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Harmonic Gauge and its Advantages
▶ On a Lorentzian (M,g), Rµν = 0 vacuum, consider scalar z (s = 0),

Maxwell vµ (s = 1) and Einstein pµν (s = 2) perturbations:

(SW ) □z = 0,
(Max) (VW ) □vµ −∇µ∇νvν = 0

(vµ = ∇µε⇝ □ε = 0 residual gauge dynamics),

(Ein) (LW ) □pµν − 2 4Rµ
λκ
νpλκ − 2∇(µ∇λpν)λ = 0

(pµν = ∇(µvν) ⇝ □vµ = 0 residual gauge dynamics).

▶ Under harmonic gauges (∇µvµ = 0 and ∇νpµν = ∇ν(pµν − 1
2gµν tr p) = 0)

we get the vector wave and Lichnerowicz wave equations.
▶ Advantages: well known regularity properties for solutions in harmonic

gauge
▶ Disadvantages: reduction to master equations and separation of

variables is usually done in Regge-Wheeler (Schwarzschild) or radiation
(Kerr) gauges; not obvious in harmonic gauge.
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Schwarzschild background

▶ Schwarzschild: spherically symmetric, static black hole (Rµν = 0),

g = −f (dt)2 + f−1(dr)2 + r2
(

dθ2 + sin2 θ (dφ)2
)
, f (r) = 1 − 2M

r
.

▶ Full separation of variables for any s = 0,1,2:

Φ(t , r , θ, φ) = {ϕωlm(r)Y lm(θ, φ)}e−iωt

▶ Harmonic gauge equations result in complicated, coupled radial
mode equations!

▶ But gauge invariant modes decouple and satisfy spin-s
Regge-Wheeler equations Dsϕ

s(r) = 0.
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Radial Mode Equation: VWω[v ] = 0

Explicitly, vµ → v(r) = (vt , vr ,u | w):

(odd) ∂rBl r2f∂r w +

(
ω2 r2

f
− Bl

)
Blw + Bl

2M
r

w = 0,

(even)

−∂r
1
f r2f∂r vt

∂r f r2f∂r vr
∂rBl r2f∂r u

+

(
ω2 r2

f
− Bl

)−1
f vt
f vr

Bl u


+ iω

2M
f

 vr
−vt
0

+

0 0 0
0 −2f 2 2Bl f
0 2Bl f Bl

2M
r

vt
vr
u

 = 0,

where f (r) = 1 − 2M
r and Bl = l(l + 1).
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Radial Mode Equation: LWω[p] = 0 (odd sector)

Explicitly, pµν → p(r) = (htt ,htr ,hrr , jt , jr ,K ,G | ht ,hr ,h2):

∂r (−2Bl
f r2f∂r )ht

∂r (2Bl f r2f∂r )hr

∂r (
Al
2 r2f∂r )h2

− Bl

−2Bl
f ht

2Bl f hr
Al
2 h2


+

−4Bl
f

2M
r 0 0

0 −8Bl f (1 − 3M
r ) 2Al f

0 2Al f Al

ht
hr
h2


−iω 4M

f

 0 −Bl 0
Bl 0 0
0 0 0

ht
hr
h2

+ ω2 r2

f

−2Bl
f ht

2Bl f hr
Al
2 h2

 = 0

where f (r) = 1 − 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Radial Mode Equation: LWω[p] = 0 (even sector)


∂r (−2 r2f∂r )htr

∂r (−2Bl
f r2f∂r ) jt

∂r (
1
f 2 r2f∂r )htt

∂r (f 2 r2f∂r )hrr
∂r (2 r2f∂r )K

∂r (2Bl f r2f∂r ) jr
∂r (

Al
2 r2f∂r )G


− Bl



−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G




2(f 2+1)
f −4Bl 0 0 0 0 0

−4Bl −4Bl
f

2M
r 0 0 0 0 0

0 0 4M2

2f 3r2 − ( 2M
r +4f )

2f
2M
r

2
f

2M
r 0 0

0 0 − ( 2M
r +4f )

2f
2M
e

f ( 4M2

r2 −8f 2)

2 4f (1 − 3M
r ) 4Bl f 2 0

0 0 2
f

2M
r 4f (1 − 3M

r ) −4(1 − 4M
r ) −4Bl f 0

0 0 0 4Bl f 2 −4Bl f −8Bl f (1 − 3M
r ) 2Al f

0 0 0 0 0 2Al f Al





htr
jt
htt
hrr
K
jr
G



−iω 4M
f



0 0 −1
f −f 0 0 0

0 0 0 0 0 −Bl 0
1
f 0 0 0 0 0 0
f 0 0 0 0 0 0
0 0 0 0 0 0 0
0 Bl 0 0 0 0 0
0 0 0 0 0 0 0





htr
jt
htt
hrr
K
jr
G


+ ω2 r2

f



−2 htr

−2Bl
f jt
1
f 2 htt

f 2 hrr
2 K

2Bl f jr
Al
2 G


= 0

where f (r) = 1 − 2M
r , Al = (l − 1)l(l + 1)(l + 2) and Bl = l(l + 1)
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Simplified Radial Mode Equations
▶ Vector wave equation [arXiv:1711.00585]:

▶ VW odd
ω ∼ D1 VW even

ω ∼

▶ Lichnerowicz wave equation [arXiv:2004.09651]:

▶ LW odd
ω ∼

▶ LW even
ω ∼

▶ Hierarchy of modes:
pure gauge, gauge invariant, constraint violating.

(see 2004.09651 or youtu.be/dy-QO5NFHC0 for details.)
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Simplification of a Differential Equation
▶ A simplification is an isomorphism E [ϕ] = 0 ∼ Ẽ [ϕ̃] = 0 from a

more complicated PDE to a simpler PDE.
▶ Q: What is a(n iso)morphism between Differential Equations?

E [ϕ] = 0 k
⇝ Ẽ [ϕ̃] = 0

Ẽ [k [ϕ]] = g[E [ϕ]]

k̃ ◦ k = id − h ◦ E

k ◦ k̃ = id − h̃ ◦ Ẽ

E [k̃ [ϕ̃]] = g̃[Ẽ [ϕ̃]]

g̃ ◦ g = id − E ◦ h − h′ ◦ E ′

g ◦ g̃ = id − Ẽ ◦ h̃ − h̃′ ◦ Ẽ ′

• •

• •

• •

E

k

Ẽ

k̃

g

h

E ′

g̃

h̃

Ẽ ′h′

· · ·

h̃′

A: A differential operator that sends solutions to solutions (with
evidence). An isomorphism is invertible on-shell (with evidence).
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• •

• •

• •

E

k

Ẽ
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Ẽ ′h′

· · ·

h̃′

A: A differential operator that sends solutions to solutions (with
evidence). An isomorphism is invertible on-shell (with evidence).

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 7 / 11



Simplification of a Differential Equation
▶ A simplification is an isomorphism E [ϕ] = 0 ∼ Ẽ [ϕ̃] = 0 from a
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Ẽ ′h′

· · ·

h̃′

A: A differential operator that sends solutions to solutions (with
evidence). An isomorphism is invertible on-shell (with evidence).

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 7 / 11



Simplification of a Differential Equation
▶ A simplification is an isomorphism E [ϕ] = 0 ∼ Ẽ [ϕ̃] = 0 from a

more complicated PDE to a simpler PDE.
▶ Q: What is a(n iso)morphism between Differential Equations?

E [ϕ] = 0 k
⇝ Ẽ [ϕ̃] = 0

Ẽ [k [ϕ]] = g[E [ϕ]]

k̃ ◦ k = id − h ◦ E

k ◦ k̃ = id − h̃ ◦ Ẽ

E [k̃ [ϕ̃]] = g̃[Ẽ [ϕ̃]]

g̃ ◦ g = id − E ◦ h − h′ ◦ E ′

g ◦ g̃ = id − Ẽ ◦ h̃ − h̃′ ◦ Ẽ ′

• •

• •

• •
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Kerr background
▶ Kerr: axially symmetric, stationary black hole (Rµν = 0),

g = −∆r

Σ
(dτ+y2dψ)2+

∆y

Σ
(dτ−r2dψ)2+Σ

(
(dr)2

∆r
+

(dy)2

∆y

)
,

to Boyer-Lindquist coords: τ = t − aφ, y = a cos θ, ψ = φ/a,

Σ = r2 + y2, ∆y = a2 − y2, ∆r = r(r − 2M) + a2.

▶ Partial separation of variables by symmetry (s = 0,1,2):

Φ = ϕωm(r , y)e−iωteimψ

▶ Teukolsky scalars (Φ±s = . . .) decouple,

Φ±s
ωm(r , y) = R±s

ωmλ(r)Y
±s
ωmλ(y),

and the Teukolsky Master Equation T ±s[Φ±s] = 0 fully separates.
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Separation of variables in harmonic gauge

▶ Superficially, harmonic gauge perturbation equations do not fully
separate on Kerr.

▶ What if we could isolate all the modes in harmonic gauge (gauge,
gauge invariant modes, constraint violating modes) and fully
separate each of the resulting equations?
Then harmonic gauge perturbations would fully separate indirectly.

▶ Hope appeared with formulas for recontructing harmonic gauge
metric perturbations from Teukolsky scalars (Hertz potentials).
[Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,
Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]

▶ Open question: Do fully separable equations capture all the
modes?
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Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]

▶ Open question: Do fully separable equations capture all the
modes?

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 9 / 11



Separation of variables in harmonic gauge

▶ Superficially, harmonic gauge perturbation equations do not fully
separate on Kerr.

▶ What if we could isolate all the modes in harmonic gauge (gauge,
gauge invariant modes, constraint violating modes) and fully
separate each of the resulting equations?
Then harmonic gauge perturbations would fully separate indirectly.

▶ Hope appeared with formulas for recontructing harmonic gauge
metric perturbations from Teukolsky scalars (Hertz potentials).
[Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,
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Kerr: obstruction at a crucial step?
▶ Q: On Kerr, can we achieve full separation of variables and upper

triangular simplification like on Schwarzschild?
▶ A crucial step (s = 1): do vµ = ∇µε (gauge), z = ∇µvµ (constraint

violating) and Φ±1 (Teukolsky invariants) exhaust all degrees of
freedom in the solutions of □vµ = 0?
Precise question, by analogy with Schwarzschild:

1 0 ∗ 0
0 1 ∗ 0
0 0 S 0
0 0 ∗ □




X1
X2
X3
ε

 = 0 ∼


□vµ = 0

Φ±1[v ] = 0
∇µvµ = 0

 ?∼ □ε = 0

▶ Observation (WIP): there is a non-separable missing mode

S =
[
∂r ∂y

]
[

Σ
∆y

ωr+ωy
iω

−ωr+ωy
iω

Σ
∆r

]
∆yω2

y −∆rω2
r

[
∂r
∂y

]
− Σ

∆r∆y
,

where Σ = r2 + y2, ∆r = r(r − 2M) + a2, ∆y = a2 − y2, ωr =
ωr2−m

∆r
, ωy = ωy2+m

∆y
.

ε is the gauge degree of freedom, Xi are gauge invariant (divide by ω).
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Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11



Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11



Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11



Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11



Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11



Discussion

▶ Schwarzschild: Harmonic gauge is theoretically nice, but
produces superficially intractible radial mode equations.
Simplification to a tractible form is possible!

▶ Kerr:
▶ Harder because separation of variables is not full.
▶ WIP: there seems to be a missing mode, not captured by Teukolsky

invariants, whose equation is not separable.
▶ How does this square with proofs (under some global conditions)

that Teukolsky scalars capture all gauge invariant degrees of
freedom?

Thank you for your attention!

Igor Khavkine (CAS, Prague) Simplifying harmonic gauge perturbations IHP 02/04/2024 11 / 11


