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Overview
Joint work with A. Riello general: 2207.00568 [ATMP 24] & null YM: 2303.03531 [AHP 24]

Problem: reduced phase space of gauge theories, with corners P

• Hamiltonian reduction paradigm becomes reduction by stages: P

1. ‘bulk’ gauge  “constraint reduction”
2. residual/large gauge  “flux superselection” P

• Adjusted expectation:

1. reduced phase space is (singular/stratified) Poisson manifold P
2. foliated by symplectic leaves called flux superselection sectors P
3. residual momentum maps given by Noether charges P
4. sectors labeled by Poisson casimirs, or gauge classes of fluxes P
5. quantisation decomposes Hilbert space into sectors. P

Application to null YM: allows to recover

1. soft/asymptotic/large gauge transf. - as residual symmetries,

2. “extended” phase space / memory - as residual Hamiltonian data. P

General relativity is still work in progress. Technical complications.
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Hamiltonian reduction primer
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Hamiltonian reduction primer - Hamiltonian actions

Let M = R2n with symplectic form ω = dqi ∧ dpi , i.e. {qi , pj} = δij . P

Lie algebra action: ρ : g→ X(M), with fundamental vector fields

ξ̂a ≡ ρ(ea), ρ([ea, eb]g) = [ρ(ea), ρ(eb)]X(M); [ξ̂a, ξ̂b]X(M) = f cab ξ̂c .P

Hamiltonian action ⇐⇒ ιξ̂aω = dHa ⇐⇒ ξ̂a = {Ha, ·}.

We talk of a Hamiltonian G -space (M,G , ρ). P

A Hamiltonian G space carries a momentum map function:

H : M → g∗ H(x) : ξ → 〈H(x), ξ〉 = Ha(x)ξa.P

Equivariance: 〈Lη̂H, ξ〉 = 〈H, [ξ, η]〉+k(ξ, η) iff cocycle k vanishes.
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Hamiltonian reduction primer - familiar examples
Consider the Rn and so(n) (algebra) actions on R2n = T ∗Rn by

(qi , pi )→ (qi + v i , pi ) ρ(v) = v i ∂

∂qi
v ∈ Rn,

(qi , pi )→ (O i
j q

j ,−O j
i pj) ρ(O) = O i

j q
j ∂

∂qi
− O i

j pi
∂

∂pj
O ∈ so(n).

P
Momentum maps: 〈H, •〉 .= ιρ(•)(pidq

i ) ιρ(•)(dq
idpi ) = dιρ(•)(pidq

i ).

〈H(q, p), v〉 = v ipi , Linear Momentum: H(q, p)(•) =〈p, •〉 ∈ (Rn)∗

〈H(q, p),O〉 = piO
i
j q

j , Angular Momentum: H(q, p)(•) =〈p, •q〉 ∈ so(n)∗

P In n = 3 we have O ∈ so(3) ' R3 3 o, given by O j
i 7→ δj`ε`iko

k and

〈p,Oq〉 = pjO
j
i q

i = pjδ
j`ε`iko

kqi = (q × p) · o

Momentum map identified with the vector q × p.
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Hamiltonian reduction primer - co-adjoint orbits

The dual of a Lie algebra g∗ is a Poisson manifold with

Π = xc f
c
ab

∂

∂xa
∧ ∂

∂xb
, {xa, xb} = f cabxc ,P

foliated by co-adjoint orbits: for any µ ∈ g∗

Oµ = {µ′ ∈ g∗ | ∃g ∈ G , Ad∗gµ = µ′} ' G/Gµ, Tµ′Oµ ' g/gµ.P

The foliation is symplectic with Kostant–Kirillov–Souriau form on Oµ,

ωµ′(adX (µ′), adY (µ′)) = 〈µ′, [X ,Y ]〉, ∀X ,Y ∈ g.P

Any Poisson manifold foliated by symplectic “leaves”.
Casimir functions {c , f } = 0 for all f ∈ C∞(M): constant on leaves,
labeled by choice of values of a complete set of Casimirs.1

1Basis of 0th Poisson cohomology.
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Hamiltonian reduction primer - orbit reduction

Theorem (Marsden, Weinstein; Meyer; Arms ... ∼ ‘70s − ‘80s )
Let G � M be a free and proper Hamiltonian action with equivariant m.
map H : M → g∗. P For every coadjoint orbit Oµ ⊂ g∗ we have a
symplectic manifold:

C [µ]
.

= H−1(Oµ)/G ' H−1(µ)/Gµ, e.g. C 0 = H−1(0)/G .P

Moreover M/G is Poisson, and C [µ] are its symplectic leaves:

M/G =
⊔

Oµ∈g∗
C [µ] =

⊔
Oµ∈g∗

H−1(Oµ)/G symplectic foliation.P

Reduction of T ∗G yields T ∗G/G ' g∗, model for M/G .

Orbit Oµ → g∗, model for symplectic “sector” H−1(Oµ)/G .
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Hamiltonian reduction primer - reduction by stages

Consider a normal subgroup G◦ ⊂ G , momentum map H◦ : M → g∗◦. P

Consider reduction at zero C◦
.

= H−1
◦ (0)/G◦ for subgroup. P

Theorem (Guillemin, Sternberg; Marsden, Ratiu, Weinstein ∼ ‘80s )
If G◦ ⊂ G is a normal subgroup, there is a Hamiltonian action

G � C◦ G
.

= G/G◦

with momentum map h : C◦ → g∗ such that2 π∗◦h = H|H−1
◦ (0). P

The first stage reduction C◦ is a symplectic manifold. P
The second stage reduction yields the Poisson manifold:

M
.

= C◦/G =
⊔
[f ]

S[f ]
.

=
⊔

Of⊂g∗
h−1(Of )/G

Second stage sees coadjoint orbits Of ⊂ g∗ of G .

2Some details are hidden.
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Hamiltonian reduction primer - important remarks

(M, ω)
G◦-red at 0

// (C◦, ω)
G -red at Of // (S[f ], ω[µ])

C0

2 R
incl.

cc

·/G◦

;; ;;

h−1(Of )
3 S

incl.

ee

·/G

88 88

P Traditionally used to reduce by semidirect product actions.
Our application is to field theory on manifolds with corners. P

Hamiltonian reduction (T ∗G )/G ' g∗.
Prototype corner gauge reduction, realised exactly in 2d BF theory.
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Gauge Theory
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Local gauge theory with corners I

Lagrangian field theory on Σ× R, dim(Σ)
.

= n. Corner if ∂Σ 6= ∅ . P
Space of fields F. Local Lagrangian L ∈ Ω0,top

loc (F × (Σ× R)).

dL = EL + dθ.P

Will not be working on “covariant phase space” ����EL = 0.
On Σ: Geometric phase space P w. (local) symplectic form3 ω = dθ
Shell defines constraint submanifold, or “Cauchy data” C ⊂ P. P

For gauge field theory assume we have

1. A (local) Lie group action on F

2. An induced (local) Lie group action G � (P,ω) P

Note: induced action is not always a group action.
OK for YM, but not for GR: point 2 fails, algebroid/groupoid on shell.

3Terms and conditions apply. [Kijowski–Tulczyjew]
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Local gauge theory with corners II

Hamiltonian formulation yields (P,ω,H ,G) locally Hamiltonian G-space:

1. P = Γ(Σ,F ) sections of a vector bundle (for simplicity), P

2. G a local Lie group with a local action on P with Lie(G)
.

= G, P

3. ω ∈ Ω2,top
loc (P× Σ) a local symplectic density on P, P

4. H ∈ Ω0,top
loc (P× Σ,G∗) a G∗-valued local form on P. P

Flow and equivariance now hold pointwise: for ξ ∈ G

ιρ(ξ)ω = 〈dH , ξ〉 local Hamiltonian form

Lρ(ξ)H = ad∗ξH+dk(ξ) Equivariance up to corners

P Note 1: Local pairing 〈dH , ξ〉: may depend on derivatives ∂ξ.
 Generally not C∞(Σ)-linear! P

Note 2: Integrate ω
.

=
∫

Σ
ω and H

.
=
∫

Σ
H .

 Momentum map. Weakly equivariant .
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Running Example I: Spacelike Yang–Mills Theory

Consider Lie group G , with inner product tr : g× g→ R.
G -connections A ∈ A

.
= Conn(P → Σ) with Σ spacelike.

Generalised electric fields E are g-valued (top-1)-forms on Σ. P

We have the geometric phase space:4

E
.

= Ωn−1(Σ, g), P ≡ T ∗A
.

= A× E 3 (A,E ), ω = tr(dAdE ).P

The gauge action of G
.

= GΣ
0 ≡ C∞0 (Σ,G ) reads

(A,E , ξ) 7−→ ρ(ξ)(A,E ) = (dAξ, ad(ξ) · E ), ξ ∈ G = gΣ.

Locally Hamiltonian with (equivariant) momentum map

ιρ(ξ)ω = 〈dH , ξ〉, 〈H , ξ〉 = tr(EdAξ).P

4A = Ã|Σ,E = (?FA)|Σ from YM theory on Σ× R and L = FÃ ∧ ?FÃ.
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Reduced phase space

Assume for a moment that ∂Σ = ∅. Physical configurations on P are
recovered as the vanishing locus of Noether’s current H . P

If Noether’s current is a locally Hamiltonian equivariant,
momentum form, physical configurations on P are characterised by:

Noether Thm =⇒ H d-exact on shell =⇒ H
.

=

∫
Σ

H ≈ 0.P

H is an equivariant momentum map, so Hamiltonian reduction yields the
space of physical configurations modulo gauge:

∂Σ = ∅, C
.

= H−1(0) constraint set, C = H−1(0)/G.P

This is the reduced phase space of the theory.
In this case, this is a symplectic manifold. P

Complications arise when ∂Σ 6= ∅.
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Reduction by Stages
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Reduction with corners via reduction by stages

Problem: H−1(0) is no longer the correct constraint locus!
“Zero-flux conditions” imposed by H = 0! P

Proposition (Constraint / Flux splitting [Riello, MS])
There is a natural bulk/boundary splitting:

H = H◦ + dh

such that C
.

= H−1
◦ (0) coincides with the constraint set of the theory.

We call H◦ the constraint form and dh the flux form. P

Problem: H◦ is NOT a momentum form for G anymore!

Noether Thm =⇒ C = H−1
◦ (0) first-class constraint set.P

Question: Is there a subgroup G◦ ⊂ G, for which C is zero level set of
induced momentum map J◦ : P→ G∗◦, so that C = C/G◦ symplectic?
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First Stage: Constraint Reduction

Answer: Yes! P

Theorem (Constraint reduction [Riello MS])
Let hC

.
= ι∗C

∫
Σ
dh. Under certain regularity assumptions:

1. G◦
.

= AnnIm(hC) ⊂ G is the maximal Lie ideal whose associated
momentum map J◦ is constraining: J−1

◦ (0) = C. P

Normal subgroup G◦ ⊂ G: constraint gauge group.
Quotient group G

.
= G/G◦: flux gauge group P

2. There is a residual Hamiltonian action G � C = C/G◦, with
momentum map h : C→ G∗, such that hC = π∗◦h.

We call h the flux map and F
.

= Im(h) the flux space. P

3. Equivariance controlled by the cocycle k
.

=
∫
dk .

[Recall: H is equivariant up to corner] P

We will call C the constraint-reduced phase space.
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Yang–Mills II: Constraint/flux split
The Hamiltonian momentum form splits as:

H = H◦ + dh, 〈H◦, ξ〉 = tr(dAEξ), 〈dh, ξ〉 = −dtr(Eξ),

C = H−1
◦ (0) = {(A,E ) ∈ P | dAE = 0} : Gauss’ ConstraintP

Note: Imposing H = 0 forces E |∂Σ = 0: zero flux.
Indeed 〈h, ξ〉 .=

∫
∂Σ
ι∗∂Σtr(Eξ) is the (smeared) “electric” flux. P

Denote ξ ∈ g ↪→ G ⇐⇒ dξ = 0. The constraint gauge ideal G◦ reads:

G◦ = Ann(F) =

{
{ξ ∈ G | ξ|∂Σ = 0} G semisimple

{ξ ∈ G | ∃χ ∈ g : ξ|∂Σ = χ|∂Σ} G AbelianP

and thus the flux gauge algebra G reads (true also for null case!)

G = G/G◦ =

{
C∞(∂Σ, g) G semisimple

C∞(∂Σ, g)/g G Abelian
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Yang–Mills III: Constraint reduction
[Singer; Narasimhan, Ramadas; Gomes, Hopfmüller, Riello; Riello-MS]

Given A, radiative electric fields HA = {dAE = 0 = E |∂Σ}.
Radiative/Coulombic (Helmholz–Hodge) orthogonal decomposition. P
E = Erad + ?dAϕ, with ϕ ∈ C∞(Σ, g) the Coulombic potential{

∆Aϕ = ?dAE ≈ 0 in Σ,

n · dAϕ = E∂ at ∂Σ

parametrised by E∂ ∈ E∂ = Ωtop(∂Σ, g). P Then

C 'loc HA ×A︸ ︷︷ ︸
Prad

×E∂ =⇒ C 'loc Prad/G◦︸ ︷︷ ︸
Prad

×E∂P

For G Abelian, A = Arad + dς, with ς ∈ C∞(Σ, g) solution of
Neumann–Laplace, P one obtains globally!

C ' Prad × T ∗G “Edge modes” (?)

ω
ab
=

∫
Σ

dErad ∧ dArad +

∫
∂Σ

dE∂ ∧ dς∂ ,

with Prad
.

= Prad/G 3 (Arad,Erad).
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Second Stage: Flux Superselection

First stage reduction output: (C, ω, h) Hamiltonian G-space. P

Consider the coadjoint orbit Of ∈ G∗ of a flux f ∈ F ⊂ G∗.
All on-shell configurations whose flux is in Of are acted upon by G:5

S[f ] = h−1(Of )  S[f ] = S[f ]/G Superselection sector (SSS)P

Theorem (Flux Superselection [Riello, MS])
The fully-reduced phase space C = C/G = C/G is a Poisson manifold
whose symplectic leaves are the superselection sectors: C =

⊔
Of⊂G∗ S[f ].

P The second-stage, fully-reduced, phase space is only Poisson!
Fully gauge-invariant symplectic leaves. P
Labels are Casimirs of the Poisson structure, i.e. central elements of
the Poisson algebra C∞(C). Hilbert space decomposition into “blocks”.
(Think Casimirs of the Noether charge algebra.)

5Ignoring multiple connected components.
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Yang–Mills IV: A closer look to the first stage
Abelian case

Radiative/Coulombic split leads to constraint reduction:

C ' Prad × E∂ , Prad = Prad/G◦ = (HA ×A)/G◦.P

G acts freely on Prad. Then C→ Prad
.

= Prad/G is a fibre bundle

C 'loc T
∗G× Prad ' E∂ × G× Prad

ab
3 (E∂ , e

ς∂ ,Erad,Arad),

ω
ab
=

∫
Σ

dErad ∧ dArad +

∫
∂Σ

dE∂ ∧ dς∂ ,P

Constraint-reduced phase space 'loc “Extended phase space”
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Yang–Mills V: A closer look to the second stage
Abelian Case

Residual momentum map (E∂ ' G∗):

h : G∗ × G× Prad︸ ︷︷ ︸
C

→ C∞(∂Σ, g)∗︸ ︷︷ ︸
G∗

, (E∂ , e
ς∂ ,Erad,Arad) 7→

∫
∂Σ

tr(E∂ ·)P

The prototypical reduction yields

T ∗G/G 'loc (G∗ × G)/G ' G∗P

The second stage, fully reduced phase space locally reads:

C = C/G 'loc G
∗ × Prad

With the foliation: S[f ] 'loc Of × Prad ↪→ G∗ × Prad 'loc C. P

Fully reduced phase space 'loc Radiative×(Charge algebra)∗
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A note on quantization
Assume a quantization of C is given Q : C∞(C)→ B(H).
Symplectic manifolds have trivial Poisson center (only constants). P

C

π

��

(C∞(C), {·, ·}) Q
// (B(H), [·, ·]) irrep

C (C∞(C), {·, ·})
Q◦π∗

//

π∗

OO

(B(H), [·, ·])

OO

induced rep

Z (C∞(C))

OO

// Z(B(H))

OO

center

P Reducibility of B(H) induces a decomposition

H =
⊕
α

Hα, Hα C∞(C)− irrepP

E.g. 2d BF theory for G compact  Peter–Weyl theorem

C ' T ∗G , C ' g∗, H = L2(G ) '
⊕
λ

(Hλ)∗ ⊗Hλ, Hλ G-unirrep.
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Null Yang–Mills theory
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Null Yang–Mills theory I - relevant symplectic spaces

Let dim(Σ) = 3 and Σ = S × I null, I = [0, 1].
{x i , u} coord on Σ, morally I. P

Write gauge fields and “electric fields” as

A = Audu + a ∈ A` × Â, a ∈ Â
.

= C∞(I ,Ω1(S , g))

E ∈ E
.

= C∞(I ,Ωtop(S , g)).P

Then, the geometric phase space of null YM theory (PnYM, ωnYM) is

PnYM
.

= A`× Â×E, ωnYM
.

=

∫
Σ

(
tr(dE ∧dAu) + tr(dF i

u ∧dai )
)
volΣ.P

The Ashtekar–Streubel phase space (PAS, $AS) is

PAS
.

= Â, $AS
.

=

∫
Σ

tr((∂udai ) ∧ dai )volΣ.

25 / 32



Hamiltonian reduction primer Gauge Theory Reduction by Stages Null Yang–Mills theory Conclusions

Null Yang–Mills theory I - relevant symplectic spaces

Let dim(Σ) = 3 and Σ = S × I null, I = [0, 1].
{x i , u} coord on Σ, morally I. P

Write gauge fields and “electric fields” as

A = Audu + a ∈ A` × Â, a ∈ Â
.

= C∞(I ,Ω1(S , g))

E ∈ E
.

= C∞(I ,Ωtop(S , g)).P

Then, the geometric phase space of null YM theory (PnYM, ωnYM) is

PnYM
.
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= A`× Â×E, ωnYM
.

=

∫
Σ

(
tr(dE ∧dAu) + tr(dF i

u ∧dai )
)
volΣ.P

The extended-Ashtekar–Streubel phase space (PeAS, $eAS) is

PeAS
.

= Â× T ∗GS
0 , $eAS

.
=

∫
Σ

tr((∂udai ) ∧ dai )volΣ + ΩS .
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(
tr(dE ∧dAu) + tr(dF i

u ∧dai )
)
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The linearly extended-Ashtekar–Streubel phase space (Plin
eAS, $

lin
eAS) is

Plin
eAS

.
= Â× T ∗gS , $lin

eAS
.

=

∫
Σ

tr((∂udai ) ∧ dai )volΣ + ωS .
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PnYM
Au=0
 PAS, dEdAu + dF i

udai
Au=0
 (∂udai )da

i Meaning?
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Null Yang–Mills theory II - Hamiltonian setup

Geometric phase space PnYM with G = C∞0 (Σ,G ) ≡ GΣ
0 action.6

Momentum forms: 〈H(A,E), ξ〉 = tr(G ξ)volΣ︸ ︷︷ ︸
〈H◦,ξ〉

−
(
∂utr(E ξ) + ∂ i tr(F`i ξ)

)
volΣ︸ ︷︷ ︸

d〈h,ξ〉

,

Gauss constraint: C = {G ≡ ∂uE + [Au,E ] + D
iFui = 0} = H−1

◦ (0).P

Corner: ∂Σ = S × S . “Initial and final” values of (vector valued) fields:

ϕin .
= ϕ|u=−1, ϕfin .

= ϕ|u=1, ϕdiff = ϕfin − ϕin.P

Parametrizing g∂Σ = gS × gS : ξ∂ = (ξin, ξfin) 7→ (ξfin, ξdiff):

〈h(A,E ), ξ〉 = −
∫
S

tr(Efinξfin − E inξin) = −
∫
S

tr(Ediffξfin + E inξdiff).

6D
.

= d + [a, ·].
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Theorem (Abelian case - Riello, MS)
The constraint-reduced phase space (C, ω) of null abelian YM theory is
symplectomorphic to the linearly extended Ashtekar-Streubel phase space:

C ' P
lin
eAS

.
= Â× T ∗gS 3 (a, λ, e), ((gS)∗ ' gS)

$lin
eAS(a, λ, e) =

∫
Σ

√
γ γ ij(∂udai ) ∧ daj +

∫
S

√
γ de ∧ dλ.

P It carries the Hamiltonian action of G ' gS × gS 3 (ξin, ξfin),
a 7→ a + dξfin

λ 7→ λ+ ξfin − ξin
e 7→ e

〈heAS, (ξin, ξfin)〉 =

∫
S

√
γ
(
(∂ iadiff

i )ξfin−e(ξfin−ξin)
)
.P

The on-shell electromagnetic field (E ,F ) at (u, x) ∈ Σ ⊂ I is given by

(E ,F ) = (e+∂ iain
i −∂ iai (u), da) =⇒ Ediff ≡ Efin(a, e)−E in(e) = −∂ iadiff

i .P

Electromagnetic memory [Bieri,Garfinkle;Pasterski] is (a component of)
the momentum map heAS for the action of gS × gS on the Linearly
Extended Ashtekar Streubel Phase space.
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Note: G = GS × GS so can (carefully) proceed by stages again! P

Theorem (Decomposing second stage reduction, Riello MS)
The Hamiltonian reduction of (C, ω,G) ' (Plin

eAS, $
lin
eAS,G

∂Σ
0 /G ), with

respect to the Hamiltonian action of the initial copy of gS at e = 0, yields

the Ashtekar–Streubel symplectic space (Â, $AS),

(Plin
eAS, $

lin
eAS)//0G

Sin ' (Â, $AS).P

It carries the residual Lie algebra action of (the final copy) gS :

%AS(ξfin)a = dξfin,P

with momentum map given by the electromagnetic memory

〈hAS, ξfin〉 =

∫
S

√
γ
(
(∂ iadiff

i )ξfin

)
.P

Reproduces relationship soft symmetries ↔ memory [Strominger et al] in
terms of residual gauge in (partially reduced) AS phase space. P
Explains map PnYM  PAS: Au = 0 gauge fixing for the group of gauge
transformations trivial at the “future” celestial sphere (not both!). P
Question: How far can we generalise this to the non-abelian case?
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Theorem (Non Abelian case - Riello, MS)
The symplectic reduction of (C, ω,G) ' (PeAS, $eAS,G

∂Σ
0 ), with respect

to the Hamiltonian action of the initial copy of gS at e = 0 yields the
Ashtekar–Streubel symplectic space (Â, $AS),

(PeAS, $eAS)//GSin
0 ' (Â, $AS).P

It carries the residual Lie algebra action of (the final copy) gS0 :

%AS(ξfin)a = Dξfin
.

= dξfin + [a, ξfin].P

with momentum map given by “the non-Abelian memory”:

〈hAS, ξfin〉 =

∫
S

√
γ tr((Di∂uai )

∫
ξfin), (Di∂uai )

∫ .
=

∫ 1

−1

Di∂uaiduP

Attention! this is NOT the “color memory” [Pasterski, Raclariu, Strominger]!
In a mode-decomposition:

(DiL`ai )
∫

= ∂ iadiff
i +

∑
k≥0

[
Re(2ã(k)i ), Im(2ã(k)i )

]
6= ∂ iadiff

i
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Conclusions
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Conclusions
1. In good cases, Noether theorems set us up for Hamiltonian

reduction, where the (fully) reduced phase space is C = C/G. P

2. In the presence of corners, there is a mismatch between C and the
zero-level set of the FULL Noether current H . P

3. Reduction fails to output a symplectic manifold, but rather
C = C/G = C/G is Poisson. P

4. For null, abelian YM theory this yields

(P, ω)
G◦ red.

// (Plin
eAS, $

lin
eAS)

S in red. // (PAS, $AS)
Sfin red. // (Sµ, ωµ)

C
� ?

incl.

OO

·/G◦

88 88

{e = 0}
� ?

incl.

OO

·/GSin
0

77 77

{Ediff = µ}
� ?

incl.

OO

·/GSfin
0

88 88

with µ a fixed value for the Electromagnetic memory. P

5. Quantization (at e = 0) should yield decomposition in memory
eigenvalues, simply owing to the Hamiltonian structure.
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Thanks!
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