eq.: $\tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}) = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}$

2nd London eq. obtained from current $\mathbf{j} = 2e\psi_0^2(\nabla \varphi - e\mathbf{A})$

 $\boldsymbol{B} = \Phi_0 \boldsymbol{v} - \tilde{\boldsymbol{\nabla}} \times \hat{\boldsymbol{j}}$, where $\boldsymbol{v} = \frac{1}{2\pi} \boldsymbol{\nabla} \times \boldsymbol{\nabla} \varphi$ is the density of vortex field, which accounts for the phase singularities

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

London theory for noncentrosymmetric superconductors

the Ampère-Maxwell eq.: $\tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}) = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}$

2nd London eq. obtained from current $\mathbf{j} = 2e\psi_0^2(\nabla \varphi - e\mathbf{A})$ $\mathbf{B} = \Phi_0 \mathbf{v} - \tilde{\nabla} \times \hat{\mathbf{j}}$, where $\mathbf{v} = \frac{1}{2\pi} \nabla \times \nabla \varphi$ is the density of vortex field, which accounts for the phase singularities

London eq. for noncentrosymmetric superconductor

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} + \hat{oldsymbol{\jmath}} = \Phi_0 \left(ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} - oldsymbol{
abla} oldsymbol{
abla}
ight)$$

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

London theory for noncentrosymmetric superconductors

the Ampère-Maxwell eq.: $\tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}) = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}$

2nd London eq. obtained from current $\mathbf{j} = 2e\psi_0^2(\nabla\varphi - e\mathbf{A})$ $\mathbf{B} = \Phi_0 \mathbf{v} - \tilde{\nabla} \times \hat{\mathbf{j}}$, where $\mathbf{v} = \frac{1}{2\pi} \nabla \times \nabla \varphi$ is the density of vortex field, which accounts for the phase singularities

London eq. for noncentrosymmetric superconductor

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} + \hat{oldsymbol{\jmath}} = \Phi_0 \left(ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} - oldsymbol{
abla} oldsymbol{
abla}
ight)$$

Shorthand notation, with the operator: $\mathcal{L}\hat{j} = \nabla \times \hat{j} - \eta \hat{j}$

$$\mathcal{L}^{*}\hat{\jmath} = \Phi_{0}\operatorname{Re}\left[\mathcal{L}^{*}\boldsymbol{v}\right] \text{ and } \tilde{\mathcal{F}}_{L} = \left(\mathcal{L}^{*}\hat{\jmath} - \Phi_{0}\boldsymbol{v}\right) \cdot \left(\mathcal{L}\hat{\jmath} - \Phi_{0}\boldsymbol{v}\right)$$

Parity breaking and non-centrosymmetricity Superconductivity Non-centrosymmetric superconductors

London theory for noncentrosymmetric superconductors

the Ampère-Maxwell eq.: $\tilde{\boldsymbol{\nabla}} \times (\boldsymbol{B} + \boldsymbol{\Gamma} \hat{\boldsymbol{\jmath}}) = \hat{\boldsymbol{\jmath}} + \boldsymbol{\Gamma} \boldsymbol{B}$

2nd London eq. obtained from current $\mathbf{j} = 2e\psi_0^2(\nabla \varphi - e\mathbf{A})$ $\mathbf{B} = \Phi_0 \mathbf{v} - \tilde{\nabla} \times \hat{\mathbf{j}}$, where $\mathbf{v} = \frac{1}{2\pi} \nabla \times \nabla \varphi$ is the density of vortex field, which accounts for the phase singularities

London eq. for noncentrosymmetric superconductor

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} + \hat{oldsymbol{\jmath}} = \Phi_0 \left(ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} - oldsymbol{
abla} oldsymbol{
abla}
ight)$$

Shorthand notation, with the operator: $\mathcal{L}_{i}^{2} = \nabla \times (i - \eta)^{2}$

Finite-*k* pairing

$$k_{z}$$

 k_{z}
 k_{z}

$$\mathcal{LL}^* \hat{\jmath} = \Phi_0 \operatorname{Re} \left[\mathcal{L}^* \boldsymbol{v} \right]$$
 and $\tilde{\mathcal{F}}_L = \left(\mathcal{L}^* \hat{\jmath} - \Phi_0 \boldsymbol{v} \right) \cdot \left(\mathcal{L} \hat{\jmath} - \Phi_0 \boldsymbol{v} \right)$

The London eq. allows for new analytic solutions in parity-breaking medium

- Toroflux: knotted configs. of **B**, analogous to Chandrasekhar-Kendall states
- Vortices, which feature inversion of the magnetic field...

Outline

Introduction

- Parity breaking and non-centrosymmetricity
- Superconductivity
- Non-centrosymmetric superconductors

Toroflux in non-centrosymmetric superconductors

- Chandrasekhar-Kendall states
- Derivation of toroflux solution sourced by magnetic dipole
- Toroflux properties and observation

Vortices and applications in non-centrosymmetric superconductors

- Vortex solutions, field inversion
- Applications: Chiral Magnetic Josephson junctions
- Conclusion

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Chandrasekhar-Kendall states

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

• the electric current is parallel to the magnetic field
Chandrasekhar-Kendall states

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

- the electric current is parallel to the magnetic field
- astrophysical plasma, solar corona

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

- the electric current is parallel to the magnetic field
- astrophysical plasma, solar corona
- spheromak device for nuclear fusion

Spheromak

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

- the electric current is parallel to the magnetic field
- astrophysical plasma, solar corona
- spheromak device for nuclear fusion

Divergence-free eigenfunctions of the curl operator

$$\nabla \times \boldsymbol{H} = \lambda \boldsymbol{H}$$
, and $\nabla \cdot \boldsymbol{H} = 0$

$$\Rightarrow \quad \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{H} = \lambda^2 \boldsymbol{H}$$

Spheromak

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

- the electric current is parallel to the magnetic field
- astrophysical plasma, solar corona
- spheromak device for nuclear fusion

Divergence-free eigenfunctions of the curl operator

$$\nabla \times \boldsymbol{H} = \lambda \boldsymbol{H}$$
, and $\nabla \cdot \boldsymbol{H} = 0$

$$\Rightarrow \quad \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \boldsymbol{H} = \lambda^2 \boldsymbol{H}$$

Decomposition in toroidal-poloidal fields

 $\boldsymbol{H} = \frac{1}{\lambda} \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\psi} \boldsymbol{n}) + \boldsymbol{\nabla} \times \boldsymbol{\psi} \boldsymbol{n}$

- n is a unit vector
- ψ solves Helmoltz equation: $\nabla^2 \psi + \lambda^2 \psi = 0$

Spheromak

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

[Chandrasekhar, Kendall 1957]

Force-free magnetic field equation

- the electric current is parallel to the magnetic field
- astrophysical plasma, solar corona
- spheromak device for nuclear fusion

Divergence-free eigenfunctions of the curl operator

$$\nabla \times \boldsymbol{H} = \lambda \boldsymbol{H}$$
, and $\nabla \cdot \boldsymbol{H} = 0$

$$\Rightarrow \nabla \times \nabla \times H = \lambda^2 H$$

Decomposition in toroidal-poloidal fields

 $\boldsymbol{H} = \frac{1}{\lambda} \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{\psi} \boldsymbol{n}) + \boldsymbol{\nabla} \times \boldsymbol{\psi} \boldsymbol{n}$

- n is a unit vector
- ψ solves Helmoltz equation: $\nabla^2 \psi + \lambda^2 \psi = 0$

Toroflux are analogous to CK-states in NCS (thus for massive vector field)

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Localized force-free solutions

[JG, et al. 2022]

Source-free (v = 0) London equation

$\eta = \Gamma + i\sqrt{1 - \Gamma^2}$

$$\mathcal{LL}^{*}\hat{\jmath} = 0$$
, where $\mathcal{L}\hat{\jmath} = \tilde{\nabla} imes \hat{\jmath} - \eta \hat{\jmath}$

Derivation of toroflux solution sourced by magnetic dipole

Localized force-free solutions

[JG, et al. 2022]

Source-free (v = 0) London equation $\mathcal{LL}^*\hat{\jmath} = 0$, where $\mathcal{L}\hat{\jmath} = \tilde{\nabla} \times \hat{\jmath} - \eta\hat{\jmath}$

Complex force-free vector field Q

$$\mathcal{L}\mathcal{Q} = \mathbf{0}$$
, then London eq. $\mathcal{L}^* \hat{\jmath} = i \text{Im}(\eta) \mathcal{Q}$

Physical fields

$$\hat{\boldsymbol{\jmath}} = \operatorname{Re} \boldsymbol{\mathcal{Q}} , \ \boldsymbol{J} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\eta \boldsymbol{\mathcal{Q}}) ,$$
$$\boldsymbol{B} = -\operatorname{Re}(\eta \boldsymbol{\mathcal{Q}}) , \ \boldsymbol{H} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\boldsymbol{\mathcal{Q}})$$

Localized force-free solutions

[JG, et al. 2022]

Source-free (v = 0) London equation $\eta = \Gamma + i\sqrt{1 - 1}$

$$\mathcal{L}\mathcal{L}^{*}\hat{\jmath}=0\,,$$
 where $\mathcal{L}\hat{\jmath}= ilde{m{
abla}} imes\hat{\jmath}-\eta\hat{\jmath}$

Complex force-free vector field ${\cal Q}$

$$\mathcal{L}\mathcal{Q} = \mathbf{0}$$
, then London eq. $\mathcal{L}^* \hat{\jmath} = i \text{Im}(\eta) \mathcal{Q}$

Physical fields

$$\hat{\boldsymbol{\jmath}} = \operatorname{Re} \boldsymbol{\mathcal{Q}}, \ \boldsymbol{J} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\eta \boldsymbol{\mathcal{Q}}),$$

$$\boldsymbol{B} = -\operatorname{Re}(\eta \boldsymbol{Q}), \ \boldsymbol{H} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\boldsymbol{Q})$$

Decomposition on vector spherical harmonics

$$\boldsymbol{\mathcal{Q}}(\boldsymbol{x}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} \left(\sum_{\boldsymbol{Z} = \boldsymbol{Y}, \boldsymbol{\Psi}, \boldsymbol{\Phi}} Q_{lm}^{\boldsymbol{Z}}(r) \, \boldsymbol{Z}_{lm}(\hat{\boldsymbol{r}}) \right)$$

$$\begin{split} \mathbf{Y}_{lm}(\hat{\mathbf{r}}) &= Y_{lm}(\hat{\mathbf{r}})\hat{\mathbf{r}}, \quad (\hat{\mathbf{r}} \equiv \mathbf{r}/r) \\ \mathbf{\Psi}_{lm}(\hat{\mathbf{r}}) &= \mathbf{r} \nabla Y_{lm}(\hat{\mathbf{r}}), \\ \mathbf{\Phi}_{lm}(\hat{\mathbf{r}}) &= \mathbf{r} \times \nabla Y_{lm}(\hat{\mathbf{r}}). \end{split}$$

Source-free (v = 0) London equation

Localized force-free solutions

[JG, et al. 2022]

$\eta = \Gamma + i\sqrt{1 - \Gamma^2}$

$$\mathcal{LL}^{*}\hat{\jmath}=0\,,$$
 where $\mathcal{L}\hat{\jmath}= ilde{
abla} imes\hat{\jmath}-\eta\hat{\jmath}$

Complex force-free vector field $\boldsymbol{\mathcal{Q}}$

$$\mathcal{L}\mathcal{Q} = \mathbf{0}$$
, then London eq. $\mathcal{L}^* \hat{\jmath} = i \mathrm{Im}(\eta) \mathcal{Q}$

Physical fields

$$\hat{\boldsymbol{\jmath}} = \operatorname{Re} \boldsymbol{\mathcal{Q}}, \ \boldsymbol{J} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\eta \boldsymbol{\mathcal{Q}}),$$

$$\boldsymbol{B} = -\operatorname{Re}(\eta \boldsymbol{Q}), \ \boldsymbol{H} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\boldsymbol{Q})$$

Decomposition on vector spherical harmonics

$$\boldsymbol{\mathcal{Q}}(\boldsymbol{x}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} \left(\sum_{\boldsymbol{Z}=\boldsymbol{Y}, \boldsymbol{\Psi}, \boldsymbol{\Phi}} Q_{lm}^{\boldsymbol{Z}}(r) \, \boldsymbol{Z}_{lm}(\hat{\boldsymbol{r}}) \right)$$

The $\mathcal{LQ} = 0$ yields solutions bounded at ∞

$$\begin{aligned} Q_{lm}^{\Phi} &= c_{lm} h_l^{(1)}(\eta r) \,, \quad Q_{lm}^{Y} &= -c_{lm} \frac{l(l+1)}{\eta r} h_l^{(1)}(\eta r) \\ Q_{lm}^{\Psi} &= -c_{lm} \left(\frac{l+1}{\eta r} h_l^{(1)}(\eta r) - h_{l+1}^{(1)}(\eta r) \right) \,. \end{aligned}$$

Vector spherical harmonics

$$\begin{split} \boldsymbol{Y}_{lm}(\hat{\boldsymbol{r}}) &= Y_{lm}(\hat{\boldsymbol{r}})\hat{\boldsymbol{r}}, \quad (\hat{\boldsymbol{r}} \equiv \boldsymbol{r}/r) \\ \boldsymbol{\Psi}_{lm}(\hat{\boldsymbol{r}}) &= \boldsymbol{r} \nabla Y_{lm}(\hat{\boldsymbol{r}}), \\ \boldsymbol{\Phi}_{lm}(\hat{\boldsymbol{r}}) &= \boldsymbol{r} \times \nabla Y_{lm}(\hat{\boldsymbol{r}}). \end{split}$$

Spherical Hankel functions $h_{i}^{(1)}(z) = j_{i}(z) + iy_{i}(z)$ j_{i}, y_{i} : spherical Bessel functions

Toroflux: force-free magnetic solutions induced by dipoles

All modes are singular \Rightarrow need regularization

$$Q^{\Phi}_{lm} \sim r^{-(l+2)}, \ \ Q^{\Psi}_{lm} \sim r^{-(l+2)}, \ \ Q^{\Psi}_{lm} \sim r^{-(l+1)}.$$

Toroflux: force-free magnetic solutions induced by dipoles

All modes are singular \Rightarrow need regularization

$$Q^{m \Phi}_{lm} \sim r^{-(l+2)}\,, \;\; Q^{m \gamma}_{lm} \sim r^{-(l+2)}\,, \;\; Q^{m \Psi}_{lm} \sim r^{-(l+1)}\,.$$

Magnetized domain

$$\tilde{\boldsymbol{
abla}} imes \boldsymbol{H} = \mathbf{0}, \quad \tilde{\boldsymbol{
abla}} \cdot \boldsymbol{B} = \mathbf{0}, \text{ where } \boldsymbol{B} = \boldsymbol{H} + 4\pi \boldsymbol{M}.$$

- Decompose inner solutions on VSH: $\pmb{Y}, \pmb{\Phi}, \pmb{\Psi}$
- Matching: $0 = \boldsymbol{J} \cdot \boldsymbol{n}_{12} |_{r=r_0}$ and $0 = \boldsymbol{n}_{12} \cdot (\boldsymbol{B}_2 \boldsymbol{B}_1) |_{r=r_0}$

Introduction Chandrasekhar-Kendall states Toroflux in non-centrosymmetric superconductors Vortices and applications in non-centrosymmetric superconductors Toroflux properties and observation

Toroflux: force-free magnetic solutions induced by dipoles

All modes are singular \Rightarrow need regularization

$$Q^{\Phi}_{lm} \sim r^{-(l+2)}, \ \ Q^{Y}_{lm} \sim r^{-(l+2)}, \ \ Q^{\Psi}_{lm} \sim r^{-(l+1)}.$$

Magnetized domain

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} = oldsymbol{0}\,, \quad ilde{oldsymbol{
abla}} \cdot oldsymbol{B} = oldsymbol{0}\,, \quad ext{where} \quad oldsymbol{B} = oldsymbol{H} + 4\pioldsymbol{M}\,.$$

• Decompose inner solutions on VSH: $oldsymbol{Y}, \Phi, \Psi$

• Matching:
$$0 = \mathbf{J} \cdot \mathbf{n}_{12} |_{r=r_0}$$
 and $0 = \mathbf{n}_{12} \cdot (\mathbf{B}_2 - \mathbf{B}_1) |_{r=r_0}$

Matching conditions imply that

$$c_{lm} = rac{4\pi r_0 \check{M}_{lm}^{m{Y}}(r_0)}{l(2l+1)h_l^{(1)}(\eta r_0)} \quad ext{for } l>0$$

Introduction Derivation of toroflux solution sourced by magnetic dipole Toroflux in non-centrosymmetric superconductors Vortices and applications in non-centrosymmetric superconductors

Toroflux: force-free magnetic solutions induced by dipoles

All modes are singular \Rightarrow need regularization

$$Q^{\Phi}_{lm} \sim r^{-(l+2)}, \ \ Q^{Y}_{lm} \sim r^{-(l+2)}, \ \ Q^{\Psi}_{lm} \sim r^{-(l+1)}.$$

Magnetized domain

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} = oldsymbol{0}\,, \quad ilde{oldsymbol{
abla}} \cdot oldsymbol{B} = oldsymbol{0}\,, \quad ext{where} \ \ oldsymbol{B} = oldsymbol{H} + 4\pi oldsymbol{M}\,.$$

- Decompose inner solutions on VSH: $\boldsymbol{Y}, \boldsymbol{\Phi}, \boldsymbol{\Psi}$ ٠
- Matching: $0 = \boldsymbol{J} \cdot \boldsymbol{n}_{12} |_{r=r_0}$ and $0 = \boldsymbol{n}_{12} \cdot (\boldsymbol{B}_2 \boldsymbol{B}_1) |_{r=r_0}$

Matching conditions imply that

$$c_{lm} = rac{4\pi r_0 \check{M}_{lm}^{m{Y}}(r_0)}{l(2l+1)h_l^{(1)}(\eta r_0)} \quad ext{for } l > 0$$

Magnetized inclusion Medium #2

(NCS)

Medium #1

Ferromagnetic inclusion

 n_{12}

$$\begin{split} \tilde{\boldsymbol{M}} &= M_0 \hat{\boldsymbol{z}} = M_0 \left(\hat{\boldsymbol{r}} \cos \theta - \hat{\theta} \sin \theta \right) \\ &= \sqrt{\frac{4\pi}{3}} M_0 \left(\boldsymbol{Y}_{10} + \boldsymbol{\Psi}_{10} \right) \, . \\ \Rightarrow \, \boldsymbol{c}_{10} &= \frac{r_0 M_0}{h_1^{(1)}(\eta r_0)} \left(\frac{4\pi}{3} \right)^{3/2} \end{split}$$

Toroflux: force-free magnetic solutions induced by dipoles

All modes are singular \Rightarrow need regularization

$$Q^{m \Phi}_{lm} \sim r^{-(l+2)}\,, \ \ Q^{m Y}_{lm} \sim r^{-(l+2)}\,, \ \ Q^{m \Psi}_{lm} \sim r^{-(l+1)}\,.$$

Magnetized domain

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} = oldsymbol{0}\,, \quad ilde{oldsymbol{
abla}} \cdot oldsymbol{B} = oldsymbol{0}\,, \quad ext{where} \quad oldsymbol{B} = oldsymbol{H} + 4\pioldsymbol{M}\,.$$

- Decompose inner solutions on VSH: $\boldsymbol{Y}, \boldsymbol{\Phi}, \boldsymbol{\Psi}$ ٠
- Matching: $0 = \boldsymbol{J} \cdot \boldsymbol{n}_{12} |_{r=r_0}$ and $0 = \boldsymbol{n}_{12} \cdot (\boldsymbol{B}_2 \boldsymbol{B}_1) |_{r=r_0}$

Matching conditions imply that

$$c_{lm} = rac{4\pi r_0 \check{M}_{lm}^{m{Y}}(r_0)}{l(2l+1)h_l^{(1)}(\eta r_0)} \quad {
m for} \ l>0$$

For a pointlike magnetic dipole ($r_0 \rightarrow 0$)

$$c_{10} = i\sqrt{\frac{4\pi}{3}}\eta^2 M_0^c$$

 n_{12}

Magnetized inclusion Medium #2

(NCS)

Medium #1

$$\begin{split} \tilde{\boldsymbol{M}} &= M_0 \hat{\boldsymbol{z}} = M_0 \left(\hat{\boldsymbol{r}} \cos \theta - \hat{\boldsymbol{\theta}} \sin \theta \right) \\ &= \sqrt{\frac{4\pi}{3}} M_0 \left(\boldsymbol{Y}_{10} + \boldsymbol{\Psi}_{10} \right) \, . \\ \Rightarrow \boldsymbol{c}_{10} &= \frac{r_0 M_0}{h_1^{(1)} (\eta r_0)} \left(\frac{4\pi}{3} \right)^{3/2} \end{split}$$

Toroflux: force-free magnetic solutions induced by dipoles

The force-free field Q accosiated to the (l, m) = (1, 0) harmonics

$$\boldsymbol{\mathcal{Q}}_{10} = -M_0^{\theta} \frac{e^{i\eta r}}{\eta r^3} \Big[(1-i\eta r) \big(2\cos\theta \boldsymbol{e}_r + \eta r\sin\theta \boldsymbol{e}_{\varphi} \big) + \big(1-i\eta r (1-i\eta r) \big)\sin\theta \boldsymbol{e}_{\theta} \Big]$$

Parity-breaking param.

$$\eta = \Gamma + i\sqrt{1 - \Gamma^2}$$

Toroflux size
 $L_{\text{toroflux}} = \frac{\lambda_L}{\sqrt{1 - \Gamma^2}}$

Toroflux: force-free magnetic solutions induced by dipoles

The force-free field Q accosiated to the (l, m) = (1, 0) harmonics

$$\boldsymbol{\mathcal{Q}}_{10} = -\boldsymbol{M}_{0}^{d} \frac{e^{i\eta r}}{\eta r^{3}} \Big[(1 - i\eta r) \big(2\cos\theta \boldsymbol{e}_{r} + \eta r\sin\theta \boldsymbol{e}_{\varphi} \big) + \big(1 - i\eta r (1 - i\eta r) \big)\sin\theta \boldsymbol{e}_{\theta} \Big]$$

Physical fields

$$\hat{\boldsymbol{\jmath}} = \operatorname{Re} \boldsymbol{\mathcal{Q}} ,$$

$$\boldsymbol{J} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\boldsymbol{\eta} \boldsymbol{\mathcal{Q}}) ,$$

$$\boldsymbol{B} = -\operatorname{Re}(\boldsymbol{\eta} \boldsymbol{\mathcal{Q}}) ,$$

$$\boldsymbol{H} = \sqrt{1 - \Gamma^2} \operatorname{Im}(\boldsymbol{\mathcal{Q}})$$

Parity-breaking param.

$$\eta = \Gamma + i\sqrt{1 - \Gamma^2}$$

Toroflux size

$$L_{\rm toroflux} = rac{\lambda_L}{\sqrt{1-\Gamma^2}}$$

Toroflux: force-free magnetic solutions induced by dipoles

The force-free field Q accosiated to the (l, m) = (1, 0) harmonics

$$\boldsymbol{\mathcal{Q}}_{10} = -M_0^d \frac{e^{i\eta r}}{\eta r^3} \Big[(1-i\eta r) \big(2\cos\theta \boldsymbol{e}_r + \eta r\sin\theta \boldsymbol{e}_{\varphi} \big) + \big(1-i\eta r (1-i\eta r) \big)\sin\theta \boldsymbol{e}_{\theta} \Big]$$

Julien Garaud

Toroflux: force-free magnetic solutions induced by dipoles

The force-free field Q accosiated to the (l, m) = (1, 0) harmonics

$$\mathcal{Q}_{10} = -M_0^d \frac{e^{i\eta r}}{\eta r^3} \Big[(1 - i\eta r) (2\cos\theta \boldsymbol{e}_r + \eta r\sin\theta \boldsymbol{e}_{\varphi}) + (1 - i\eta r (1 - i\eta r))\sin\theta \boldsymbol{e}_{\theta} \Big]$$

Julien Garaud

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Knotted nature of the toroflux

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Knotted nature of the toroflux

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Knotted nature of the toroflux

Chandrasekhar-Kendall states Derivation of toroflux solution sourced by magnetic dipole Toroflux properties and observation

Knotted nature of the toroflux (here $\Gamma = 0.95$)

Obsevrables of the toroflux

Obsevrables of the toroflux

Obsevrability of the toroflux by μSR

Principle of muon spin spectrosocpy

- implant spin-polarized muons
- spin of implanted muon precess around local B
- decay $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ in 2.2 μ s, the e^+ is emitted in the direction of the spin
- allows to probe global and local structure of **B**

Obsevrability of the toroflux by μSR

Principle of muon spin spectrosocpy

- implant spin-polarized muons
- spin of implanted muon precess around local B
- decay $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ in 2.2 μs , the e^+ is emitted in the direction of the spin
- allows to probe global and local structure of **B**

Measured positron beam spectrum should be sensitive to the presence of the toroflux

Magnetic moments of the *H* of the toroflux

$$a_{lm,l'm'}^{\boldsymbol{Z}} = \int d^3 r \, \boldsymbol{H}_{lm}(\boldsymbol{r}) \boldsymbol{Z}_{l'm'}(\boldsymbol{r})$$

Non trivial component due to parity-breaking

$$a_{10}^{\Phi}=8M_0^d\sqrt{rac{\pi}{3}}\sin\Gamma+O(r_0)$$

In rotated coordinates

$$a^{\Phi}_{10}[artheta]=4M^d_0\sqrt{rac{\pi}{3}}{\Gamma}\cosartheta$$

Introduction	Vortex solutions, field inversion
Toroflux in non-centrosymmetric superconductors	Applications: Chiral Magnetic Josephson junctions
Vortices and applications in non-centrosymmetric superconductors	Conclusion

Outline

Introduction

- Parity breaking and non-centrosymmetricity
- Superconductivity
- Non-centrosymmetric superconductors

Toroflux in non-centrosymmetric superconductors

- Chandrasekhar-Kendall states
- Derivation of toroflux solution sourced by magnetic dipole
- Toroflux properties and observation

Vortices and applications in non-centrosymmetric superconductors

- Vortex solutions, field inversion
- Applications: Chiral Magnetic Josephson junctions
- Conclusion

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

[JG, Chernodub, Kharzeev 2020]

London eq. for NCS with sources ($v \neq 0$)

Ż

$$\tilde{\nabla} imes \tilde{\nabla} imes \hat{\jmath} - 2 \Gamma \tilde{\nabla} imes \hat{\jmath} + \hat{\jmath} = \Phi_0 \left(\tilde{\nabla} imes oldsymbol{v} - \Gamma oldsymbol{v}
ight)$$

Fourier transform

$$\hat{\jmath}(ilde{\pmb{x}}) = \int rac{d^3 \pmb{p}}{(2\pi)^3} \, \mathrm{e}^{i \pmb{p} \cdot ilde{\pmb{x}}} m{j}_{\pmb{p}}$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

[JG, Chernodub, Kharzeev 2020]

London eq. for NCS with sources ($v \neq 0$)

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} + \hat{oldsymbol{\jmath}} = \Phi_0 \left(ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} - oldsymbol{
abla} oldsymbol{
abla}
ight)$$

In momentum space

$$-\boldsymbol{p} imes \boldsymbol{p} imes \boldsymbol{j_p} + \boldsymbol{j_p} - 2i\boldsymbol{\Gamma}\boldsymbol{p} imes \boldsymbol{j_p} = \Phi_0 \Big(i \boldsymbol{p} imes \boldsymbol{v_p} - \boldsymbol{\Gamma} \boldsymbol{v_p}\Big)$$

and
$$\boldsymbol{B}_{\boldsymbol{p}} = \Phi_0 \boldsymbol{v} - i \boldsymbol{p} \times \boldsymbol{j}_{\boldsymbol{p}}$$

Fourier transform

$$\hat{j}(\tilde{\pmb{x}}) = \int \frac{d^3 \pmb{p}}{(2\pi)^3} \, \mathrm{e}^{i \pmb{p} \cdot \tilde{\pmb{x}}} \pmb{j}_{\pmb{p}}$$

Algebraic system

$$j_{p}^{m} = \Phi_{0} \Lambda_{p}^{mn} v_{p}^{n}$$

 $B_{p}^{m} = \Phi_{0} \Upsilon_{p}^{mn} v_{p}^{n}$

Vortex field sources

$$\mathbf{v}_{\mathbf{p}} = 2\pi \frac{\delta(\mathbf{p}_z)\mathbf{e}_z}{\lambda_L^2} \sum_{a=1}^N n_a \mathbf{e}^{-i\mathbf{p}\cdot\tilde{\mathbf{x}}_a}$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

[JG, Chernodub, Kharzeev 2020]

Fourier transform $\hat{j}(\tilde{x}) = \int \frac{d^3 p}{(2\pi)^3} e^{i p \cdot \tilde{x}} j_p$

Algebraic system $j_{p}^{m} = \Phi_{0}\Lambda_{p}^{mn} v_{p}^{n}$ $B_{p}^{m} = \Phi_{0}\Upsilon_{p}^{mn} v_{p}^{n}$

Vortex field sources

 $\mathbf{v}_{\mathbf{p}} = 2\pi \frac{\delta(\mathbf{p}_z)\mathbf{e}_z}{\lambda_l^2} \sum_{i=1}^N n_a \mathrm{e}^{-i\mathbf{p}\cdot\tilde{\mathbf{x}}_a}$

London eq. for NCS with sources ($v \neq 0$)

$$ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} + \hat{oldsymbol{\jmath}} = \Phi_0 \left(ilde{oldsymbol{
abla}} ilde{oldsymbol{
abla}} - oldsymbol{
bla} oldsymbol{
abla}
ight)$$

In momentum space

$$- oldsymbol{
ho} imes oldsymbol{p} imes oldsymbol{j}_{oldsymbol{
ho}} + oldsymbol{j}_{oldsymbol{
ho}} - 2i \Gamma oldsymbol{p} imes oldsymbol{j}_{oldsymbol{
ho}} = \Phi_0 \Big(i oldsymbol{
ho} imes oldsymbol{v}_{oldsymbol{
ho}} - \Gamma oldsymbol{v}_{oldsymbol{
ho}} \Big)$$

and $\boldsymbol{B}_{\boldsymbol{p}} = \Phi_0 \boldsymbol{v} - i \boldsymbol{p} \times \boldsymbol{j}_{\boldsymbol{p}}$

Back to real space for single vortex

$$\begin{split} B_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) &= \frac{\Phi_{0}\Gamma}{2\pi\lambda_{L}^{2}} \int_{0}^{\infty} \frac{q^{2}(1-q^{2})dq}{(1+q^{2})^{2}-4\Gamma^{2}q^{2}} J_{1}\left(\frac{q\rho}{\lambda_{L}}\right) \\ B_{z}\left(\frac{\rho}{\lambda_{L}}\right) &= \frac{\Phi_{0}}{2\pi\lambda_{L}^{2}} \int_{0}^{\infty} \frac{q[(1-2\Gamma^{2})q^{2}+1]dq}{(1+q^{2})^{2}-4\Gamma^{2}q^{2}} J_{0}\left(\frac{q\rho}{\lambda_{L}}\right) \end{split}$$

and we get similar equations for j

 \Rightarrow the magnetic field acquires an in-plane component in addition to usual B_z

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

[JG, Chernodub, Kharzeev 2020]

Fourier transform $\hat{j}(\tilde{x}) = \int \frac{d^3 p}{(2\pi)^3} e^{i p \cdot \tilde{x}} j_p$

Algebraic system $j_{p}^{m} = \Phi_{0}\Lambda_{p}^{mn} v_{p}^{n}$ $B_{p}^{m} = \Phi_{0}\Upsilon_{p}^{mn} v_{p}^{n}$

Vortex field sources

 $\mathbf{v}_{\mathbf{p}} = 2\pi \frac{\delta(\mathbf{p}_z)\mathbf{e}_z}{\lambda_l^2} \sum_{i=1}^N n_a \mathbf{e}^{-i\mathbf{p}\cdot\tilde{\mathbf{x}}_a}$

Integrals can be computed

using Hankel transforms

London eq. for NCS with sources ($v \neq 0$)

$$\tilde{\boldsymbol{\nabla}} \times \tilde{\boldsymbol{\nabla}} \times \hat{\boldsymbol{\jmath}} - 2\boldsymbol{\Gamma}\tilde{\boldsymbol{\nabla}} \times \hat{\boldsymbol{\jmath}} + \hat{\boldsymbol{\jmath}} = \Phi_0 \left(\tilde{\boldsymbol{\nabla}} \times \boldsymbol{\nu} - \boldsymbol{\Gamma}\boldsymbol{\nu}\right)$$

In momentum space

$$- oldsymbol{p} imes oldsymbol{j}_{oldsymbol{p}} + oldsymbol{j}_{oldsymbol{p}} - 2i oldsymbol{\Gamma} oldsymbol{p} imes oldsymbol{j}_{oldsymbol{p}} = \Phi_0 \Big(i oldsymbol{p} imes oldsymbol{v}_{oldsymbol{p}} - oldsymbol{\Gamma} oldsymbol{v}_{oldsymbol{p}} \Big)$$

and $\boldsymbol{B}_{\boldsymbol{p}} = \Phi_0 \boldsymbol{v} - i \boldsymbol{p} \times \boldsymbol{j}_{\boldsymbol{p}}$

Back to real space for single vortex

$$\begin{split} B_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) &= \frac{\Phi_{0}\Gamma}{2\pi\lambda_{L}^{2}} \int_{0}^{\infty} \frac{q^{2}(1-q^{2})dq}{(1+q^{2})^{2}-4\Gamma^{2}q^{2}} J_{1}\left(\frac{q\rho}{\lambda_{L}}\right) \\ B_{z}\left(\frac{\rho}{\lambda_{L}}\right) &= \frac{\Phi_{0}}{2\pi\lambda_{L}^{2}} \int_{0}^{\infty} \frac{q[(1-2\Gamma^{2})q^{2}+1]dq}{(1+q^{2})^{2}-4\Gamma^{2}q^{2}} J_{0}\left(\frac{q\rho}{\lambda_{L}}\right) \end{split}$$

and we get similar equations for j

 \Rightarrow the magnetic field acquires an in-plane component in addition to usual B_z

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

Integrals to be computed $G_{\nu}(x) = \int_{0}^{\infty} \frac{P(q)}{(1+q^{2})^{2} - 4\Gamma^{2}q^{2}} q^{\nu+1} J_{\nu}(qx) dq$ $= 2\operatorname{Re} \left[C \int_{0}^{\infty} \frac{q^{\nu}}{q^{2} - \eta^{2}} J_{\nu}(qx) q dq \right]$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

Integrals to be computed $G_{\nu}(x) = \int_{0}^{\infty} \frac{P(q)}{(1+q^{2})^{2} - 4\Gamma^{2}q^{2}} q^{\nu+1} J_{\nu}(qx) dq$ $= 2\operatorname{Re} \left[C \int_{0}^{\infty} \frac{q^{\nu}}{q^{2} - n^{2}} J_{\nu}(qx) q dq \right]$

Hankel transforms

Integral transforms whose kernel is a Bessel function

$$F_{\nu}(x) := \int_{0}^{\infty} f(q) J_{\nu}(qx) q dq$$
$$f(q) = \frac{q^{\nu}}{q^{2} + a^{2}} \quad \longleftrightarrow \quad F_{\nu}(x) = \frac{a^{\nu} K_{\nu}(ax)}{a^{\nu}}$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

Integrals to be computed $G_{\nu}(x) = \int_{0}^{\infty} \frac{P(q)}{(1+q^{2})^{2} - 4\Gamma^{2}q^{2}} q^{\nu+1} J_{\nu}(qx) dq$ $= 2\operatorname{Re} \left[C \int_{0}^{\infty} \frac{q^{\nu}}{q^{2} - n^{2}} J_{\nu}(qx) q dq \right]$

Hankel transforms

Integral transforms whose kernel is a Bessel function

$$F_{\nu}(x) := \int_{0}^{\infty} f(q) J_{\nu}(qx) q dq$$
$$f(q) = \frac{q^{\nu}}{q^{2} + a^{2}} \quad \longleftrightarrow \quad F_{\nu}(x) = a^{\nu} K_{\nu}(ax)$$

$$\int_0^\infty \frac{q^{\nu}}{q^2 - \eta^2} J_{\nu}(qx) q dq = (i\eta)^{\nu} K_{\nu}(i\eta x)$$

$$\Rightarrow \quad G_{\nu}(x) = 2 \operatorname{Re} \left[C(i\eta)^{\nu} K_{\nu}(i\eta x) \right]$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

Integrals to be computed

$$G_{\nu}(x) = \int_{0}^{\infty} \frac{P(q)}{(1+q^{2})^{2} - 4\Gamma^{2}q^{2}} q^{\nu+1} J_{\nu}(qx) dq$$
$$= 2\operatorname{Re} \left[C \int_{0}^{\infty} \frac{q^{\nu}}{q^{2} - \eta^{2}} J_{\nu}(qx) q dq \right]$$

Hankel transforms

Integral transforms whose kernel is a Bessel function

$$F_{\nu}(x) := \int_{0}^{\infty} f(q) J_{\nu}(qx) q dq$$
$$f(q) = \frac{q^{\nu}}{q^{2} + a^{2}} \quad \longleftrightarrow \quad F_{\nu}(x) = a^{\nu} \mathcal{K}_{\nu}(ax)$$

Finally: *B* and *j*

$$B_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{\Phi_{0}}{2\pi\lambda_{L}^{2}} \operatorname{Re}\left[i\eta^{2}K_{1}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$B_{Z}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{-\Phi_{0}}{2\pi\lambda_{L}^{2}} \operatorname{Re}\left[\eta^{2}K_{0}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$j_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{-\Phi_{0}}{8\pi^{2}k\lambda_{L}^{3}} \operatorname{Re}\left[i\eta K_{1}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$j_{Z}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{\Phi_{0}}{8\pi^{2}k\lambda_{L}^{3}} \operatorname{Re}\left[\eta K_{0}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

where K_0 and K_1 are modified

Bessel functions of the second kind

$$\int_0^\infty \frac{q^\nu}{q^2 - \eta^2} J_\nu(qx) q dq = (i\eta)^\nu K_\nu(i\eta x)$$

$$\Rightarrow \quad G_\nu(x) = 2 \operatorname{Re} \left[C(i\eta)^\nu K_\nu(i\eta x) \right]$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex solutions of the London theory

Integrals to be computed

$$G_{\nu}(x) = \int_{0}^{\infty} \frac{P(q)}{(1+q^{2})^{2} - 4\Gamma^{2}q^{2}} q^{\nu+1} J_{\nu}(qx) dq$$
$$= 2\operatorname{Re} \left[C \int_{0}^{\infty} \frac{q^{\nu}}{q^{2} - \eta^{2}} J_{\nu}(qx) q dq \right]$$

Hankel transforms

Integral transforms whose kernel is a Bessel function

$$F_{\nu}(x) := \int_{0}^{\infty} f(q) J_{\nu}(qx) q dq$$
$$f(q) = \frac{q^{\nu}}{q^{2} + a^{2}} \quad \longleftrightarrow \quad F_{\nu}(x) = a^{\nu} K_{\nu}(ax)$$

$$\int_0^\infty \frac{q^\nu}{q^2 - \eta^2} J_\nu(qx) q dq = (i\eta)^\nu K_\nu(i\eta x)$$

$$\Rightarrow \quad G_\nu(x) = 2\text{Re}\left[C(i\eta)^\nu K_\nu(i\eta x)\right]$$

Finally: *B* and *j*

$$B_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{\Phi_{0}}{2\pi\lambda_{L}^{2}} \operatorname{Re}\left[i\eta^{2}K_{1}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$B_{Z}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{-\Phi_{0}}{2\pi\lambda_{L}^{2}} \operatorname{Re}\left[\eta^{2}K_{0}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$j_{\theta}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{-\Phi_{0}}{8\pi^{2}k\lambda_{L}^{3}} \operatorname{Re}\left[i\eta K_{1}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

$$j_{Z}\left(\frac{\rho}{\lambda_{L}}\right) = \frac{\Phi_{0}}{8\pi^{2}k\lambda_{L}^{3}} \operatorname{Re}\left[\eta K_{0}\left(\frac{i\eta\rho}{\lambda_{L}}\right)\right]$$

where K_0 and K_1 are modified

Bessel functions of the second kind

Intervortex forces
$$U(x) = \operatorname{Re}\left[\frac{i\eta}{\sqrt{1-\Gamma^2}}K_0\left(\frac{i\eta x}{\lambda_L}\right)\right]$$
Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortices and field inversion in non-centrosymmetric superconductors

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Helicoidal magnetic streamlines around a vortex

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Julien Garaud

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Vortex in noncentrosymm. supercond. [JG, Chernodub,

[JG, Chernodub, Kharzeev 2020]

Vortex feature an helical magnetic field

- carry both longitudinal and in-plane field
- features field inversion at intermediate Γ
- both London limit analytic calculations and full Ginzburg-Landau simulations agree

Vortex in noncentrosymm. supercond. [JG, Cher

[JG, Chernodub, Kharzeev 2020]

Vortex feature an helical magnetic field

- carry both longitudinal and in-plane field
- features field inversion at intermediate Γ
- both London limit analytic calculations and full Ginzburg-Landau simulations agree

Non-monotonic intervortex forces

- short-range repulsion and long range attract.
- vortex bound-states: should lead to formation of clusters, superclusters, stripe phases, etc
- metastable vortex/antivortex bound-states possible entropy stabilised V/AV lattice

Vortex magnetic field

Vortex bound-states

Vortex in noncentrosymm. supercond. [JG, Che

[JG, Chernodub, Kharzeev 2020]

Vortex feature an helical magnetic field

- carry both longitudinal and in-plane field
- features field inversion at intermediate Γ
- both London limit analytic calculations and full Ginzburg-Landau simulations agree

Non-monotonic intervortex forces

- short-range repulsion and long range attract.
- vortex bound-states: should lead to formation of clusters, superclusters, stripe phases, etc
- metastable vortex/antivortex bound-states possible entropy stabilised V/AV lattice

Confirmed by

[Samoilenka and Babaev 2020]

method based on Chandrasekhar-Kendall trick

Vortex bound-states

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Possible applications of NCS

[Chernodub, JG, Kharzeev 2019]

Chiral Magnetic Josephson Junctions as a base for low noise qubits ?

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Possible applications of NCS

[Chernodub, JG, Kharzeev 2019]

Chiral Magnetic Josephson Junctions as a base for low noise qubits ?

NCS with uniaxial ferromagnetic weak link

Order parameter equation inside the link

$$k\partial_{xx}^2 + iek\chi h_x\partial_x - \alpha \psi = 0$$

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Possible applications of NCS

[Chernodub, JG, Kharzeev 2019]

Chiral Magnetic Josephson Junctions as a base for low noise qubits ?

NCS with uniaxial ferromagnetic weak link

Order parameter equation inside the link

$$k\partial_{xx}^2 + iek\chi h_x\partial_x - \alpha \psi = 0$$

Unconventional Josephson effect

 $J = J_c \sin (\varphi - \varphi_g)$, with the bias $\varphi_g \neq 0$

 \Rightarrow non-vanishing current across the junction

 \Rightarrow the bias $\varphi_g = eh_x \chi L$ plays the role of offset flux

Possible applications of NCS

[Chernodub, JG, Kharzeev 2019]

Chiral Magnetic Josephson Junctions as a base for low noise qubits ?

NCS with uniaxial ferromagnetic weak link

Order parameter equation inside the link

$$k\partial_{xx}^2 + iek\chi h_x\partial_x - \alpha \psi = 0$$

Unconventional Josephson effect

 $J=J_c\sin\left(arphi-arphi_g
ight)\,,\quad$ with the bias $\ arphi_g
eq 0$

 \Rightarrow non-vanishing current across the junction

 \Rightarrow the bias $\varphi_g = eh_x \chi L$ plays the role of offset flux

Chiral junction can be used for qubit design

$$\begin{split} & \mathsf{E}_{\mathsf{Q}}(\varphi,\varphi_g) = \mathsf{E}_J[1-\cos(\varphi-\varphi_g)] + \mathsf{E}_L \varphi^2. \\ & \mathsf{Qubit} \quad \mathsf{Junction} \qquad \mathsf{Inductive\ energ} \end{split}$$

Chiral magnetic junction

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Possible applications

[Chernodub, JG, Kharzeev 2019]

Coulomb interactions btw Cooper pairs

described by the qubit Hamiltonian

$$\hat{H} = 4E_C\hat{n}^2 + E_J[1 - \cos(\varphi - \varphi_g)] + E_L\varphi^2$$

- fluxonium qubits relate the phase offset to the externally applied flux Φ as $\varphi_g = 2\pi\Phi/\Phi_0$
- nonzero phase bias φ_g imposes a large anharmonicity on the energy-level

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Possible applications

[Chernodub, JG, Kharzeev 2019]

Coulomb interactions btw Cooper pairs

described by the qubit Hamiltonian

$$\hat{H} = 4E_C\hat{n}^2 + E_J[1 - \cos(\varphi - \varphi_g)] + E_L\varphi^2$$

Chiral magnetic junction

- fluxonium qubits relate the phase offset to the externally applied flux Φ as $\varphi_g = 2\pi\Phi/\Phi_0$
- nonzero phase bias φ_g imposes a large anharmonicity on the energy-level

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

[Chernodub, JG, Kharzeev 2019]

Possible applications

Coulomb interactions btw Cooper pairs

described by the qubit Hamiltonian

$$\hat{H} = 4E_C\hat{n}^2 + E_J[1 - \cos(\varphi - \varphi_g)] + E_L\varphi^2$$

Chiral magnetic junction

Chiral magnetic junction

- fluxonium qubits relate the phase offset to the externally applied flux Φ as $\varphi_g = 2\pi\Phi/\Phi_0$
- nonzero phase bias φ_g imposes a large anharmonicity on the energy-level

Advantage

- CMJs eliminate the need for an external magnetic flux
- suppress noise resulting from offset flux by factor $\approx 10^{-2}$

Julien Garaud

Introduction	Vortex solutions, field inversion
Toroflux in non-centrosymmetric superconductors	Applications: Chiral Magnetic Josephson junctions
Vortices and applications in non-centrosymmetric superconductors	Conclusion

Conclusion

New excitations in non-centrosymmetric superconductors

Toroflux

- knotted magnetic configurations analogous to Chandrasekhar-Kendall
- simplest modes are induced by magnetic dipoles
- perhaps observable in muon spectroscopy

Introduction	Vortex solutions, field inversion
Toroflux in non-centrosymmetric superconductors	Applications: Chiral Magnetic Josephson junctions
Vortices and applications in non-centrosymmetric superconductors	Conclusion

Conclusion

New excitations in non-centrosymmetric superconductors

Toroflux

- knotted magnetic configurations analogous to Chandrasekhar-Kendall
- simplest modes are induced by magnetic dipoles
- perhaps observable in muon spectroscopy

Vortices

- feature an helical magnetic field, with a possible field inversion
- existence of non-monotonic forces
 - \Rightarrow formation of bound-states, cluster,...

Vortices

Introduction	Vortex solutions, field inversion
Toroflux in non-centrosymmetric superconductors	Applications: Chiral Magnetic Josephson junctions
Vortices and applications in non-centrosymmetric superconductors	Conclusion

Conclusion

New excitations in non-centrosymmetric superconductors

Toroflux

- knotted magnetic configurations analogous to Chandrasekhar-Kendall
- simplest modes are induced by magnetic dipoles
- perhaps observable in muon spectroscopy

Vortices

- feature an helical magnetic field, with a possible field inversion
- existence of non-monotonic forces
 ⇒ formation of bound-states, cluster,...

NCS have possible interesting applications

Chiral Magnetic Junction, low qubits?

Vortices

Vortex solutions, field inversion Applications: Chiral Magnetic Josephson junctions Conclusion

Thank you for your attention!

based on

- JG, A. Korneev, A. Samoilenka, A. Molochkov, E. Babaev, and M. Chernodub Toroflux: A counterpart of the Chandrasekhar-Kendall state in noncentrosymmetric superconductors, Phys. Rev. B 108 014504 (2023), arXiv:2208.08180 [cond-mat].
- JG, M. N. Chernodub and D. E. Kharzeev
 Vortices with magnetic field inversion in non-centrosymmetric superconductors,
 Phys. Rev. B 102 184516 (2020), arXiv:2003.10917 [cond-mat].
- M. N. Chernodub, **JG** and D. E. Kharzeev *Chiral Magnetic Josephson junction: a base for low-noise superconducting qubits?, Universe* **8**,12:657 (2022). arXiv:1908.00392 [cond-mat].