Simplifying harmonic gauge perturbations around black holes

[arXiv:1711.00585, 1801.09800, 2004.09651] + WIP

Igor Khavkine

Institute of Mathematics
Czech Academy of Sciences (Prague)

Quantum and classical fields interacting with geometry thematic program, Institut Henri Poincaré, Paris

02 Apr 2024

Harmonic Gauge and its Advantages

- On a Lorentzian $(M, g), R_{\mu \nu}=0$ vacuum, consider scalar $z(s=0)$, Maxwell $v_{\mu}(s=1)$ and Einstein $p_{\mu \nu}(s=2)$ perturbations:

```
            (SW) \(\square z=0\),
(Max) (VW) \(\square v_{\mu}-\nabla_{\mu} \nabla^{\nu} v_{\nu}=0\)
```

(Ein) (LW) $\square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2 \nabla_{(\mu} \nabla^{\lambda} \bar{p}_{\nu) \lambda}=0$
residual gauge dynamics).

- Under harmonic gauges ($\nabla^{\mu} v_{\mu}=0$ and $\left.\nabla^{\nu} \bar{p}_{\mu \nu}=\nabla^{\nu}\left(p_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{tr} p\right)=0\right)$ we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and (Kerr) gauges; not obvious in harmonic gauge.

Harmonic Gauge and its Advantages

- On a Lorentzian $(M, g), R_{\mu \nu}=0$ vacuum, consider scalar $z(s=0)$, Maxwell $v_{\mu}(s=1)$ and Einstein $p_{\mu \nu}(s=2)$ perturbations:

(SW)	$\square z=0$,
Max) (VW)	$\begin{aligned} & \square v_{\mu} \\ & \quad\left(v_{\mu}=\nabla_{\mu} \varepsilon \rightsquigarrow \square \varepsilon=0 \text { residual gauge dynamics }\right), \end{aligned}$
Ein) (LW)	$\square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2 \nabla{ }^{\text {a }}$

$$
\text { (} p_{\mu \nu}=\nabla_{(\mu} v_{\nu)} \rightsquigarrow \square v_{\mu}=0 \text { residual gauge dynamics). }
$$

- Under harmonic gauges ($\nabla^{\mu} v_{\mu}=0$ and $\left.\nabla^{\nu} \bar{p}_{\mu \nu}=\nabla^{\nu}\left(p_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{tr} p\right)=0\right)$ we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and (Kerr) gauges; not obvious in harmonic gauge.

Harmonic Gauge and its Advantages

- On a Lorentzian $(M, g), R_{\mu \nu}=0$ vacuum, consider scalar $z(s=0)$, Maxwell $v_{\mu}(s=1)$ and Einstein $p_{\mu \nu}(s=2)$ perturbations:

```
            \((S W) \square z=0\),
            (VW) \(\square v_{\mu}-\nabla \mu \quad=0\)
                ( \(v_{\mu}=\nabla_{\mu} \varepsilon \rightsquigarrow \square \varepsilon=0\) residual gauge dynamics),
\[
\text { (Ein) (LW) } \square p_{\mu \nu}-2^{4} R_{\mu}{ }^{\lambda \kappa}{ }_{\nu} p_{\lambda \kappa}-2 \nabla \quad \nabla \lambda p_{\mu}=0
\]
```

$$
\left(p_{\mu \nu}=\nabla_{(\mu} v_{\nu)} \rightsquigarrow \square v_{\mu}=0 \text { residual gauge dynamics }\right)
$$

- Under harmonic gauges ($\nabla^{\mu} v_{\mu}=0$ and $\left.\nabla^{\nu} \bar{p}_{\mu \nu}=\nabla^{\nu}\left(p_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{tr} p\right)=0\right)$ we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and (Kerr) gauges; not obvious in harmonic gauge.

Harmonic Gauge and its Advantages

- On a Lorentzian $(M, g), R_{\mu \nu}=0$ vacuum, consider scalar $z(s=0)$, Maxwell $v_{\mu}(s=1)$ and Einstein $p_{\mu \nu}(s=2)$ perturbations:

$$
\left(p_{\mu \nu}=\nabla_{(\mu} v_{\nu)} \rightsquigarrow \square v_{\mu}=0\right. \text { residual gauge dynamics). }
$$

- Under harmonic gauges ($\nabla^{\mu} v_{\mu}=0$ and $\left.\nabla^{\nu} \bar{p}_{\mu \nu}=\nabla^{\nu}\left(p_{\mu \nu}-\frac{1}{2} g_{\mu \nu} \operatorname{tr} p\right)=0\right)$ we get the vector wave and Lichnerowicz wave equations.
- Advantages: well known regularity properties for solutions in harmonic gauge
- Disadvantages: reduction to master equations and separation of variables is usually done in Regge-Wheeler (Schwarzschild) or radiation (Kerr) gauges; not obvious in harmonic gauge.

Schwarzschild background

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),
$\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r}$.
Full separation of variables for any $s=0,1,2$:
equations result in complicated, coupled radial
mode equations!
- But gauge invariant modes decouple and satisfy spin-s

Regge-Wheeler equations $\mathcal{D}_{s} \phi^{s}(r)=0$.

Schwarzschild background

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Full separation of variables for any $s=0,1,2$:

$$
\Phi(t, r, \theta, \varphi)=\left\{\phi_{\omega l m}(r) Y^{I m}(\theta, \varphi)\right\} e^{-i \omega t}
$$

equations result in complicated, coupled radial
mode equations!

- But gauge invariant modes decouple and satisfy spin-s Regge-Wheeler equations $\mathcal{D}_{S} \phi^{S}(r)=0$.

Schwarzschild background

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Full separation of variables for any $s=0,1,2$:

$$
\Phi(t, r, \theta, \varphi)=\left\{\phi_{\omega l m}(r) Y^{I m}(\theta, \varphi)\right\} e^{-i \omega t}
$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!

Schwarzschild background

- Schwarzschild: spherically symmetric, static black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-f(\mathrm{~d} t)^{2}+f^{-1}(\mathrm{~d} r)^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta(\mathrm{~d} \varphi)^{2}\right), \quad f(r)=1-\frac{2 M}{r} .
$$

- Full separation of variables for any $s=0,1,2$:

$$
\Phi(t, r, \theta, \varphi)=\left\{\phi_{\omega / m}(r) Y^{l m}(\theta, \varphi)\right\} e^{-i \omega t}
$$

- Harmonic gauge equations result in complicated, coupled radial mode equations!
- But gauge invariant modes decouple and satisfy spin-s Regge-Wheeler equations $\mathcal{D}_{s} \phi^{s}(r)=0$.

Radial Mode Equation: $V W_{\omega}[v]=0$

Explicitly, $v_{\mu} \rightarrow v(r)=\left(v_{t}, v_{r}, u \mid w\right)$:
(odd)

$$
\begin{gathered}
\partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} w+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right) \mathcal{B}_{l} w+\mathcal{B}_{l} \frac{2 M}{r} w=0, \\
{\left[\begin{array}{r}
-\partial_{r} \frac{1}{f} r^{2} f \partial_{r} v_{t} \\
\partial_{r} f r^{2} f \partial_{r} v_{r} \\
\partial_{r} \mathcal{B}_{l} r^{2} f \partial_{r} u
\end{array}\right]+\left(\omega^{2} \frac{r^{2}}{f}-\mathcal{B}_{l}\right)\left[\begin{array}{r}
-\frac{1}{f} \\
f \\
f \\
v_{r} \\
\mathcal{B}_{l} u
\end{array}\right]} \\
\quad+i \omega \frac{2 M}{f}\left[\begin{array}{c}
v_{r} \\
-v_{t} \\
0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 f^{2} & 2 \mathcal{B}_{l} f \\
0 & 2 \mathcal{B}_{l} f & \mathcal{B}_{l} \frac{2 M}{r}
\end{array}\right]\left[\begin{array}{c}
v_{t} \\
v_{r} \\
u
\end{array}\right]=0,
\end{gathered}
$$

where $f(r)=1-\frac{2 M}{r}$ and $\mathcal{B}_{I}=I(I+1)$.

Radial Mode Equation: $L W_{\omega}[p]=0$ (odd sector)

Explicitly, $p_{\mu \nu} \rightarrow p(r)=\left(h_{t t}, h_{t r}, h_{r r}, j_{t}, j_{r}, K, G \mid h_{t}, h_{r}, h_{2}\right)$:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\partial_{r}\left(-2 \frac{\mathcal{B}_{1}}{f} r^{2} f \partial_{r}\right) h_{t} \\
\partial_{r}\left(2 \mathcal{B}_{l} f r^{2} f \partial_{r}\right) h_{r} \\
\partial_{r}\left(\frac{\mathcal{A}_{1}}{2} r^{2} f \partial_{r}\right) h_{2}
\end{array}\right]-\mathcal{B}_{l}\left[\begin{array}{r}
-2 \frac{\mathcal{B}_{1}}{f} h_{t} \\
2 \mathcal{B}_{l} f h_{r} \\
\frac{\mathcal{A}_{l}}{2} h_{2}
\end{array}\right]} \\
& +\left[\begin{array}{ccc}
-4 \frac{\mathcal{B}_{2}}{f} \frac{2 M}{r} & 0 & 0 \\
0 & -8 \mathcal{B}_{l} f\left(1-\frac{3 M}{r}\right) & 2 \mathcal{A}_{1} f \\
0 & 2 \mathcal{A}_{l} f & \mathcal{A}_{l}
\end{array}\right]\left[\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right] \\
& -i \omega \frac{4 M}{f}\left[\begin{array}{ccc}
0 & -\mathcal{B}_{l} & 0 \\
\mathcal{B}_{l} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
h_{t} \\
h_{r} \\
h_{2}
\end{array}\right]+\omega^{2} \frac{r^{2}}{f}\left[\begin{array}{c}
-2 \frac{\mathcal{B}_{l}}{f} h_{t} \\
2 \mathcal{B}_{l} f h_{r} \\
\frac{\mathcal{A}_{l}}{2} h_{2}
\end{array}\right]=0
\end{aligned}
$$

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{I}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Radial Mode Equation: $L W_{\omega}[p]=0$ (even sector)

where $f(r)=1-\frac{2 M}{r}, \mathcal{A}_{l}=(I-1) I(I+1)(I+2)$ and $\mathcal{B}_{I}=I(I+1)$

Simplified Radial Mode Equations
 - Vector wave equation [arxiv:1711.00585]:

- Lichnerowicz wave equation [arXiv:2004.09651]:
- Hierarchy of modes:
pure gauge, gauge invariant, constraint violating.
(see 2004.09651 or youtu.be/dy-Q05NFHC0 for details.)

Simplified Radial Mode Equations

- Vector wave equation [arxiv:1711.00585]:

$$
\nabla V W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\
0 & \mathcal{D}_{1} & 0 \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right]
$$

- Lichnerowicz wave equation [arXiv:2004.09651]:
- Hierarchy of modes:
pure gauge, gauge invariant, constraint violating.
(see 2004.09651 or youtu. be/dy-Q05NFHCO for details.)

Simplified Radial Mode Equations

- Vector wave equation [arxiv:1711.00585]:

$$
\nabla W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\
0 & \mathcal{D}_{1} & 0 \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right]
$$

- Lichnerowicz wave equation [arxiv:2004.09651]:
$-L W_{\omega}^{\text {odd }} \sim\left[\begin{array}{ccc}\mathcal{D}_{1} & 0 & \frac{2 M}{r^{3}} \frac{\mathcal{B}_{1}}{3} \\ 0 & \mathcal{D}_{2} & 0 \\ 0 & 0 & \mathcal{D}_{1}\end{array}\right]$
$-L W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccccccc}\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) & 0 & \frac{M^{2}}{2 r^{4}}\left(7 \mathcal{B}_{l}+2\right) \\ 0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2 M}{r^{3}} \frac{5 \mathcal{B}_{l}}{3} & 0 \\ 0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) \\ 0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{r}\right) \\ 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{0}\end{array}\right]$
- Hierarchy of modes:
pure gauge, gauge invariant, constraint violating.

Simplified Radial Mode Equations

- Vector wave equation [arxiv:1711.00585]:

$$
-V W_{\omega}^{\text {odd }} \sim \mathcal{D}_{1} \quad V W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{l}+\frac{M}{2 r}\right) \\
0 & \mathcal{D}_{1} & 0 \\
0 & 0 & \mathcal{D}_{0}
\end{array}\right]
$$

- Lichnerowicz wave equation [arxiv:2004.09651]:

$$
\begin{aligned}
&-L W_{\omega}^{\text {odd }} \sim {\left[\begin{array}{ccc}
\mathcal{D}_{1} & 0 & \frac{2 M}{r^{3}} \frac{\mathcal{B}_{1}}{3} \\
0 & \mathcal{D}_{2} & 0 \\
0 & 0 & \mathcal{D}_{1}
\end{array}\right] } \\
&-L W_{\omega}^{\text {even }} \sim\left[\begin{array}{ccccccc}
\mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{1}+\frac{M}{r}\right) & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{1}+\frac{M}{r}\right) & 0 & \frac{M^{2}}{2 r^{4}}\left(7 \mathcal{B}_{1}+2\right) \\
0 & \mathcal{D}_{1} & 0 & 0 & 0 & -\frac{2 M \mathcal{B}^{3} \mathcal{B}_{1}}{r^{3}} & 0 \\
0 & 0 & \mathcal{D}_{0} & 0 & 0 & 0 & \frac{2 M}{r^{3}}\left(\mathcal{B}_{1}+\frac{M}{r}\right) \\
0 & 0 & 0 & \mathcal{D}_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathcal{D}_{0} & 0 & -\frac{2 M}{r^{3}}\left(\mathcal{B}_{1}+\frac{M}{r}\right) \\
0 & 0 & 0 & 0 & 0 & \mathcal{D}_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \mathcal{D}_{0}
\end{array}\right]
\end{aligned}
$$

- Hierarchy of modes:
pure gauge, gauge invariant, constraint violating. (see 2004.09651 or youtu.be/dy-QO5NFHC0 for details.)

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
Q: What is a(n iso)morphism between Differential Equations?

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell (with evidence).

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

$$
\begin{aligned}
& E[\phi]=0 \quad \rightsquigarrow \quad \tilde{E}[\tilde{\phi}]=0 \\
& \tilde{E}[k[\phi]]=g[E[\phi]] \\
& \tilde{k} \circ k=i d-h \circ E \\
& k \circ \tilde{k}=i d-\tilde{h} \circ \tilde{E} \\
& E[\tilde{k}[\tilde{\phi}]]=\tilde{g}[\tilde{E}[\tilde{\phi}]] \\
& \tilde{g} \circ g=\mathrm{id}-E \circ h-h^{\prime} \circ E^{\prime} \\
& g \circ \tilde{g}=i d-\tilde{E} \circ \tilde{h}-\tilde{h}^{\prime} \circ \tilde{E}^{\prime}
\end{aligned}
$$

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell (with evidence).

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

A: A differential operator that sends solutions to solutions evidence). An isomorphism is invertible on-shell (with evidence)

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

A: A differential operator that sends solutions to solutions (with evidence).

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?
$E[\phi]=0 \quad \stackrel{k}{\rightsquigarrow} \quad \tilde{E}[\tilde{\phi}]=0$

$$
\tilde{E}[k[\phi]]=g[E[\phi]]
$$

$$
E[\tilde{k}[\tilde{\phi}]]=\tilde{g}[\tilde{E}[\tilde{\phi}]]
$$

$$
\begin{aligned}
& \tilde{g} \circ g=\mathrm{id}-E \circ h-h^{\prime} \circ E^{\prime} \\
& g \circ \tilde{g}=\mathrm{id}-\tilde{E} \circ \tilde{h}-\tilde{h}^{\prime} \circ \tilde{E}^{\prime}
\end{aligned}
$$

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell (with evidence).

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

$$
\begin{aligned}
E[\phi] & =0 \quad \stackrel{k}{\rightsquigarrow} \quad \tilde{E}[\tilde{\phi}]=0 \\
\tilde{E}[k[\phi]] & =g[E[\phi]] \\
\tilde{k} \circ k & =\mathrm{id}-h \circ E \\
k \circ \tilde{k} & =\mathrm{id}-\tilde{h} \circ \tilde{E} \\
E[\tilde{k}[\tilde{\phi}]] & =\tilde{g}[\tilde{E}[\tilde{\phi}]] \\
\tilde{g} \circ g & =\mathrm{id}-E \circ h-h^{\prime} \circ \\
g \circ \tilde{g} & =\mathrm{id}-\tilde{E} \circ \tilde{h}-\tilde{h}^{\prime} \circ \tilde{E}
\end{aligned}
$$

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

$$
\begin{aligned}
& E[\phi]=0 \quad \stackrel{k}{\rightsquigarrow} \quad \tilde{E}[\tilde{\phi}]=0 \\
& \tilde{E}[k[\phi]]=g[E[\phi]] \\
& \tilde{k} \circ k=\mathrm{id}-h \circ E \\
& k \circ \tilde{k}=\mathrm{id}-\tilde{h} \circ \tilde{E} \\
& E[\tilde{k}[\tilde{\phi}]]=\tilde{g}[\tilde{E}[\tilde{\phi}]] \\
& \tilde{g} \circ g=\mathrm{id}-E \circ h \\
& g \circ \tilde{g}=\mathrm{id}-\tilde{E} \circ \tilde{h}
\end{aligned}
$$

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell (with evidence).

Simplification of a Differential Equation

- A simplification is an isomorphism $E[\phi]=0 \sim \tilde{E}[\tilde{\phi}]=0$ from a more complicated PDE to a simpler PDE.
- Q: What is a(n iso)morphism between Differential Equations?

$$
\begin{aligned}
& E[\phi]=0 \quad \stackrel{k}{\rightsquigarrow} \quad \tilde{E}[\tilde{\phi}]=0 \\
& \tilde{E}[k[\phi]]=g[E[\phi]] \\
& \tilde{k} \circ k=\operatorname{id}-h \circ E \\
& k \circ \tilde{k}=\mathrm{id}-\tilde{h} \circ \tilde{E} \\
& E[\tilde{k}[\tilde{\phi}]]=\tilde{g}[\tilde{E}[\tilde{\phi}]] \\
& \tilde{g} \circ g=\mathrm{id}-E \circ h-h^{\prime} \circ E^{\prime} \\
& g \circ \tilde{g}=\mathrm{id}-\tilde{E} \circ \tilde{h}-\tilde{h}^{\prime} \circ \tilde{E}^{\prime}
\end{aligned}
$$

A: A differential operator that sends solutions to solutions (with evidence). An isomorphism is invertible on-shell (with evidence).

Kerr background

- Kerr: axially symmetric, stationary black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-\frac{\Delta_{r}}{\Sigma}\left(\mathrm{~d} \tau+y^{2} \mathrm{~d} \psi\right)^{2}+\frac{\Delta_{y}}{\Sigma}\left(\mathrm{~d} \tau-r^{2} \mathrm{~d} \psi\right)^{2}+\Sigma\left(\frac{(\mathrm{d} r)^{2}}{\Delta_{r}}+\frac{(\mathrm{d} y)^{2}}{\Delta_{y}}\right)
$$

to Boyer-Lindquist coords: $\tau=t-a \varphi, y=a \cos \theta, \psi=\varphi / a$,

$$
\Sigma=r^{2}+y^{2}, \quad \Delta_{y}=a^{2}-y^{2}, \quad \Delta_{r}=r(r-2 M)+a^{2}
$$

- Partial separation of variables by symmetry $(s=0,1,2)$:

$$
\text { scalars }\left(\Phi^{ \pm s}=\ldots\right) \text { decouple, }
$$

Kerr background

- Kerr: axially symmetric, stationary black hole $\left(R_{\mu \nu}=0\right)$,

$$
\mathbf{g}=-\frac{\Delta_{r}}{\Sigma}\left(\mathrm{~d} \tau+y^{2} \mathrm{~d} \psi\right)^{2}+\frac{\Delta_{y}}{\Sigma}\left(\mathrm{~d} \tau-r^{2} \mathrm{~d} \psi\right)^{2}+\Sigma\left(\frac{(\mathrm{d} r)^{2}}{\Delta_{r}}+\frac{(\mathrm{d} y)^{2}}{\Delta_{y}}\right)
$$

to Boyer-Lindquist coords: $\tau=t-a \varphi, y=a \cos \theta, \psi=\varphi / a$,

$$
\Sigma=r^{2}+y^{2}, \quad \Delta_{y}=a^{2}-y^{2}, \quad \Delta_{r}=r(r-2 M)+a^{2}
$$

- Partial separation of variables by symmetry $(s=0,1,2)$:

$$
\Phi=\phi_{\omega m}(r, y) e^{-i \omega t} e^{i m \psi}
$$

scalars $\left(\phi^{ \pm s}=\ldots\right)$ decouple,

Kerr background

- Kerr: axially symmetric, stationary black hole ($R_{\mu \nu}=0$),

$$
\mathbf{g}=-\frac{\Delta_{r}}{\Sigma}\left(\mathrm{~d} \tau+y^{2} \mathrm{~d} \psi\right)^{2}+\frac{\Delta_{y}}{\Sigma}\left(\mathrm{~d} \tau-r^{2} \mathrm{~d} \psi\right)^{2}+\Sigma\left(\frac{(\mathrm{d} r)^{2}}{\Delta_{r}}+\frac{(\mathrm{d} y)^{2}}{\Delta_{y}}\right),
$$

to Boyer-Lindquist coords: $\tau=t-a \varphi, y=a \cos \theta, \psi=\varphi / a$,

$$
\Sigma=r^{2}+y^{2}, \quad \Delta_{y}=a^{2}-y^{2}, \quad \Delta_{r}=r(r-2 M)+a^{2} .
$$

- Partial separation of variables by symmetry $(s=0,1,2)$:

$$
\Phi=\phi_{\omega m}(r, y) e^{-i \omega t} e^{i m \psi}
$$

- Teukolsky scalars ($\Phi^{ \pm s}=\ldots$) decouple,

$$
\Phi_{\omega m}^{ \pm S}(r, y)=R_{\omega m \lambda}^{ \pm S}(r) Y_{\omega m \lambda}^{ \pm S}(y),
$$

and the Teukolsky Master Equation $\mathcal{T}^{ \pm s}\left[\Phi^{ \pm s}\right]=0$ fully separates.

Separation of variables in harmonic gauge

- Superficially, harmonic gauge perturbation equations do not fully separate on Kerr.
> - What if we could isolate all the modes in harmonic gauge (gauge, gauge invariant modes, constraint violating modes) and fully separate each of the resulting equations? Then harmonic gauge perturbations would fully separate indirectly. Hope appeared with formulas for recontructing harmonic gauge metric perturbations from Teukolsky scalars (Hertz potentials). [Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808, Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]
> - Open question: Do fully separable equations capture all the modes?

Separation of variables in harmonic gauge

- Superficially, harmonic gauge perturbation equations do not fully separate on Kerr.
- What if we could isolate all the modes in harmonic gauge (gauge, gauge invariant modes, constraint violating modes) and fully separate each of the resulting equations?
Then harmonic gauge perturbations would fully separate indirectly.
metric perturbations from Teukolsky scalars (Hertz potentials).
[Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808,
Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]
- Open question: Do fully separable equations capture all the modes?

Separation of variables in harmonic gauge

- Superficially, harmonic gauge perturbation equations do not fully separate on Kerr.
- What if we could isolate all the modes in harmonic gauge (gauge, gauge invariant modes, constraint violating modes) and fully separate each of the resulting equations?
Then harmonic gauge perturbations would fully separate indirectly.
- Hope appeared with formulas for recontructing harmonic gauge metric perturbations from Teukolsky scalars (Hertz potentials). [Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808, Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]
- Open question: Do fully separable equations capture all the modes?

Separation of variables in harmonic gauge

- Superficially, harmonic gauge perturbation equations do not fully separate on Kerr.
- What if we could isolate all the modes in harmonic gauge (gauge, gauge invariant modes, constraint violating modes) and fully separate each of the resulting equations? Then harmonic gauge perturbations would fully separate indirectly.
- Hope appeared with formulas for recontructing harmonic gauge metric perturbations from Teukolsky scalars (Hertz potentials). [Lunin 1708.06766, Frolov-Krtouš-Kubizňák 1802.09491, Dolan 1906.04808, Dolan-Durkan-Kavanagh-Wardell 2011.03548 2108.06344 2306.16459]
- Open question: Do fully separable equations capture all the modes?

Kerr: obstruction at a crucial step?

- Q: On Kerr, can we achieve full separation of variables and upper triangular simplification like on Schwarzschild?
violating) and $\Phi^{ \pm 1}$ (Teukolsky invariants) exhaust all degrees of
freedom in the solutions of $\square v_{\mu}=0$?
Precise question, by analogy with Schwarzschild:

- Observation (WIP): there is a non-separable missing mode

where $\Sigma=r^{2}+y^{2}, \Delta_{r}=r(r-2 M)+a^{2}, \Delta_{y}=a^{2}-y^{2}, \omega_{r}=\frac{\omega r^{2}-m}{\Delta_{r}}, \omega_{y}=\frac{\omega y^{2}+m}{\Delta_{y}}$. ε is the gauge degree of freedom, X_{i} are gauge invariant (divide by ω).

Kerr: obstruction at a crucial step?

- Q: On Kerr, can we achieve full separation of variables and upper triangular simplification like on Schwarzschild?
- A crucial step ($s=1$): do $v_{\mu}=\nabla_{\mu} \varepsilon$ (gauge), $z=\nabla^{\mu} v_{\mu}$ (constraint violating) and $\Phi^{ \pm 1}$ (Teukolsky invariants) exhaust all degrees of freedom in the solutions of $\square v_{\mu}=0$?
Precise question, by analogy with Schwarzschild:

$$
\left\{\begin{array}{c}
\square v_{\mu}=0 \\
\Phi^{ \pm}[\\
\nabla^{\mu} v_{\mu}=0
\end{array}\right\} \quad \stackrel{?}{\sim} \quad \square \varepsilon=0
$$

- Observation (WIP): there is a non-separable missing mode

Kerr: obstruction at a crucial step?

- Q: On Kerr, can we achieve full separation of variables and upper triangular simplification like on Schwarzschild?
- A crucial step ($s=1$): do $v_{\mu}=\nabla_{\mu} \varepsilon$ (gauge), $z=\nabla^{\mu} v_{\mu}$ (constraint violating) and $\Phi^{ \pm 1}$ (Teukolsky invariants) exhaust all degrees of freedom in the solutions of $\square v_{\mu}=0$?
Precise question, by analogy with Schwarzschild:

$$
\left[\begin{array}{cccc}
1 & 0 & * & 0 \\
0 & 1 & * & 0 \\
0 & 0 & S & 0 \\
0 & 0 & * & \square
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
\varepsilon
\end{array}\right]=0 \quad \sim\left\{\begin{array}{c}
\square v_{\mu}=0 \\
\phi^{ \pm 1}[v]=0 \\
\nabla^{\mu} v_{\mu}=0
\end{array}\right\} \quad \stackrel{?}{\sim} \quad \square \varepsilon=0
$$

- Observation (WIP): there is a non-separable missing mode

$$
S=\left[\begin{array}{ll}
\partial_{r} & \partial_{y}
\end{array}\right] \frac{\left[\begin{array}{cc}
\frac{\Sigma}{\Delta_{r}} & \frac{\omega_{r}+\omega_{y}}{i \omega} \\
-\frac{\omega_{r}+\omega_{y}}{i \omega} & \frac{\Sigma}{\Delta_{r}}
\end{array}\right]}{\Delta_{y} \omega_{y}^{2}-\Delta_{r} \omega_{r}^{2}}\left[\begin{array}{l}
\partial_{r} \\
\partial_{y}
\end{array}\right]-\frac{\Sigma}{\Delta_{r} \Delta_{y}},
$$

where $\Sigma=r^{2}+y^{2}, \Delta_{r}=r(r-2 M)+a^{2}, \Delta_{y}=a^{2}-y^{2}, \omega_{r}=\frac{\omega r^{2}-m}{\Delta_{r}}, \omega_{y}=\frac{\omega y^{2}+m}{\Delta_{y}}$. ε is the gauge degree of freedom, X_{i} are gauge invariant (divide by ω).

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of freedom?

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- Kerr:
- Harder because separation of variables is not full.
- WIP: there seems to be a missing mode, not captured by invariants, whose equation is not separable.
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of freedom?

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- Kerr:
- Harder because separation of variables is not full. invariants, whose equation is not separable.
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of freedom?

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- Kerr:
- Harder because separation of variables is not full.
- WIP: there seems to be a missing mode, not captured by Teukolsky invariants, whose equation is not separable.
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- Kerr:
- Harder because separation of variables is not full.
- WIP: there seems to be a missing mode, not captured by Teukolsky invariants, whose equation is not separable.
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of freedom?

Discussion

- Schwarzschild: Harmonic gauge is theoretically nice, but produces superficially intractible radial mode equations. Simplification to a tractible form is possible!
- Kerr:
- Harder because separation of variables is not full.
- WIP: there seems to be a missing mode, not captured by Teukolsky invariants, whose equation is not separable.
- How does this square with proofs (under some global conditions) that Teukolsky scalars capture all gauge invariant degrees of freedom?

Thank you for your attention!

