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Lorentzian analogue of harmonic maps.
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estimates + Sobolev embedding argument.

Question
How much can one reduce s? The H*(R") norm of ¢ scales as

D7l sy = A7 216l sy

i.e. exponent s = 7 is critical.

» For s >
> For s < 3

o s= 5 (small data, small time) <= (small data, large time)
0 s < 3 (small data, small time) <= (large data, large time)

> For s < 2 no Sobolev embedding H*(R") — C°(R") so interpreting RHS
of

5 can trade time of local existence against size of initial data;
n

the problem is non-local in time;

06" = M(#)0" ¢/ 0a 0"
becomes problematic;
» For s < § even defining H*(R"; M) is problematic: e.g. when M =§", the
winding number of a function in H*(R";S") is ill-defined [Brezis—Nirenberg
'95];



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.



Major results

Theorem (D’Ancona—Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem

The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.



Major results

Theorem (D’Ancona—Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.

> Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,



Major results

Theorem (D’Ancona—Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,

» Klainerman-Selberg '97: all n > 2, s > 7,



Major results
Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.
Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.

Theorem

For n > 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally (<= locally) well-posed for small initial data in
H3(R") x H3~Y(R").



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.

Theorem
For n > 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally (<= locally) well-posed for small initial data in
H3(R") x H3~Y(R").

> Tao '00: n>5 M=S""1,



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.
Theorem
For n > 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally (<= locally) well-posed for small initial data in
H3(R") x H3~Y(R").
> Tao '00: n>5 M=8""1,
» Klainerman—Rodnianski '00: n > 5, more general M,



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.

Theorem
For n > 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally (<= locally) well-posed for small initial data in
H3(R") x H3~Y(R").

> Tao '00: n>5 M=8""1,

» Klainerman—Rodnianski '00: n > 5, more general M,

» Tao '0L: n>2, M =8S""1,



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.

Theorem
For n > 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally (<= locally) well-posed for small initial data in
H3(R") x H3~Y(R").

> Tao '00: n>5 M=8""1,

» Klainerman—Rodnianski '00: n > 5, more general M,

» Tao '0L: n>2, M =8S""1,

» Tataru '05: n > 2, more general M



Major results

Theorem (D’Ancona—Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in
H*(R") x H*"*(R") for s < 2.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H*(R") x H*"*(R") for initial data in s > 2.
» Bourgain '93 (n = 3), Klainerman—Machedon '95 (n > 4), s > 7,
> Zhou'97: n=2,5s> 2,
» Klainerman-Selberg '97: all n > 2, s > 7,
> Keel-Tao '98: n=1, s > 7.

Theorem

For n > 2 and “reasonable” target manifolds M the wave map equation on
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Tao '00: n>5, M=S"""1,

Klainerman—Rodnianski '00: n > 5, more general M,
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Tataru '05: n > 2, more general M

Tao '00: n=1, s = 3 is ill-posed.
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» Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for
“Skyrme wave maps”

» AFAIK scattering in H3/% . HY2 open

» For GR, would like a geometric interpretation of scattering as a
characteristic initial value problem

» Would also like well-posedness results on more general backgrounds, i.e.
¢ : (N, h) — (M, g) critical points of

/ VetV 6P gasht™ dvoly <= Db = T5(6)QL(6, )
N

for (N, h) a Lorentzian manifold.
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Euclidean metric,

5, h= dt?> — &, & a perturbation of
> Lawrie-Oh-Shahshahani '16: n> 4, s =3, N=R x H",

Conjecture

The wave map equation on R x S*

0¢ + ¢ =T(¢) (¢, 9)

is locally well-posed for small initial data in H*(S*) x H*~!(S?) for s> 2, or
I_'I3/2(S3) % H1/2(S3).

» Need “null form estimates” on R x S°.
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» loosely, replaces the forbidden L2LS° Strichartz estimate in n = 3
» gain of &~ 1 derivative
» similar estimates also hold for the “Yang—Mills/MKG" null forms

Qas(9:¥) = VadVsy) — VodVath

~~ finite energy well-posedness of the Yang—Mills and MKG equations
(Klainerman—Machedon '95, Selberg—Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao, ...

> forthcoming work on R x S* with J.-P. Nicolas
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“Deeper” estimates to get close to criticality:

Theorem (Foschi-Klainerman, '00)
For ¢, ¢ satisfying O¢ = 0 = Oy with data (¢, 0¢¢)|t=0 = (¢po, $1) and
(¥, 8¢v)|t=0 = (b0, %1) there holds

B_
HDﬂO DE D~ QO(d’aw)HLZ(RH") S ||(¢07¢1)||Ha1(Rn)@Ha1*1(R")

X (%0, 1)l oo (mmy@ Hoz =1 (mmy

for any o, Bo, B+ satisfying

§ . ; 3 1 -1
o’ngd}Jr\L:n,lJr(},gfnJr , ,B_an—’_ , ,80>7n ,
2 4 2
1 1
o taz >, ai<5_+n; ,

(a1+a275*)7&<%7_n1_1)’ (afvﬂ*)¢(n:1’_nj;l)v

7|+ €] and ||| = [£]]

where D, D, D_ are WDOs with symbols |&
respectively.

’
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“Deeper” estimates to get close to criticality:

Theorem (Foschi-Klainerman, '00)
For ¢, ¢ satisfying O¢ = 0 = Oy with data (¢, 0¢¢)|t=0 = (¢po, $1) and
(¥, 8¢v)|t=0 = (b0, %1) there holds

B_
HDﬁO DE DZ" Qo(9, w)HLZ(RH") S ||(¢07¢1)||Ha1(Rn)@Ha1*1(R")

X (%0, 1)l oo (mmy@ Hoz =1 (mmy

for any o, Bo, B+ satisfying

. . . 3 1 -1
p’ngd,+\L:(},1+(1,27n+ , ﬂ_27n+ , ,80>7n ,
2 4 2
1 1
ator >z, ai<5—+n; ,

@tans) 2 (3-000). w2 (-1,

7|+ €] and ||| = [£]]

where D, D, D_ are WDOs with symbols |&
respectively. These estimates are sharp.

’
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Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge,
Georgiev—Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev—Schirmer '93)
ForOp=0=0¢ onR x S?,

1Qo(¢, ¥)lli2(po,e1xs%) S (0, @1) | shye iz 1Yo, Y1)l esn)@m s2)-

Proof uses FIOs to localize and flatten the metric and then Klainerman &
Machedon's original techniques. (Sogge treats more general compact manifolds
K in place of S® of any dimension, but no estimates with multipliers.)

Question
Do Foschi—Klainerman estimates hold on curved backgrounds?
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Main theorem

Theorem (T. '23/'24)

For free waves ¢, 1 satisfying
Urxs3¢ + ¢ = 0=Ugypt + ¢

with data (¢7 at¢)|f:0 = (¢07 ¢1) and (1/% atd))‘fzo = (¢07 1/”) on R x §* the

estimate
([ 4% WP Qo(o, 2= mixs?y S [1(Bos 1)l o g3y@ 01 —1(s3)
X [[(%0, Y1)l oz (s3)@ e —1(s3)
where J = (1 — Ag)?, W = (24 Ogys), provided*

a1+ az >3+ 284 + Bo, a1+ ax =3+ 20,
a1 =2 1+ Buw + Po, a2 =2 1+ B + Po,
Bw = —1, —3/2 =284, < Bo < 1/2.
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Cancellations in Fourier space

Key observation in R3: for free waves ¢, 1) the spacetime Fourier symbol of

Qo(¢, V) = 0:p Otp — Vx¢p - Vit is
@ (n,¢) = £nl¢] —n- ¢,

which vanishes when 7 and ( are parallel. Captures cancellations in Qp between
parallel waves. Classical proof of null form estimates goes in 3 steps:

Step 1: positive/negative frequency splitting
For O¢ = 0 with data (¢, 9:®)|t=0 = (0, ¢1) the solution is

3e.) = 00 = 26370 - 609,

where

1 etitlél+ix¢
000 = oy [, g

By bilinearity, enough to understand Qo(¢F, 1¥).
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Cancellations in Fourier space

Step 2: spacetime FT of Qu(¢™F, v™)

Using 2Qo(¢T, ™) = O(¢F¢F), the inverse convolution formula gives

For (Q6%,9%)) (1,) = 3 (7 = [EF)F0(6%) « Fo ()

o [ (30) e~ )

- |¢?
T—§w *

where o =
Step 3: Plancherel & Cauchy—Schwarz
1Qu(&™, ™) I 2es ) = ||fr,x(Qo(<bi,wi))Hfz(R%)
o0 N 2
< /]R3 d§/0 da , dwat ’(bl (%w)‘
< [ ae [ a1 Pl e -

2
S Ngnllbnges) v l72es)-

e ge)l
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Global method on R x S3

Observation

Using S® ~ SU(2), may try to replicate the method on R x SU(2) by exploiting
global Lie group structure. SU(2) non-abelian, so no Pontryagin duality; need
Peter—Weyl theory.

Very brief recap of Peter—Weyl theory

G a compact Lie group.

Definition

The unitary dual G of G is the set of equivalence classes of unitary irreducible
representations of G.

Definition A
Let f € L*(G). For each 7 € G the Fourier coefficient f(7) is the operator

Fm) = / F(g)(e ) du(e).
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Peter—Weyl theory

Theorem (Peter-Weyl)

The matrix coefficients of unitary irreducible representations of G are dense in

L3(G):
L2
26 =P M-,

neG

where M is the subspace of L?(G) spanned by matrix coefficients of = € G.

Theorem (Plancherel)
Let f € L*(G). Then
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Peter—Weyl theory

Theorem (Peter-Weyl)

The matrix coefficients of unitary irreducible representations of G are dense in

L3(G):
LZ
26 =P M-,

neG

where M is the subspace of L?(G) spanned by matrix coefficients of = € G.

Theorem (Plancherel)
Let f € L*(G). Then

flg) =Y _ d. Tr(f(g)(g))

=

in L?(G), and moreover
1F1lZ2) = D d=llIF (@I,
meG

|| is the Frobenius norm.

where ||| -
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Fourier analysis on SU(2)

With G = SU(2) = $*

> the characters e™™¢ of R® are replaced with irreps 7 on SU(2)

Tm : SU(2) = GL(Vin) for m € Zzo and Agyymm = —m(m + 2)mm
eigenvalues of Ags continuous, of Agyz) = Ags discrete
eT™¢ 1-dimensional but 7, has dimension (m + 1)

the Fourier transform 7 () is operator-valued € C(m+1)*(m+1)

vVvy VvV VYyy

H* norms on SU(2) on Fourier side via Plancherel:

2 2112 2
F sy = D (m 4+ 1) || ()|
m>=0
> XX = o™ (&) byt 1, @ 7, # Tmen : instead have Clebsch—Gordan

expansion
min(m,n)

Tm & Tn = @ T m—n|+2k
k=0
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Fourier analysis on SU(2)

With G = SU(2) = $*

» an explicit choice of 7,'s is given by Wigner's D-matrices

VU+ G = miG+ )G = w)!

DOy} = Y (1) G

— ' =)+ mu— x)Ix!(x + @' — m)!

x et

djtp—p’ —2x 1 .2 r_pl i
cosZdTH—H X—ﬂ~smx+“ “Eﬁ'elw

[Wigner '59, Group Theory and Atomic Spectra)
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VU+ G = miG+ )G = w)!
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— ' =)+ mu— x)Ix!(x + @' — m)!

P
x e'* % cos

. p 1 1 )
2jtp—p’=2x = g s 2x4pi—p Lo ipy

B -sin 2[3 e
[Wigner '59, Group Theory and Atomic Spectra)

» Closely related to spin-weighted spherical harmonics .Y/,

» First two Wigner's D-matrices are

1; 1. 1: 1.
e 2'%(cosiB)e™ 2" —eT2'%(sin1B)ez"
rml m— ( (cos 1) (sin 15) |

e2'®(sin %,6’)6’%"”Y e2'(cos %5)&“’

where «, (3, 7y are the Euler angles on SU(2).
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Recall in step 3 (Plancherel & Cauchy-Schwarz) defined

2§/:aw:(ﬂ)w:

T—€ w

> (7, &) mixes time and space Fourier variables on R'*3

» On R x SU(2) the space Fourier variable m is discrete, but time Fourier
variable is continuous

> but for solutions of the modified wave equation on R x S,
O¢ + ¢ =0,
are periodic in time:
Fid(mm) + (L + m(m +2))(mm) = 0 = 3;d(wm) = —(m + 1)*$(mm)

— Q’g(ﬂ'm)(t) ~ eii(m+1)t
= periodic in t
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Modified equation

On R x S* study instead Qo(¢, ) for ¢, ¢ satisfying
O¢+¢=0 with (¢,0:¢)[e=0 = (0, $1),

Orxsd + 6" = T(#)xQo(¢, 0%),
where Qo(¢,1/J) = g;}j:533a¢3ﬁ1/1-

Step 1: positive/negative frequency splitting

o5 (t,x) = > VT (fa(mm)min())

m=0

Step 2: spacetime FT of Qo(¢™, ¢™)

In R¥*3 this relies on “inverse” convolution formula

Fex(0™0T) = Feu(9™) * Fex ().
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G
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(Fx&)(m) = F(m) o &(x)
holds; f(x), &(w) are operators.

In general there is insufficient structure on G to define f * & ~» no “inverse”
convolution formula.

On R x SU(2) need to compute Fi . (¢T¢F) directly: OK using inverse
convolution in R factor, schematically

Fix ot Tm)n = Aﬂ— Aﬂ—n— ™ Th— 71',1;7(:1
(&) (m) §/j¢1( i ,)/sw) & ® 1 dp

© (mt1) () (7m)n)pq

Recall m/ ® mn,—; “smears” over a range of irreps, with probability amplitude
weights.
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After a calculation, must handle a Clebsch—Gordan expansion of the form
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» fundamentally different from calculation in abelian case
» does not localize around a single 7, even asymptotically
» requires estimating “matrix convolutions”

Using orthogonality of Clebsch—Gordan coefficients C, can recover a discrete
Young's inequality for convolutions for @;(7m)n:

Lemma
For the matrices w(mm)n there hold the estimates

D Mm+ Di(mm)allI* < (G113 (o]

Observation
Here >~ not >, ~~ loss of arbitrarily small amount of regularity.
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Further questions

This allows to define wave-Sobolev spaces H%® of Bourgain & Klainerman et al
on R x §%

1 ~,
ullssbgxssy = 1(m +1)72 ((m + 1) = [0 *G(7m)allez 2
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Critical problem...?
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Thank you!
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