Hamiltonian reduction primer	Gauge Theory	Reduction by Stages	Null Yang–Mills theory	Conclusions
0000000	00000	00000000	000000	00

Classical superselection sectors, memory and soft symmetries from Hamiltonian reduction QFG2024 - IHP Paris

Michele Schiavina

Department of Mathematics, University of Pavia & Istituto Nazionale di Fisica Nucleare, Pavia

28/03/24

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Overview

Joint work with A. Riello general: 2207.00568 [ATMP 24] & null YM: 2303.03531 [AHP 24]

 $\ensuremath{\text{Problem:}}$ reduced phase space of gauge theories, with corners $\ensuremath{\,P}$

- Hamiltonian reduction paradigm becomes reduction by stages: P
 - 1. 'bulk' gauge \rightsquigarrow "constraint reduction"
 - 2. residual/large gauge \rightsquigarrow "flux superselection" $~{\bf P}$
- Adjusted expectation:
 - 1. reduced phase space is (singular/stratified) Poisson manifold $\mbox{ P}$
 - 2. foliated by symplectic leaves called flux superselection sectors $\ {\bf P}$
 - 3. residual momentum maps given by Noether charges P
 - 4. sectors labeled by Poisson casimirs, or gauge classes of *fluxes* P
 - 5. quantisation decomposes Hilbert space into sectors. $\ensuremath{\textbf{P}}$

Application to null YM: allows to recover

- 1. soft/asymptotic/large gauge transf. as residual symmetries,
- 2. "extended" phase space / memory as residual Hamiltonian data. ${\bf P}$

General relativity is still work in progress. Technical complications.

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Hamiltonian reduction primer

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Hamiltonian reduction primer - Hamiltonian actions

Let $M = R^{2n}$ with symplectic form $\omega = dq^i \wedge dp_i$, i.e. $\{q^i, p_j\} = \delta^i_j$. P Lie algebra action: $\rho: \mathfrak{g} \to \mathfrak{X}(M)$, with fundamental vector fields

$$\hat{\xi}_a \equiv \rho(e_a), \quad \rho([e_a, e_b]_{\mathfrak{g}}) = [\rho(e_a), \rho(e_b)]_{\mathfrak{X}(M)}; \quad [\hat{\xi}_a, \hat{\xi}_b]_{\mathfrak{X}(M)} = f_{ab}^c \hat{\xi}_c. \mathbf{P}$$

Hamiltonian action $\iff \iota_{\hat{\xi}_a}\omega = dH_a \iff \hat{\xi}_a = \{H_a, \cdot\}.$ We talk of a *Hamiltonian G-space* (M, G, ρ) . **P** A Hamiltonian *G* space carries a *momentum map* function:

$$H \colon M \to \mathfrak{g}^*$$
 $H(x) \colon \xi \to \langle H(x), \xi \rangle = H_a(x)\xi^a.\mathbf{P}$

Equivariance: $\langle L_{\hat{\eta}}H, \xi \rangle = \langle H, [\xi, \eta] \rangle + k(\xi, \eta)$ iff cocycle *k* vanishes.

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Hamiltonian reduction primer - familiar examples

Consider the \mathbb{R}^n and $\mathfrak{so}(n)$ (algebra) actions on $\mathbb{R}^{2n} = T^* \mathbb{R}^n$ by

$$(q^i, p_i) o (q^i + v^i, p_i)$$
 $\rho(v) = v^i \frac{\partial}{\partial q^i}$ $v \in \mathbb{R}^n,$
 $(q^i, p_i) o (O^i_j q^j, -O^j_i p_j)$ $\rho(O) = O^i_j q^j \frac{\partial}{\partial q^i} - O^i_j p_i \frac{\partial}{\partial p_j}$ $O \in \mathfrak{so}(n).$

Ρ

Momentum maps: $\langle H, \bullet \rangle \doteq \iota_{\rho(\bullet)}(p_i dq^i) \rightsquigarrow \iota_{\rho(\bullet)}(dq^i dp_i) = d\iota_{\rho(\bullet)}(p_i dq^i).$

 $\begin{array}{ll} \langle H(q,p),v\rangle = v^i p_i, & \text{Linear Momentum:} & H(q,p)(\bullet) = \langle p,\bullet\rangle \in (\mathbb{R}^n)^* \\ \langle H(q,p),O\rangle = p_i O_j^i q^j, & \text{Angular Momentum:} & H(q,p)(\bullet) = \langle p,\bullet q\rangle \in \mathfrak{so}(n)^* \end{array}$

P In n=3 we have $O\in\mathfrak{so}(3)\simeq\mathbb{R}^3
i o$, given by $O_i^j\mapsto\delta^{j\ell}\epsilon_{\ell ik}o^k$ and

$$\langle p, Oq \rangle = p_j O_i^j q^i = p_j \delta^{j\ell} \epsilon_{\ell i k} o^k q^i = (q \times p) \cdot o$$

Momentum map identified with the vector $q \times p$.

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Hamiltonian reduction primer - co-adjoint orbits

The dual of a Lie algebra \mathfrak{g}^\ast is a Poisson manifold with

$$\Pi = x_c f_{ab}^c \frac{\partial}{\partial x_a} \wedge \frac{\partial}{\partial x_b}, \qquad \{x_a, x_b\} = f_{ab}^c x_c, \mathbf{P}$$

foliated by co-adjoint orbits: for any $\mu\in\mathfrak{g}^*$

$$\mathfrak{O}_{\mu} = \{\mu' \in \mathfrak{g}^* \mid \exists g \in G, \ \mathrm{Ad}_g^* \mu = \mu'\} \simeq G/G_{\mu}, \quad T_{\mu'}\mathfrak{O}_{\mu} \simeq \mathfrak{g}/\mathfrak{g}_{\mu}.\mathsf{P}$$

The foliation is symplectic with Kostant–Kirillov–Souriau form on \mathcal{O}_{μ} ,

$$\omega_{\mu'}(\mathrm{ad}_X(\mu'),\mathrm{ad}_Y(\mu')) = \langle \mu', [X,Y] \rangle, \quad \forall X,Y \in \mathfrak{g}.\mathsf{P}$$

Any Poisson manifold foliated by symplectic "leaves". Casimir functions $\{c, f\} = 0$ for all $f \in C^{\infty}(M)$: constant on leaves, labeled by choice of values of a complete set of Casimirs.¹

¹Basis of 0th Poisson cohomology.

Reduction by Stages

Hamiltonian reduction primer - orbit reduction

Theorem (Marsden, Weinstein; Meyer; Arms ... ~ '70*s* – '80*s*) Let $G \circlearrowright M$ be a free and proper Hamiltonian action with equivariant *m*. map $H : M \to \mathfrak{g}^*$. **P** For every coadjoint orbit $\mathfrak{O}_{\mu} \subset \mathfrak{g}^*$ we have a symplectic manifold:

$$\underline{C}_{[\mu]} \doteq H^{-1}(\mathfrak{O}_{\mu})/G \simeq H^{-1}(\mu)/G_{\mu}, \quad \text{e.g.} \quad \underline{C}_{0} = H^{-1}(0)/G.\mathbf{P}$$

Moreover M/G is **Poisson**, and $\underline{C}_{[\mu]}$ are its symplectic leaves:

$$M/G = \bigsqcup_{\mathfrak{O}_{\mu} \in \mathfrak{g}^{*}} \underline{C}_{[\mu]} = \bigsqcup_{\mathfrak{O}_{\mu} \in \mathfrak{g}^{*}} H^{-1}(\mathfrak{O}_{\mu})/G \qquad \text{symplectic foliation}.\mathbf{P}$$

Reduction of T^*G yields $T^*G/G \simeq \mathfrak{g}^*$, model for M/G.

Orbit $\mathfrak{O}_{\mu} \to \mathfrak{g}^*$, model for symplectic "sector" $H^{-1}(\mathfrak{O}_{\mu})/G$.

Reduction by Stages

Hamiltonian reduction primer - reduction by stages

Consider a normal subgroup $G_\circ \subset G$, momentum map $H_\circ \colon M \to \mathfrak{g}_\circ^*$. **P**

Consider reduction at zero $\underline{C}_{\circ} \doteq H_{\circ}^{-1}(0)/G_{\circ}$ for subgroup. P

Theorem (Guillemin, Sternberg; Marsden, Ratiu, Weinstein \sim '80s) If $G_{\circ} \subset G$ is a normal subgroup, there is a Hamiltonian action

$$\underline{G} \circlearrowright \underline{C}_{\circ} \qquad \underline{G} \doteq G/G_{\circ}$$

with momentum map $\underline{h}: \underline{C}_{\circ} \to \underline{\mathfrak{g}}^*$ such that $\pi_{\circ}^* \underline{h} = H|_{H_{\circ}^{-1}(0)}$. P

The first stage reduction \underline{C}_{\circ} is a symplectic manifold. **P** The second stage reduction yields the Poisson manifold:

$$\underline{\underline{M}} \doteq \underline{\underline{C}}_{\circ} / \underline{\underline{G}} = \bigsqcup_{[f]} \underline{\underline{\mathbb{S}}}_{[f]} \doteq \bigsqcup_{\underline{\mathbb{O}}_{f} \subset \underline{\underline{\mathfrak{g}}}^{*}} \underline{\underline{h}}^{-1}(\underline{\mathbb{O}}_{f}) / \underline{\underline{G}}$$

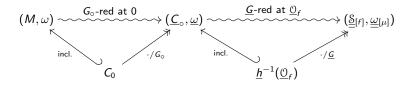
Second stage sees coadjoint orbits $\underline{O}_f \subset \underline{\mathfrak{g}}^*$ of \underline{G} .

²Some details are hidden.

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Hamiltonian reduction primer - important remarks



P Traditionally used to reduce by semidirect product actions. Our application is to field theory on manifolds with corners. P

Hamiltonian reduction $(T^*G)/G \simeq \mathfrak{g}^*$.

Prototype corner gauge reduction, realised exactly in 2d BF theory.

Gauge Theory •0000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Gauge Theory

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Local gauge theory with corners I

$$d\mathbf{L} = \mathbf{E}\mathbf{L} + d\boldsymbol{\theta}.\mathbf{P}$$

Will not be working on "covariant phase space" EL = 0. On Σ : Geometric phase space \mathcal{P} w. (local) symplectic form³ $\omega = d\theta$ Shell defines constraint submanifold, or "Cauchy data" $\mathcal{C} \subset \mathcal{P}$. **P**

For gauge field theory assume we have

- 1. A (local) Lie group action on ${\mathcal F}$
- 2. An induced (local) Lie group action $\mathfrak{G} \circlearrowright (\mathfrak{P}, \boldsymbol{\omega})$ P

Note: induced action is not always a group action. OK for YM, but not for GR: point 2 fails, algebroid/groupoid **on shell**.

³Terms and conditions apply. [Kijowski–Tulczyjew]

Reduction by Stages

Local gauge theory with corners II

Hamiltonian formulation yields $(\mathcal{P}, \boldsymbol{\omega}, \boldsymbol{H}, \mathcal{G})$ locally Hamiltonian \mathcal{G} -space:

- 1. $\mathfrak{P}=\Gamma(\Sigma,F)$ sections of a vector bundle (for simplicity), $\boldsymbol{\mathsf{P}}$
- 2. G a local Lie group with a local action on ${\mathcal P}$ with ${\rm Lie}({\mathcal G})\doteq {\mathfrak G},~{\textbf P}$
- 3. $\boldsymbol{\omega} \in \Omega^{2,\mathrm{top}}_{\mathsf{loc}}(\mathfrak{P} \times \boldsymbol{\Sigma})$ a local symplectic density on \mathfrak{P} , **P**
- 4. $\boldsymbol{H} \in \Omega^{0, \mathrm{top}}_{loc}(\mathcal{P} \times \Sigma, \mathfrak{G}^*)$ a \mathfrak{G}^* -valued local form on \mathcal{P} . **P**

Flow and equivariance now hold pointwise: for $\xi \in \mathfrak{G}$

$$\begin{split} \iota_{\rho(\xi)} \boldsymbol{\omega} &= \langle \mathrm{d} \boldsymbol{H}, \xi \rangle & \text{local Hamiltonian form} \\ \mathbb{L}_{\rho(\xi)} \boldsymbol{H} &= \mathrm{ad}_{\xi}^{*} \boldsymbol{H} + d\boldsymbol{k}(\xi) & \text{Equivariance up to corners} \end{split}$$

P Note 1: Local pairing $\langle dH, \xi \rangle$: may depend on derivatives $\partial \xi$. \rightsquigarrow Generally not $C^{\infty}(\Sigma)$ -linear! **P**

Note 2: Integrate $\omega \doteq \int_{\Sigma} \omega$ and $H \doteq \int_{\Sigma} H$. \rightsquigarrow Momentum map. Weakly equivariant .

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Running Example I: Spacelike Yang-Mills Theory

Consider Lie group G, with inner product $\operatorname{tr}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$. G-connections $A \in \mathcal{A} \doteq \operatorname{Conn}(P \to \Sigma)$ with Σ spacelike. Generalised electric fields E are \mathfrak{g} -valued (top-1)-forms on Σ . **P**

We have the geometric phase space:4

$$\mathcal{E} \doteq \Omega^{n-1}(\Sigma, \mathfrak{g}), \qquad \mathcal{P} \equiv T^* \mathcal{A} \doteq \mathcal{A} \times \mathcal{E} \ni (\mathcal{A}, \mathcal{E}), \qquad \boldsymbol{\omega} = \operatorname{tr}(\mathrm{d} \mathcal{A} \mathrm{d} \mathcal{E}).\mathbf{P}$$

The gauge action of $\mathfrak{G}\doteq {\it G}_0^{\Sigma}\equiv {\it C}_0^{\infty}(\Sigma,{\it G})$ reads

$$(A, E, \xi) \longmapsto \rho(\xi)(A, E) = (d_A \xi, \operatorname{ad}(\xi) \cdot E), \qquad \xi \in \mathfrak{G} = \mathfrak{g}^{\Sigma}.$$

Locally Hamiltonian with (equivariant) momentum map

$$\iota_{
ho(\xi)}\boldsymbol{\omega} = \langle \mathrm{d}\boldsymbol{H}, \xi
angle, \qquad \langle \boldsymbol{H}, \xi
angle = \mathrm{tr}(\boldsymbol{E}\boldsymbol{d}_{A}\xi).\mathbf{P}$$

 ${}^{4}A = \tilde{A}|_{\Sigma}, E = (\star F_{A})|_{\Sigma} \text{ from YM theory on } \Sigma \times \mathbb{R} \text{ and } \mathbf{L} = F_{\tilde{A}} \wedge \star F_{\tilde{A}}.$

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Reduced phase space

Assume for a moment that $\partial \Sigma = \emptyset$. Physical configurations on \mathcal{P} are recovered as the vanishing locus of **Noether's current** H. P

If Noether's current is a locally Hamiltonian equivariant, momentum form, physical configurations on \mathcal{P} are characterised by:

Noether Thm
$$\implies$$
 \boldsymbol{H} d-exact on shell \implies $H \doteq \int_{\Sigma} \boldsymbol{H} \approx 0.\mathbf{P}$

H is an equivariant momentum map, so Hamiltonian reduction yields the space of physical configurations modulo gauge:

 $\partial \Sigma = \emptyset$, $\mathcal{C} \doteq H^{-1}(0)$ constraint set, $\underline{\mathcal{C}} = H^{-1}(0)/\mathcal{G}.\mathbf{P}$

This is the reduced phase space of the theory. In this case, this is a symplectic manifold. $\ensuremath{\mathsf{P}}$

Complications arise when $\partial \Sigma \neq \emptyset$.

Gauge Theory

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Reduction by Stages

Reduction by Stages

Conclusions 00

Reduction with corners via reduction by stages

Problem: $H^{-1}(0)$ *is no longer the <u>correct constraint locus</u>!* "Zero-flux conditions" imposed by H = 0! **P**

Proposition (Constraint / Flux splitting [Riello, MS]) There is a natural bulk/boundary splitting:

 $\pmb{H} = \pmb{H}_{\circ} + d\pmb{h}$

such that $C \doteq H_{\circ}^{-1}(0)$ coincides with the constraint set of the theory. We call H_{\circ} the constraint form and dh the flux form. P

Problem: H_{\circ} is NOT a momentum form for \mathcal{G} anymore!

Noether Thm $\implies C = \boldsymbol{H}_{\circ}^{-1}(0)$ first-class constraint set.**P**

Question: Is there a subgroup $\mathcal{G}_{\circ} \subset \mathcal{G}$, for which \mathcal{C} is zero level set of induced momentum map $J_{\circ} \colon \mathcal{P} \to \mathfrak{G}_{\circ}^*$, so that $\underline{\mathcal{C}} = \mathcal{C}/\mathcal{G}_{\circ}$ symplectic?

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

First Stage: Constraint Reduction

Answer: Yes! P

Theorem (Constraint reduction [Riello MS])

Let $h_{\mathcal{C}} \doteq \iota_{\mathcal{C}}^* \int_{\Sigma} d\mathbf{h}$. Under certain regularity assumptions:

 𝔅_o ≐ AnnIm(h_C) ⊂ 𝔅 is the maximal Lie ideal whose associated momentum map J_o is constraining: J_o⁻¹(0) = 𝔅. P

Normal subgroup $\mathfrak{G}_{\circ} \subset \mathfrak{G}$: constraint gauge group. Quotient group $\mathfrak{G} \doteq \mathfrak{G}/\mathfrak{G}_{\circ}$: flux gauge group P

2. There is a residual Hamiltonian action $\underline{\mathfrak{G}} \oplus \underline{\mathfrak{C}} = \mathfrak{C}/\mathfrak{G}_{\circ}$, with momentum map $\underline{h} \colon \underline{\mathfrak{C}} \to \underline{\mathfrak{G}}^*$, such that $h_{\mathfrak{C}} = \pi_{\circ}^* \underline{h}$.

We call <u>h</u> the flux map and $\mathfrak{F} \doteq \operatorname{Im}(\underline{h})$ the flux space. P

3. Equivariance controlled by the cocycle $k \doteq \int dk$. [Recall: **H** is equivariant up to corner] **P**

We will call $\underline{\mathcal{C}}$ the **constraint-reduced** phase space.

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Yang–Mills II: Constraint/flux split

The Hamiltonian momentum form splits as:

$$\begin{aligned} \boldsymbol{H} &= \boldsymbol{H}_{\circ} + d\boldsymbol{h}, \qquad \langle \boldsymbol{H}_{\circ}, \xi \rangle = \operatorname{tr}(d_{A}E\xi), \qquad \langle d\boldsymbol{h}, \xi \rangle = -d\operatorname{tr}(E\xi), \\ \mathbb{C} &= \boldsymbol{H}_{\circ}^{-1}(0) = \{(A, E) \in \mathcal{P} \mid d_{A}E = 0\} : \text{Gauss' Constraint} \mathbf{P} \end{aligned}$$

Note: Imposing $\boldsymbol{H} = 0$ forces $E|_{\partial \Sigma} = 0$: zero flux. Indeed $\langle h, \xi \rangle \doteq \int_{\partial \Sigma} \iota_{\partial \Sigma}^* \operatorname{tr}(E\xi)$ is the (smeared) "electric" flux. **P** Denote $\xi \in \mathfrak{g} \hookrightarrow \mathfrak{G} \iff d\xi = 0$. The constraint gauge ideal \mathfrak{G}_{\circ} reads: $\mathfrak{G}_{\circ} = \operatorname{Ann}(\mathfrak{F}) = \begin{cases} \{\xi \in \mathfrak{G} \mid \xi|_{\partial \Sigma} = 0\} & \mathsf{G} \text{ semisimple} \\ \{\xi \in \mathfrak{G} \mid \exists \chi \in \mathfrak{g} : \xi|_{\partial \Sigma} = \chi|_{\partial \Sigma} \} & \mathsf{G} \text{ Abelian} \mathbf{P} \end{cases}$

and thus the flux gauge algebra $\underline{\mathfrak{G}}$ reads (true also for null case!)

$$\underline{\mathfrak{G}} = \mathfrak{G}/\mathfrak{G}_{\circ} = \begin{cases} C^{\infty}(\partial \Sigma, \mathfrak{g}) & G \text{ semisimple} \\ C^{\infty}(\partial \Sigma, \mathfrak{g})/\mathfrak{g} & G \text{ Abelian} \end{cases}$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Yang–Mills III: Constraint reduction

[Singer; Narasimhan, Ramadas; Gomes, Hopfmüller, Riello; Riello-MS] Given A, radiative electric fields $\mathcal{H}_A = \{ d_A E = 0 = E |_{\partial \Sigma} \}$. Radiative/Coulombic (Helmholz–Hodge) orthogonal decomposition. **P** $E = E_{rad} + \star d_A \varphi$, with $\varphi \in C^{\infty}(\Sigma, \mathfrak{g})$ the Coulombic potential

$$egin{array}{ll} \Delta_A arphi = \star d_A E pprox 0 & ext{in } \Sigma, \ \mathbf{n} \cdot d_A arphi = E_\partial & ext{at } \partial \Sigma \end{array}$$

parametrised by $E_{\partial} \in \mathcal{E}_{\partial} = \Omega^{\mathrm{top}}(\partial \Sigma, \mathfrak{g})$. **P** Then

$$\mathcal{C} \simeq_{\mathsf{loc}} \underbrace{\mathcal{H}_{\mathcal{A}} \times \mathcal{A}}_{\mathcal{P}_{\mathsf{rad}}} \times \mathcal{E}_{\partial} \quad \Longrightarrow \quad \underline{\mathcal{C}} \simeq_{\mathsf{loc}} \underbrace{\mathcal{P}_{\mathsf{rad}} / \mathcal{G}_{\circ}}_{\underline{\mathcal{P}}_{\mathsf{rad}}} \times \mathcal{E}_{\partial} \mathbf{P}$$

For G Abelian, $A = A_{rad} + d\varsigma$, with $\varsigma \in C^{\infty}(\Sigma, \mathfrak{g})$ solution of Neumann–Laplace, **P** one obtains **globally**!

$$\underline{\mathcal{C}} \simeq \underline{\underline{\mathbb{P}}}_{rad} \times \mathcal{T}^* \underline{\mathfrak{G}} \qquad \text{``Edge modes'' (?)}$$
$$\underline{\omega} \stackrel{ab}{=} \int_{\Sigma} dE_{rad} \wedge dA_{rad} + \int_{\partial \Sigma} dE_{\partial} \wedge d\varsigma_{\partial},$$
with $\underline{\underline{\mathbb{P}}}_{rad} \doteq \underline{\mathbb{P}}_{rad} / \underline{\mathbb{G}} \ni (A_{rad}, E_{rad}).$

Reduction by Stages

Conclusions 00

Second Stage: Flux Superselection

First stage reduction output: $(\underline{C}, \underline{\omega}, \underline{h})$ Hamiltonian \underline{G} -space. **P**

Consider the coadjoint orbit $\mathcal{O}_f \in \underline{\mathfrak{G}}^*$ of a flux $f \in \mathfrak{F} \subset \underline{\mathfrak{G}}^*$. All on-shell configurations whose flux is in \mathcal{O}_f are acted upon by \mathfrak{G} :⁵

 $\underline{\mathbb{S}}_{[f]} = \underline{\underline{h}}^{-1}(\mathbb{O}_f) \quad \rightsquigarrow \quad \underline{\mathbb{S}}_{[f]} = \underline{\mathbb{S}}_{[f]} / \underline{\mathbb{G}} \qquad \text{Superselection sector (SSS)} \mathbf{P}$

Theorem (Flux Superselection [Riello, MS])

The fully-reduced phase space $\underline{\underline{C}} = \underline{\underline{C}}/\underline{\underline{G}} = \underline{\underline{C}}/\underline{\underline{G}}$ is a Poisson manifold whose symplectic leaves are the superselection sectors: $\underline{\underline{C}} = \bigsqcup_{\underline{0}_f \subset \mathfrak{G}^*} \underline{\underline{S}}_{[f]}$.

P The second-stage, fully-reduced, phase space is only Poisson! Fully gauge-invariant symplectic leaves. **P** Labels are **Casimirs of the Poisson structure**, i.e. central elements of the Poisson algebra $C^{\infty}(\underline{C})$. Hilbert space decomposition into "blocks". (Think Casimirs of the Noether charge algebra.)

⁵Ignoring multiple connected components.

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Yang–Mills IV: A closer look to the first stage

Radiative/Coulombic split leads to constraint reduction:

$$\underline{\mathfrak{C}} \simeq \underline{\mathfrak{P}}_{\mathsf{rad}} \times \mathfrak{E}_\partial, \qquad \underline{\mathfrak{P}}_{\mathsf{rad}} = \mathfrak{P}_{\mathsf{rad}}/\mathfrak{G}_\circ = (\mathfrak{H}_A \times \mathcal{A})/\mathfrak{G}_\circ.\mathbf{P}$$

 $\underline{\mathfrak{G}} \text{ acts freely on } \underline{\mathfrak{P}}_{\mathsf{rad}}. \text{ Then } \underline{\mathfrak{C}} \to \underline{\mathfrak{P}}_{\mathsf{rad}} \doteq \underline{\mathfrak{P}}_{\mathsf{rad}} / \underline{\mathfrak{G}} \text{ is a fibre bundle}$

$$\underline{\mathcal{C}} \simeq_{\mathsf{loc}} T^* \underline{\mathcal{G}} \times \underline{\underline{\mathcal{P}}}_{\mathsf{rad}} \simeq \mathcal{E}_{\partial} \times \underline{\mathcal{G}} \times \underline{\underline{\mathcal{P}}}_{\mathsf{rad}} \stackrel{ab}{\ni} (E_{\partial}, e^{\varsigma_{\partial}}, E_{\mathsf{rad}}, A_{\mathsf{rad}}),$$
$$\underline{\omega} \stackrel{ab}{=} \int_{\Sigma} dE_{\mathsf{rad}} \wedge dA_{\mathsf{rad}} + \int_{\partial\Sigma} dE_{\partial} \wedge d\varsigma_{\partial}, \mathbf{P}$$

Constraint-reduced phase space \simeq_{loc} "Extended phase space"

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Yang–Mills V: A closer look to the second stage

Abelian Case

Residual momentum map $(\mathcal{E}_{\partial} \simeq \mathfrak{G}^*)$:

$$\underline{h}: \underbrace{\underline{\mathfrak{G}}^* \times \underline{\mathfrak{G}} \times \underline{\mathfrak{G}}_{\operatorname{rad}}}_{\underline{\mathfrak{C}}} \to \underbrace{C^{\infty}(\partial \Sigma, \mathfrak{g})^*}_{\underline{\mathfrak{G}}^*}, \quad (E_{\partial}, e^{\varsigma_{\partial}}, E_{\operatorname{rad}}, A_{\operatorname{rad}}) \mapsto \int_{\partial \Sigma} \operatorname{tr}(E_{\partial} \cdot) \mathbf{P}$$

The prototypical reduction yields

$$T^*\underline{\mathfrak{G}}/\underline{\mathfrak{G}}\simeq_{\mathsf{loc}}(\underline{\mathfrak{G}}^*\times\underline{\mathfrak{G}})/\underline{\mathfrak{G}}\simeq\underline{\mathfrak{G}}^*\mathbf{P}$$

The second stage, fully reduced phase space locally reads:

$$\underline{\underline{\mathcal{C}}} = \underline{\mathcal{C}}/\underline{\mathcal{G}} \simeq_{\mathsf{loc}} \underline{\mathfrak{G}}^* \times \underline{\underline{\mathcal{P}}}_{\mathsf{rad}}$$

With the foliation: $\underline{\underline{S}}_{[f]} \simeq_{\mathsf{loc}} \underline{\mathbb{O}}_{f} \times \underline{\underline{\mathbb{P}}}_{\mathsf{rad}} \hookrightarrow \underline{\underline{\mathbb{O}}}^{*} \times \underline{\underline{\mathbb{P}}}_{\mathsf{rad}} \simeq_{\mathsf{loc}} \underline{\underline{\mathbb{C}}}. \mathbf{P}$

Fully reduced phase space \simeq_{loc} Radiative \times (Charge algebra)^{*}

Gauge Theory

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

A note on quantization

Assume a quantization of $\underline{\mathbb{C}}$ is given $Q: C^{\infty}(\underline{\mathbb{C}}) \to \mathcal{B}(\mathcal{H})$. Symplectic manifolds have trivial Poisson center (only constants). **P**

$$\begin{array}{ccc} \underline{\mathcal{C}} & (C^{\infty}(\underline{\mathcal{C}}), \{\cdot, \cdot\}) \xrightarrow{Q} (\mathcal{B}(\mathcal{H}), [\cdot, \cdot]) & \text{irrep} \\ \\ \downarrow^{\underline{\pi}} & \underline{\pi^*} & \uparrow & \uparrow \\ \underline{\mathcal{C}} & (C^{\infty}(\underline{\mathcal{C}}), \{\cdot, \cdot\}) \xrightarrow{Q^{\circ}\underline{\pi^*}} (\underline{\mathcal{B}}(\mathcal{H}), [\cdot, \cdot]) & \text{induced rep} \\ & \uparrow & \uparrow \\ & Z(C^{\infty}(\underline{\mathcal{C}})) \longrightarrow \mathcal{Z}(\underline{\mathcal{B}}(\underline{\mathcal{H}})) & \text{center} \end{array}$$

P Reducibility of $\underline{\mathcal{B}}(\mathcal{H})$ induces a decomposition

$$\mathfrak{H} = \bigoplus_{lpha} \mathfrak{H}^{lpha}, \qquad \mathfrak{H}^{lpha} \quad \mathcal{C}^{\infty}(\underline{\underline{\mathcal{C}}}) - \mathsf{irrep}\mathbf{P}$$

E.g. 2d BF theory for G compact \rightsquigarrow Peter–Weyl theorem $\underline{\mathcal{C}} \simeq \mathcal{T}^* \mathcal{G}, \ \underline{\underline{\mathcal{C}}} \simeq \mathfrak{g}^*, \quad \mathcal{H} = L^2(\mathcal{G}) \simeq \bigoplus (\mathcal{H}^{\lambda})^* \otimes \mathcal{H}^{\lambda}, \quad \mathcal{H}^{\lambda}$

G-unirrep.

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory •••••• Conclusions 00

Null Yang–Mills theory

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^i, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathcal{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

$$\mathfrak{P}_{\mathrm{AS}} \doteq \widehat{\mathcal{A}}, \quad \varpi_{\mathrm{AS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \boldsymbol{vol}_{\Sigma}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^i, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathcal{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

$$\mathfrak{P}_{\mathrm{AS}} \doteq \widehat{\mathcal{A}}, \quad \varpi_{\mathrm{AS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \boldsymbol{vol}_{\Sigma}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^i, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathcal{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

$$\mathfrak{P}_{\mathrm{AS}} \doteq \widehat{\mathcal{A}}, \quad \varpi_{\mathrm{AS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \boldsymbol{vol}_{\Sigma}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^i, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathcal{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

$$\mathfrak{P}_{\mathrm{AS}} \doteq \widehat{\mathcal{A}}, \quad \varpi_{\mathrm{AS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \boldsymbol{vol}_{\Sigma}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^i, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathfrak{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

The extended-Ashtekar–Streubel phase space $(\mathcal{P}_{eAS}, \varpi_{eAS})$ is

$$\mathcal{P}_{\mathrm{eAS}} \doteq \widehat{\mathcal{A}} \times \mathcal{T}^* \mathcal{G}_0^{\mathcal{S}}, \quad \varpi_{\mathrm{eAS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \mathbf{vol}_{\Sigma} + \Omega_{\mathcal{S}}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces

Let dim(Σ) = 3 and Σ = $S \times I$ null, I = [0, 1]. { x^{i}, u } coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(S, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(S, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathfrak{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{\mathrm{nYM}} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{\mathrm{nYM}} \doteq \int_{\Sigma} \left(\mathrm{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \mathrm{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \mathbf{vol}_{\Sigma}.\mathbf{P}$$

The linearly extended-Ashtekar–Streubel phase space $(\mathfrak{P}_{eAS}^{lin}, \varpi_{eAS}^{lin})$ is

$$\mathcal{P}^{\mathrm{lin}}_{\mathrm{eAS}} \doteq \widehat{\mathcal{A}} \times \mathcal{T}^* \mathfrak{g}^{\mathcal{S}}, \quad \varpi^{\mathrm{lin}}_{\mathrm{eAS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \mathbf{\textit{vol}}_{\Sigma} + \omega_{\mathcal{S}}.$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions 00

Null Yang–Mills theory I - relevant symplectic spaces Let $\dim(\Sigma) = 3$ and $\Sigma = S \times I$ null, I = [0, 1]. $\{x^{i}, u\}$ coord on Σ , morally J. **P**

Write gauge fields and "electric fields" as

$$\begin{split} A &= A_u du + \mathbf{a} \in \mathcal{A}_\ell \times \widehat{\mathcal{A}}, \qquad \mathbf{a} \in \widehat{\mathcal{A}} \doteq C^\infty(I, \Omega^1(\mathcal{S}, \mathfrak{g})) \\ E &\in \mathcal{E} \doteq C^\infty(I, \Omega^{top}(\mathcal{S}, \mathfrak{g})). \mathbf{P} \end{split}$$

Then, the geometric phase space of null YM theory $(\mathcal{P}_{nYM},\omega_{nYM})$ is

$$\mathcal{P}_{nYM} \doteq \mathcal{A}_{\ell} \times \widehat{\mathcal{A}} \times \mathcal{E}, \quad \omega_{nYM} \doteq \int_{\Sigma} \left(\operatorname{tr} (\mathrm{d} E \wedge \mathrm{d} A_u) + \operatorname{tr} (\mathrm{d} F_u^i \wedge \mathrm{d} a_i) \right) \boldsymbol{vol}_{\Sigma}. \mathbf{P}$$

The Ashtekar–Streubel phase space ($\mathcal{P}_{\mathrm{AS}}, arpi_{\mathrm{AS}}$) is

$$\mathcal{P}_{\mathrm{AS}} \doteq \widehat{\mathcal{A}}, \quad \varpi_{\mathrm{AS}} \doteq \int_{\Sigma} \mathrm{tr}((\partial_u \mathrm{da}_i) \wedge \mathrm{da}^i) \mathbf{\textit{vol}}_{\Sigma}.$$

 $\mathcal{P}_{nYM} \overset{A_{u}=0}{\leadsto} \mathcal{P}_{AS}, \qquad dE dA_{u} + dF_{u}^{i} da_{i} \overset{A_{u}=0}{\leadsto} (\partial_{u} da_{i}) da^{i} \qquad Meaning?$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Null Yang–Mills theory II - Hamiltonian setup

Geometric phase space $\mathfrak{P}_{\rm nYM}$ with $\mathfrak{G}=C_0^\infty(\Sigma,G)\equiv G_0^\Sigma$ action.^6

Momentum forms: $\langle \boldsymbol{H}(A, E), \xi \rangle = \underbrace{\operatorname{tr}(\boldsymbol{G} \ \xi) \boldsymbol{vol}_{\Sigma}}_{\langle \boldsymbol{H}_{\circ}, \xi \rangle} - \underbrace{\left(\partial_{u} \operatorname{tr}(E \ \xi) + \partial^{i} \operatorname{tr}(F_{\ell i} \ \xi) \right) \boldsymbol{vol}_{\Sigma}}_{d \langle \boldsymbol{h}, \xi \rangle},$ Gauss constraint: $\mathcal{C} = \{ \boldsymbol{G} \equiv \partial_{u} \boldsymbol{E} + [A_{u}, E] + \mathcal{D}^{i} F_{ui} = 0 \} = \boldsymbol{H}_{\circ}^{-1}(0).\mathbf{P}$

Corner: $\partial \Sigma = S \times S$. "Initial and final" values of (vector valued) fields:

$$\varphi^{\mathrm{in}} \doteq \varphi|_{u=-1}, \quad \varphi^{\mathrm{fin}} \doteq \varphi|_{u=1}, \quad \varphi^{\mathrm{diff}} = \varphi^{\mathrm{fin}} - \varphi^{\mathrm{in}}.\mathbf{P}$$

Parametrizing $\mathfrak{g}^{\partial \Sigma} = \mathfrak{g}^{\mathcal{S}} \times \mathfrak{g}^{\mathcal{S}}$: $\xi^{\partial} = (\xi^{\mathrm{in}}, \xi^{\mathrm{fin}}) \mapsto (\xi^{\mathrm{fin}}, \xi^{\mathrm{diff}})$:

$$\langle h(A,E),\xi\rangle = -\int_{S} \operatorname{tr}(E^{\operatorname{fin}}\xi^{\operatorname{fin}} - E^{\operatorname{in}}\xi^{\operatorname{in}}) = -\int_{S} \operatorname{tr}(E^{\operatorname{diff}}\xi^{\operatorname{fin}} + E^{\operatorname{in}}\xi^{\operatorname{diff}}).$$

 ${}^{6}\mathcal{D}\doteq d+[\mathrm{a},\cdot].$

Gauge Theory

Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Theorem (Abelian case - Riello, MS)

The constraint-reduced phase space $(\underline{\mathbb{C}}, \underline{\omega})$ of null **abelian** YM theory is symplectomorphic to the linearly extended Ashtekar-Streubel phase space:

$$\begin{split} & \underline{\mathbb{C}} \simeq \mathcal{P}_{\mathrm{eAS}}^{\mathrm{lin}} \doteq \widehat{\mathcal{A}} \times \mathcal{T}^* \mathfrak{g}^S \ni (\mathrm{a}, \lambda, \mathrm{e}), \qquad ((\mathfrak{g}^S)^* \simeq \mathfrak{g}^S) \\ & \varpi_{\mathrm{eAS}}^{\mathrm{lin}}(\mathrm{a}, \lambda, \mathrm{e}) = \int_{\Sigma} \sqrt{\gamma} \ \gamma^{ij} (\partial_u \mathrm{da}_i) \wedge \mathrm{da}_j + \int_S \sqrt{\gamma} \ \mathrm{de} \wedge \mathrm{d}\lambda. \end{split}$$

 $\textbf{P} \text{ It carries the Hamiltonian action of } \underline{\mathfrak{G}} \simeq \mathfrak{g}^{\textbf{S}} \times \mathfrak{g}^{\textbf{S}} \ni (\xi_{\mathrm{in}}, \xi_{\mathrm{fin}}),$

$$\begin{cases} \mathbf{a} \mapsto \mathbf{a} + d\xi_{\text{fin}} \\ \lambda \mapsto \lambda + \xi_{\text{fin}} - \xi_{\text{in}} \\ \mathbf{e} \mapsto \mathbf{e} \end{cases} \langle \underline{h}_{\text{eAS}}, (\xi_{\text{in}}, \xi_{\text{fin}}) \rangle = \int_{\mathcal{S}} \sqrt{\gamma} \left((\partial^{i} \mathbf{a}_{i}^{\text{diff}}) \xi_{\text{fin}} - \mathbf{e}(\xi_{\text{fin}} - \xi_{\text{in}}) \right) \cdot \mathbf{P}$$

The on-shell electromagnetic field (E, F) at $(u, x) \in \Sigma \subset \mathcal{I}$ is given by $(E, F) = (e + \partial^{i} a_{i}^{in} - \partial^{i} a_{i}(u), da) \implies E^{diff} \equiv E^{fin}(a, e) - E^{in}(e) = -\partial^{i} a_{i}^{diff} \cdot \mathbf{P}$

Electromagnetic memory [Bieri,Garfinkle;Pasterski] is (a component of) the momentum map \underline{h}_{eAS} for the action of $\mathfrak{g}^S \times \mathfrak{g}^S$ on the Linearly Extended Ashtekar Streubel Phase space.

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Note: $\underline{G} = G^{S} \times G^{S}$ so can (carefully) proceed by stages again! **P**

Theorem (Decomposing second stage reduction, Riello MS) The Hamiltonian reduction of $(\underline{C}, \underline{\omega}, \underline{G}) \simeq (\mathfrak{P}_{eAS}^{lin}, \varpi_{eAS}^{lin}, G_0^{\partial \Sigma}/G)$, with respect to the Hamiltonian action of the initial copy of \mathfrak{g}^S at e = 0, yields the Ashtekar–Streubel symplectic space $(\widehat{\mathcal{A}}, \varpi_{AS})$,

$$(\mathfrak{P}_{\mathrm{eAS}}^{\mathrm{lin}}, arpi_{\mathrm{eAS}}^{\mathrm{lin}}) / /_{0} \boldsymbol{G}^{\mathcal{S}_{\mathrm{in}}} \simeq (\widehat{\mathcal{A}}, arpi_{\mathrm{AS}}). \mathbf{P}$$

It carries the residual Lie algebra action of (the final copy) \mathfrak{g}^{S} :

$$\underline{\varrho}_{\mathrm{AS}}(\xi_{\mathrm{fin}}) \mathrm{a} = d\xi_{\mathrm{fin}}, \mathbf{P}$$

with momentum map given by the electromagnetic memory

$$\langle \underline{h}_{\rm AS}, \xi_{\rm fin} \rangle = \int_{\mathcal{S}} \sqrt{\gamma} \left((\partial^i a^{\rm diff}_i) \xi_{\rm fin} \right) . \mathbf{P}$$

Reproduces relationship soft symmetries \leftrightarrow memory [Strominger et al] in terms of residual gauge in (partially reduced) AS phase space. **P** Explains map $\mathcal{P}_{nYM} \rightsquigarrow \mathcal{P}_{AS}$: $A_u = 0$ gauge fixing for the group of gauge transformations trivial at the "future" celestial sphere (not both!). **P Question:** How far can we generalise this to the non-abelian case?

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory

Conclusions 00

Theorem (Non Abelian case - Riello, MS)

The symplectic reduction of $(\underline{\mathbb{C}}, \underline{\omega}, \underline{\mathbb{G}}) \simeq (\mathcal{P}_{eAS}, \varpi_{eAS}, G_0^{\partial \Sigma})$, with respect to the Hamiltonian action of the initial copy of \mathfrak{g}^S at e = 0 yields the Ashtekar–Streubel symplectic space $(\widehat{\mathcal{A}}, \varpi_{AS})$,

$$(\mathfrak{P}_{\mathrm{eAS}}, \varpi_{\mathrm{eAS}}) / / \textit{G}_{0}^{\textit{S}_{\mathrm{in}}} \simeq (\widehat{\mathcal{A}}, \varpi_{\mathrm{AS}}).\textit{P}$$

It carries the residual Lie algebra action of (the final copy) \mathfrak{g}_0^S :

$$\underline{\varrho}_{\mathrm{AS}}(\xi_{\mathrm{fin}}) \mathrm{a} = \mathcal{D}\xi_{\mathrm{fin}} \doteq d\xi_{\mathrm{fin}} + [\mathrm{a}, \xi_{\mathrm{fin}}].\mathbf{P}$$

with momentum map given by "the non-Abelian memory":

$$\langle \underline{h}_{\mathrm{AS}}, \xi_{\mathrm{fin}}
angle = \int_{\mathcal{S}} \sqrt{\gamma} \operatorname{tr}((\mathcal{D}^{i} \partial_{u} \mathbf{a}_{i})^{\int} \xi_{\mathrm{fin}}), \quad (\mathcal{D}^{i} \partial_{u} \mathbf{a}_{i})^{\int} \doteq \int_{-1}^{1} \mathcal{D}^{i} \partial_{u} \mathbf{a}_{i} du \mathbf{P}$$

Attention! this is NOT the "color memory" [Pasterski, Raclariu, Strominger]! In a mode-decomposition:

$$(\mathcal{D}^{i}L_{\ell}\mathrm{a}_{i})^{\int}=\partial^{i}\mathrm{a}_{i}^{\mathrm{diff}}+\sum_{k\geq0}\left[\mathfrak{Re}(2\widetilde{\mathrm{a}}(k)^{i}),\mathfrak{Im}(2\widetilde{\mathrm{a}}(k)_{i})
ight]
eq\partial^{i}\mathrm{a}_{i}^{\mathrm{diff}}$$

Gauge Theory 00000 Reduction by Stages

Null Yang–Mills theory 000000 Conclusions •O

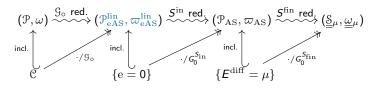
Conclusions

Reduction by Stages

Null Yang–Mills theory 000000 Conclusions

Conclusions

- 1. In good cases, Noether theorems set us up for Hamiltonian reduction, where the (fully) reduced phase space is $\underline{C} = C/\underline{G}$. **P**
- 2. In the presence of corners, there is a mismatch between \mathfrak{C} and the zero-level set of the FULL Noether current H. P
- 3. Reduction fails to output a symplectic manifold, but rather $\underline{\underline{C}} = \underline{C}/\underline{G} = \underline{C}/\underline{G}$ is Poisson. **P**
- 4. For null, abelian YM theory this yields



with μ a fixed value for the Electromagnetic memory. ${\bf P}$

5. Quantization (at e = 0) should yield decomposition in memory eigenvalues, simply owing to the Hamiltonian structure.

Hamiltonian reduction primer	Gauge Theory	Reduction by Stages	Null Yang–Mills theory	Conclusions
000000	00000	00000000	000000	00

Thanks!