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Overview
Joint work with A. Riello general: 2207.00568 [ATI\/IP 24] & null YM: 2303.03531 [AHP 24]

Problem: reduced phase space of gauge theories, with corners P

® Hamiltonian reduction paradigm becomes reduction by stages: P

1. ‘bulk’ gauge ~~ “constraint reduction”
2. residual/large gauge ~~ “flux superselection” P

® Adjusted expectation:

1. reduced phase space is (singular/stratified) Poisson manifold P
foliated by symplectic leaves called flux superselection sectors P
residual momentum maps given by Noether charges P
sectors labeled by Poisson casimirs, or gauge classes of fluxes P
quantisation decomposes Hilbert space into sectors. P

ke

Application to null YM: allows to recover
1. soft/asymptotic/large gauge transf. - as residual symmetries,

2. “extended” phase space / memory - as residual Hamiltonian data. P

General relativity is still work in progress. Technical complications.
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Hamiltonian reduction primer - Hamiltonian actions
Let M = R?" with symplectic form w = dq’ A dp;, i.e. {q', pj} = 6]. P

Lie algebra action: p: g — X(M), with fundamental vector fields

&a=ples),  pllea eslg) = [o(ea), plen)lxmyi [ Eblxmy = Fpéc-P

Hamiltonian action <= 1z w = dH, <= é = {H., }.
We talk of a Hamiltonian G-space (M, G,p). P

A Hamiltonian G space carries a momentum map function:
H:M—g* H(x): &€ = (H(x),&) = Ha(x)¢?.P
Equivariance: (L;H,&) = (H,[£,n])+k (&, n) iff cocycle k vanishes.
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Hamiltonian reduction primer - familiar examples
Consider the R" and so(n) (algebra) actions on R?" = T*R" by

. o 9
(q’7Pi)_>(ql+Vl7Pi) p(V):Vlaq. VeRn7

. o . 9
(q',pi) = (O;¢,=0O/p;) p(O)= Oq’ - ,p,ap, O € so(n).

P
Momentum maps: (H, ®) = ¢,.4)(pidq’ )~ Lo(ey(dq’ 'dp;) = de(.)(p,-dq").

(H(q,p),v) = v'p;, Linear Momentum:  H(q, p)(e) =(p, ®) € (R")*
(H(q,p),0) = p;Oquj, Angular Momentum: H(g, p)(e) =(p, eq) € so(n)*
P In n =3 we have O € 50(3) ~R3 > o, given by O,’ — ey 0k and

(p, 0q) = p;Olq' = p;¥'erno g’ = (g x p)- o
Momentum map identified with the vector g x p.
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Hamiltonian reduction primer - co-adjoint orbits

The dual of a Lie algebra g* is a Poisson manifold with

0

M= xf5—— A =—
CabaXa (()"Xb7

{Xa;Xb}’ = f;cbxcv P
foliated by co-adjoint orbits: for any pu € g*

Op={neg |3g€G Adgp=p't ~G/G,, Tyw0,~g/g,P
The foliation is symplectic with Kostant-Kirillov—Souriau form on O,

w (adx(u'),ady (1)) = (W', X, Y]), VX, Y €g.P

Any Poisson manifold foliated by symplectic “leaves”.
Casimir functions {c,f} = 0 for all f € C°°(M): constant on leaves,
labeled by choice of values of a complete set of Casimirs.!

1Basis of Oth Poisson cohomology.
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Hamiltonian reduction primer - orbit reduction

Theorem (Marsden, Weinstein; Meyer; Arms ... ~ ‘70s — ‘80s )

Let G O M be a free and proper Hamiltonian action with equivariant m.
map H: M — g*. P For every coadjoint orbit O,, C g* we have a
symplectic manifold:

Cy = HH0,)/G = H (1)/Gy eg Co=HH(0)/GP

Moreover M/ G is Poisson, and C [] are its symplectic leaves:

M/G = |_| Cy = |_| H='(0,)/G symplectic foliation.P
Ou€eg* Ou€eg*

Reduction of T*G yields T*G/G ~ g*, model for M/G.
Orbit O, — g*, model for symplectic “sector” H1(0,)/G.
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Hamiltonian reduction primer - reduction by stages
Consider a normal subgroup G, C G, momentum map H,: M — g%. P
Consider reduction at zero C, = H;1(0)/G, for subgroup. P

Theorem (Guillemin, Sternberg; Marsden, Ratiu, Weinstein ~ ‘80s )
If Go C G is a normal subgroup, there is a Hamiltonian action

GOC, G=G/G
with momentum map h: C, — g* such that® ©ih = Hly-10)- P

The first stage reduction C, is a symplectic manifold. P
The second stage reduction yields the Poisson manifold:

M=C,/6=| 8= || n7'(05)/C

[f] chg*

Second stage sees coadjoint orbits O, C g* of G.

2Some details are hidden.
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Hamiltonian reduction primer - important remarks

Go-red at 0 G-red at O
(M, w) ~~rrmmmnny (G, )~ (811, W)

Go ﬁ_l (Qf)

P Traditionally used to reduce by semidirect product actions.
Our application is to field theory on manifolds with corners. P

Hamiltonian reduction (T*G)/G ~ g*.
Prototype corner gauge reduction, realised exactly in 2d BF theory.
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Local gauge theory with corners |

Lagrangian field theory on ¥ x R, dim(X) = n. Cornerif 0L A0 . P
Space of fields F. Local Lagrangian L € Q%'P(F x (X x R)).

loc

dL = EL + d6.P

Will not be working on “covariant phase space” EL—=T.
On X: Geometric phase space P w. (local) symplectic form*® w = d@
Shell defines constraint submanifold, or “Cauchy data” € C P. P
For gauge field theory assume we have
1. A (local) Lie group action on F
2. An induced (local) Lie group action § O (P,w) P

Note: induced action is not always a group action.
OK for YM, but not for GR: point 2 fails, algebroid/groupoid on shell.

3Terms and conditions apply. [Kijowski—Tulczyjew]
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Local gauge theory with corners Il

Hamiltonian formulation yields (P, w, H, S) locally Hamiltonian G-space:

1. P =T(X, F) sections of a vector bundle (for simplicity), P
2. G a local Lie group with a local action on P with Lie(§) = &, P
3. w e Q2P(P x ¥) a local symplectic density on P, P

loc

4. H e QY'P(P x ¥, 6*) a &*-valued local form on P. P

loc
Flow and equivariance now hold pointwise: for £ € &

Loeyw = (dH, ) local Hamiltonian form

LoeH = adgH+dk(¢) Equivariance up to corners

P Note 1: Local pairing (dH,&): may depend on derivatives J¢.
~> Generally not C*°(X)-linear! P

Note 2: Integrate w = [fw and H = [{ H.
~> Momentum map. Weakly equivariant .
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Running Example |: Spacelike Yang—Mills Theory

Consider Lie group G, with inner product tr: g x g — R.
G-connections A € A = Conn(P — X) with X spacelike.
Generalised electric fields E are g-valued (top-1)-forms on X. P

We have the geometric phase space:*
E=Q"HZ,9), P=TA=AxE>S(AE), w=rtr(dAdE).P
The gauge action of § = GF = C§°(Z, G) reads

(A E.€) — p(€)(A E) = (dat,ad(€) - E), £ 6 =g~.
Locally Hamiltonian with (equivariant) momentum map

Lpeyw = (dH, §), (H, &) = tr(Eda).P

‘A = AN\):, E = (xFa)|x from YM theory on ¥ X R and L = F; A %Fj.

Null Yang-Mills theor Conclusions
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Reduced phase space

Assume for a moment that OX = (). Physical configurations on P are
recovered as the vanishing locus of Noether’s current H. P

If Noether’s current is a locally Hamiltonian equivariant,
momentum form, physical configurations on P are characterised by:

Noether Thm — H d-exact on shell — Hi/HmO.P
b

H is an equivariant momentum map, so Hamiltonian reduction yields the
space of physical configurations modulo gauge:

0¥ =0, €=H'0) constraintset, €= H"'0)/9.P

This is the reduced phase space of the theory.
In this case, this is a symplectic manifold. P

Complications arise when 9% # 0.
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Reduction with corners via reduction by stages

Problem: H~1(0) is no longer the correct constraint locus!
“Zero-flux conditions” imposed by H=0! P

Proposition (Constraint / Flux splitting [Riello, MS])
There is a natural bulk/boundary splitting:

H=H,+dh

such that € = H_'(0) coincides with the constraint set of the theory.
We call H, the constraint form and dh the flux form. P

Problem: H, is NOT a momentum form for G anymore!

Noether Thm = @ = H;'(0) first-class constraint set.P

Question: Is there a subgroup G, C G, for which € is zero level set of
induced momentum map J,: P — &%, so that € = C/G, symplectic?
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First Stage: Constraint Reduction

Answer: Yes! P

Theorem (Constraint reduction [Riello MS])
Let he = 1% fz dh. Under certain regularity assumptions:
1. 8, = Annlm(he) C & is the maximal Lie ideal whose associated
momentum map J, is constraining: J;1(0)=¢€. P
Normal subgroup G, C G: constraint gauge group.
Quotient group § = G/G,: flux gauge group P
2. There is a residual Hamiltonian action § O € = €/, with
momentum map h: € — &, such that he = 7} h.
We call h the flux map and § = Im(h) the flux space. P

3. Equivariance controlled by the cocycle k = [ dk.
[Recall: H is equivariant up to corner] P

We will call € the constraint-reduced phase space.

Conclusions
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Yang—Mills II: Constraint/flux split
The Hamiltonian momentum form splits as:
H=H.+dh,  (Ho¢§) =tr(daEE),  (dh,§) = —dtr(EE),
€= H.;'(0) = {(AE) € P | daE =0} : Gauss' ConstraintP
Note: Imposing H = 0 forces E|ps = 0: zero flux.
Indeed (h,&) = [, thstr(EE) is the (smeared) “electric” flux. P
Denote £ € g — B <= d¢ = 0. The constraint gauge ideal &, reads:

{£ €& | ¢los =0} G semisimple

(’5O—Ann(5)—{{€€® | 3X€g:§|8)::X|BZ} G AbelianP

and thus the flux gauge algebra & reads (true also for null case!)

C>(0%,9) G semisimple

6=6/6,=
- / {C‘X’((?Lg)/g G Abelian
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Conclusions

Yang—Muills lll: Constraint reduction
[Singer; Narasimhan, Ramadas; Gomes, Hopfmiiller, Riello; Riello-MS]
Given A, radiative electric fields Ha = {daE =0 = E|sx}.
Radiative/Coulombic (Helmholz—Hodge) orthogonal decomposition. P
E = E,.q + *dap, with ¢ € C*°(X, g) the Coulombic potential
App=*dpaE~0 inXk,
n-dap = Ep at 0x
parametrised by Ey € &y = Q'°P(JX,g). P Then
C loc g{A x A Xgé) — Q loc iPrad/go XEGP
—— ——
Trad P

“—rad

For G Abelian, A = A4 + ds, with ¢ € C°°(X, g) solution of
Neumann-Laplace, P one obtains globally!

C~ grad X
w 2 / dErad A dArad + dE8 A dgaa
5 ox

with Erad = iPrad/9 2> (Arada Erad)-
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Second Stage: Flux Superselection

First stage reduction output: (C,w, h) Hamiltonian G-space. P

Consider the coadjoint orbit Of € &* of a flux f € F C &*.
All on-shell configurations whose flux is in Of are acted upon by G:

81 = A (OF) ~ 8111 = 811/9 Superselection sector (SSS)P

Theorem (Flux Superselection [Riello, MS])
The fully-reduced phase space C = C/G = C/§ is a Poisson manifold

Conclusions

whose symplectic leaves are the superselection sectors: C = |_|of co S

P The second-stage, fully-reduced, phase space is only Poisson!

Fully gauge-invariant symplectic leaves. P

Labels are Casimirs of the Poisson structure, i.e. central elements of
the Poisson algebra C*°(€). Hilbert space decomposition into “blocks”.
(Think Casimirs of the Noether charge algebra.)

SIgnoring multiple connected components.
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Yang—Mills IV: A closer look to the first stage

Abelian case

Radiative/Coulombic split leads to constraint reduction:
Q ~ Erad X 88) zrad = gjI’ad/go - (g{A X ‘A)/SOP

G acts freely on P, y. Then C — Prag = Prag/F is a fibre bundle

N ab
Q loc T X grad =~ 8(’) X X grad > (E[), aEradaArad),

w a:b / dE.q NdArg + dEs A , P
5 ox

Constraint-reduced phase space =~ “Extended phase space”

Conclusions

(e]e]
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Yang—Mills V: A closer look to the second stage

Abelian Case

Residual momentum map (€5 ~ B*):

h . @* X X Erad — Coo(aZ,g)*’ (E(")7 aEradvArad) = tI‘(Ea-)P
————— N——— ox
e &

The prototypical reduction yields
T75/G o (6" x 6)/G = &P
The second stage, fully reduced phase space locally reads:
C=2C/F ~oc & X Prag
With the foliation: 8jf) ~ioc O X Prag = & X Pradg ioc €. P

Fully reduced phase space ~,. Radiativex (Charge algebra)”
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A note on quantization

Assume a quantization of C is given Q : C*°(€) — B(H).
Symplectic manifolds have trivial Poisson center (only constants). P

j (C>=(€), {--}) —— (B(30), [, ]) irrep
e (e (B(ﬂ% () induced rep
Z(C>(€)) — Z(B(%H)) center

P Reducibility of B(J) induces a decomposition
H= @9—(“, H*  C=(C) —irrepP

E.g. 2d BF theory for G compact ~~ Peter—-Weyl theorem
CxT*G, Cxg*, H=L°(G)x~ @(J—C’\) @K, H* G-unirrep.

A
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Null Yang—Mills theory
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Null Yang—Mills theory | - relevant symplectic spaces

Let dim(X) =3 and X =S x / null, I =0, 1].
{x', u} coord on ¥, morally J. P

Write gauge fields and “electric fields” as

A=Ajdu+acA;x A, acA=C>(94S,g)
Eeé&=C>(9S,g)).P

Then, the geometric phase space of null YM theory (Phym, wnym) is

Povm = Ag X ﬁX &, wnyM = / (tr(dE/\dAu)thr(dF,i/\da,-)) vols.P
px

The Ashtekar-Streubel phase space (Pag, was) is

~

Pas = A’ TAS = / tr((()uda,-) A dai)VOIz.
)N
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Null Yang—Mills theory | - relevant symplectic spaces

Let dim(X) =3 and X =S x / null, I =0, 1].
{x', u} coord on ¥, morally J. P

Write gauge fields and “electric fields” as

A=Ajdu+acA;x A, acA=C>(94S,g)
Eeé&=C>(9S,g)).P

Then, the geometric phase space of null YM theory (Phym, wnym) is

Povm = Ag X .A\X &, wnyM = / (tr(dE/\dAu)thr(dF,i/\da,-)) vols.P
px

The extended-Ashtekar-Streubel phase space (Poas, @Weas) is

Pors = f/l\ x T" Gdg, TeAS = / tr((0,da;) A dai)VOI): + Qs.
PN
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Null Yang—Mills theory | - relevant symplectic spaces

Let dim(X) =3 and X =S x / null, I =0, 1].
{x', u} coord on ¥, morally J. P

Write gauge fields and “electric fields” as

A=AjdutacA;x A, acA=C>(9%S,g)
Eeé&=C>(09(S,g)).P

Then, the geometric phase space of null YM theory (Phynm, waym) is

Poym = Ay x .A\X &, wnyM = / (tr(dE/\dAu)—i—tr(dFL’;/\da,-)) vols.P
by

The linearly extended-Ashtekar—Streubel phase space (P11, ') is

WeAS

Pling = Ax T g°, win, = / tr((0,da;) A da’)vols + ws.
b
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Null Yang—Mills theory | - relevant symplectic spaces
Let dim(X)=3and X =S x [ null, | =[0,1].
{x', u} coord on ¥, morally . P

Write gauge fields and “electric fields” as

A=Ajdu+ac A x A, acA=C>(0S, g)
Eecé&=C™(Q°(S, g).P

Then, the geometric phase space of null YM theory (Pnywm, wnym) is

Poym = Ag X AXE,  wayn = / (tr(dE/\dAu)—i-tr(dFL’;/\da,-)) voly.P
by

The Ashtekar-Streubel phase space (Pas, wag) is

~

Pas = A’ TWAS = / tr((@uda,-) A dai)VOIz.
)N

PoyMm A0 Pas, dEdA, + dFL’;da; A0 (3uda,-)dai Meaning?
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Null Yang—Mills theory |l - Hamiltonian setup

Geometric phase space P,ym with § = C§°(X, G) = GF action.®

Momentum forms:  (H(A, E), &) = tr(G &)vols — (Dutr(E ) + d'tr(Fu €))vols,

(Ho,8) d{h,&)
Gauss constraint: € = {G = 9,E + [A,, E] + D'F,; = 0} = H;*(0).P

Corner: 90X = S x S. “Initial and final” values of (vector valued) fields:
(pin - 90|u:—1a (pﬁn - §0|u:1a (pdiﬂ“ _ (Pﬁn _ (pin.P

Parametrizing go% = g° x g°: €2 = (&, ¢fin) s (¢fin, ¢diff).

(ha£).6) = [

tI‘(Eﬁnfﬁn o Eingin) — / tI‘(Edinﬁn + Eingdiff)'
S S

6D = d + [a, .

26/32



Hamiltonian reduction primer Gauge Theory Reduction by Stages Null Yang-Mills theory Conclusions
0000000 00000 000000000 000e00 (e]e)

Theorem (Abelian case - Riello, MS)

The constraint-reduced phase space (C,w) of null abelian YM theory is
symplectomorphic to the linearly extended Ashtekar-Streubel phase space:

CPRg=Ax Tg° 3 (a,\e),  ((8°) ~g°)

weAS(a/\e /\fv (0udaj) A daj + /\fdeAd)\

P It carries the Hamiltonian action of & ~ g° x g° > (&, &gn),

a > a+ d&n o
A A+ &in —&n (hoas (Ein, &an)) = /S V7 ((0'a")éan—e(Ean—Ein) ) .P

er—e

The on-shell electromagnetic field (E, F) at (u,x) € £ C J is given by
(E,F) = (e+8a" —d'ai(u),da) = EYT = E™(a,e)— E™(e) = —0'adT.P

Electromagnetic memory [Bieri,Garfinkle;Pasterski] is (a component of)
the momentum map h_, 4 for the action of g°> x g° on the Linearly
Extended Ashtekar Streubel Phase space.

27/32



Hamiltonian reduction prime Gaug Th Null Yang—Mills theory Conclusions

0O000e0

Note: § = G° x GS so can (carefully) proceed by stages again! P

Theorem (Decomposing second stage reduction, Riello MS)
The Hamiltonian reduction of (C,w, §) ~ (P, wlily, GO*/G), with
respect to the Hamiltonian action of the initial copy of g° at e = 0, yields
the Ashtekar—Streubel symplectic space (ﬁ, wWAS),

(PeRs, @es)/ /oG = (A, was).P
It carries the residual Lie algebra action of (the final copy) g°:
QAS(fﬁn)a/ = dfﬁn, P

with momentum map given by the electromagnetic memory

(Bas Enn) = / VA (@i T)eq,) P

Reproduces relationship soft symmetries <+ memory [Strominger et al] in
terms of residual gauge in (partially reduced) AS phase space. P
Explains map Pnoyn ~ Pas: A, = 0 gauge fixing for the group of gauge
transformations trivial at the “future” celestial sphere (not both!). P

Question: How far can we generalise this to the non-abelian case?
28/32
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Theorem (Non Abelian case - Riello, MS)

The symplectic reduction of (C,w, §) =~ (Peas, Weas, GI*), with respect
to the Hamiltonian action of the initial copy of g° at e = 0 yields the
Ashtekar-Streubel symplectic space (A, was),

(Pes, @Weas)// G ~ (A, was).P

It carries the residual Lie algebra action of (the final copy) g3 :

oas(&in)a = Dégin = déan + [a, §an].P

with momentum map given by “the non-Abelian memory”:
1

(s i) = [ V7 (DD, ). (D'D,2)) = [ Di0jaicuP
s -1

Attention! this is NOT the “color memory"” [Pasterski, Raclariu, Strominger]!
In a mode-decomposition:
(D'Leai)) = 0'af™ + 37 [Re(2a(k)'), Im(2a(k),)] # O'ai™"
k>0
29/32
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Conclusions
1. In good cases, Noether theorems set us up for Hamiltonian
reduction, where the (fully) reduced phase space is € = €/5. P

2. In the presence of corners, there is a mismatch between € and the
zero-level set of the FULL Noether current H. P

3. Reduction fails to output a symplectic manifold, but rather
€=C/G=_C/Gis Poisson. P
4. For null, abelian YM theory this yields

9 red m mn in d .n d
(P, w) ~A=y (PR, wlits) e, (Pas, was) S (8 wp)

{e=0} {ENT =

with p a fixed value for the Electromagnetic memory. P

5. Quantization (at e = 0) should yield decomposition in memory
eigenvalues, simply owing to the Hamiltonian structure.
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Thanks!
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