
Estimates for Low Regularity Wave Maps on R× S3

G. Taujanskas (Cambridge)

Quantum and Classical Fields Interacting with Geometry
Institut Henri Poincaré
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Preliminaries

Definition (Wave Maps on Minkowski Space)

Given a Riemannian manifold (M, g), a function on Minkowski space R1+n

φ : Rt × Rn
x → M

satisfies the wave map equation if

□φi = Γi
jk(φ)∂

αφj∂αφ
k = Γi

jk(φ)Q0(φ
j ,φk), (1)

where Γi
jk are the Christoffel symbols of g and α’s are contracted using the

Minkowski metric. Equation (1) is the Euler–Lagrange equation for

LM [φ] =

󰁝

R×Rn

|∂tφ|2g − |∇xφ|2g dt dx .

Lorentzian analogue of harmonic maps.
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Preliminaries

Wave maps:

◮ appear in the study of Yang–Mills & Einstein equations (e.g. as equations
for the gauge)

◮ nonlinear σ-models in theoretical physics, magnetism, materials...

◮ extremely well-studied when the background is Minkowski (Christodoulou,
Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg,
Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao,
Tataru, Vega...)

◮ for general nonlinearities in n = 3 cannot expect well-posedness unless data
is in Hs(R3)× Hs−1(R3) for s > 2 (Ponce–Sideris ’93, Lindblad ’93, ’96)

◮ in general even if local solutions exist (s > 2), they may blow up in finite
time (John ’81)

◮ nonlinearity Q0(φ
j ,φk) = ∂αφj∂αφ

k is “null”, i.e. has better decay
properties than expected (Klainerman ’80s)

◮ for wave maps on R1+n, can hope to reduce this to s 󰃍 n
2
, and can hope

for global solutions (e.g. Christodoulou ’86)
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Preliminaries

The wave map equation □φi = Γi
jk(φ)∂

αφj∂αφ
k is a (nonlinear) hyperbolic

PDE on R1+n:

◮ a natural problem is to consider initial data

(φ0,φ1) ∈ Hs(Rn)× Hs−1(Rn)

and seek a solution φ ∈ C 0([−T ,T ];Hs(Rn)) ∩ C 1([−T ,T ];Hs−1(Rn)),
possibly with T = ∞.

◮ is invariant with respect to the scaling

φ(t, x) −→ φλ(t, x) = φ(λt,λx), λ ∈ R

⇝ self-similar blow-up solutions possible for large data (if no symmetry, cf.
Christodoulou–Tahvildar-Zadeh ’93)
⇝ for global existence must focus on small data

◮ has a conserved energy:

E [φ] =
1

2

󰁝

Rn

|∂tφ|2g + |∇xφ|2g dx ,
d
dt

E [φ] = 0.

But E [φ] is “below scaling” ⇝ not useful unless n 󰃑 2.
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Criticality

For s > n+2
2

local well-posedness is “easy” and follows from standard energy
estimates + Sobolev embedding argument.

Question
How much can one reduce s? The Ḣs(Rn) norm of φ scales as

󰀂φλ󰀂Ḣs (Rn) = λs− n
2 󰀂φ󰀂Ḣs (Rn),

i.e. exponent s = n
2
is critical.

◮ For s > n
2
can trade time of local existence against size of initial data;

◮ For s 󰃑 n
2
the problem is non-local in time;

o s = n
2
(small data, small time) ⇐⇒ (small data, large time)

o s < n
2
(small data, small time) ⇐⇒ (large data, large time)

◮ For s 󰃑 n
2
no Sobolev embedding Hs(Rn) ↩→ C 0(Rn) so interpreting RHS

of
□φi = Γi

jk(φ)∂
αφj∂αφ

k

becomes problematic;

◮ For s < n
2
even defining Hs(Rn;M) is problematic: e.g. when M = Sn, the

winding number of a function in Hs(Rn; Sn) is ill-defined [Brezis–Nirenberg
’95];
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2 󰀂φ󰀂Ḣs (Rn),

i.e. exponent s = n
2
is critical.

◮ For s > n
2
can trade time of local existence against size of initial data;

◮ For s 󰃑 n
2
the problem is non-local in time;

o s = n
2
(small data, small time) ⇐⇒ (small data, large time)

o s < n
2
(small data, small time) ⇐⇒ (large data, large time)

◮ For s 󰃑 n
2
no Sobolev embedding Hs(Rn) ↩→ C 0(Rn) so interpreting RHS

of
□φi = Γi

jk(φ)∂
αφj∂αφ

k

becomes problematic;

◮ For s < n
2
even defining Hs(Rn;M) is problematic: e.g. when M = Sn, the

winding number of a function in Hs(Rn; Sn) is ill-defined [Brezis–Nirenberg
’95];

6 / 25



Criticality

For s > n+2
2

local well-posedness is “easy” and follows from standard energy
estimates + Sobolev embedding argument.

Question
How much can one reduce s? The Ḣs(Rn) norm of φ scales as
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Major results

Theorem (D’Ancona–Georgiev ’05)

The wave map equation on Minkowski space is ill-posed with data in
Hs(Rn)× Hs−1(Rn) for s < n

2
.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in Hs(Rn)× Hs−1(Rn) for initial data in s > n

2
.

◮ Bourgain ’93 (n = 3), Klainerman–Machedon ’95 (n 󰃍 4), s > n
2
,

◮ Zhou ’97: n = 2, s 󰃍 9
8
,

◮ Klainerman–Selberg ’97: all n 󰃍 2, s > n
2
,

◮ Keel–Tao ’98: n = 1, s > n
2
.

Theorem
For n 󰃍 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally ( ⇐⇒ locally) well-posed for small initial data in
Ḣ

n
2 (Rn)× Ḣ

n
2
−1(Rn).

◮ Tao ’00: n 󰃍 5, M = Sm−1,
◮ Klainerman–Rodnianski ’00: n 󰃍 5, more general M,
◮ Tao ’01: n 󰃍 2, M = Sm−1,
◮ Tataru ’05: n 󰃍 2, more general M
◮ Tao ’00: n = 1, s = n

2
is ill-posed.
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n
2
−1(Rn).

◮ Tao ’00: n 󰃍 5, M = Sm−1,
◮ Klainerman–Rodnianski ’00: n 󰃍 5, more general M,
◮ Tao ’01: n 󰃍 2, M = Sm−1,
◮ Tataru ’05: n 󰃍 2, more general M
◮ Tao ’00: n = 1, s = n

2
is ill-posed.

7 / 25



Major results

Theorem (D’Ancona–Georgiev ’05)

The wave map equation on Minkowski space is ill-posed with data in
Hs(Rn)× Hs−1(Rn) for s < n

2
.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in Hs(Rn)× Hs−1(Rn) for initial data in s > n

2
.

◮ Bourgain ’93 (n = 3), Klainerman–Machedon ’95 (n 󰃍 4), s > n
2
,

◮ Zhou ’97: n = 2, s 󰃍 9
8
,

◮ Klainerman–Selberg ’97: all n 󰃍 2, s > n
2
,

◮ Keel–Tao ’98: n = 1, s > n
2
.

Theorem
For n 󰃍 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally ( ⇐⇒ locally) well-posed for small initial data in
Ḣ
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n
2
−1(Rn).

◮ Tao ’00: n 󰃍 5, M = Sm−1,
◮ Klainerman–Rodnianski ’00: n 󰃍 5, more general M,
◮ Tao ’01: n 󰃍 2, M = Sm−1,
◮ Tataru ’05: n 󰃍 2, more general M
◮ Tao ’00: n = 1, s = n

2
is ill-posed.

7 / 25



Major results

Theorem (D’Ancona–Georgiev ’05)

The wave map equation on Minkowski space is ill-posed with data in
Hs(Rn)× Hs−1(Rn) for s < n

2
.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in Hs(Rn)× Hs−1(Rn) for initial data in s > n

2
.

◮ Bourgain ’93 (n = 3), Klainerman–Machedon ’95 (n 󰃍 4), s > n
2
,

◮ Zhou ’97: n = 2, s 󰃍 9
8
,

◮ Klainerman–Selberg ’97: all n 󰃍 2, s > n
2
,

◮ Keel–Tao ’98: n = 1, s > n
2
.

Theorem
For n 󰃍 2 and “reasonable” target manifolds M the wave map equation on
Minkowski space is globally ( ⇐⇒ locally) well-posed for small initial data in
Ḣ
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Open questions: scattering

◮ Related to global existence is the question of scattering: do there exist
scattering states φ±|I ∈ H in some space H such that

lim
t±∞

󰀂φ(t)− φ±|I 󰀂H = 0 ?

◮ Tataru ’01: scattering in Besov spaces Ḃ2,1
3/2 × Ḃ2,1

1/2 and Ḣs × Ḣs−1 for

s > 3
2
(cf. Ḃ2,1

3/2(R
3) ↩→ L∞(R3))

◮ Geba, Nakanishi, Rajeev, da Silva, ... ’11: scattering in Besov spaces for
“Skyrme wave maps”

◮ AFAIK scattering in Ḣ3/2 × Ḣ1/2 open

◮ For GR, would like a geometric interpretation of scattering as a
characteristic initial value problem

◮ Would also like well-posedness results on more general backgrounds, i.e.
φ : (N, h) → (M, g) critical points of

󰁝

N

∇µφ
α∇νφ

βgαβh
µν dvolN ⇐⇒ □hφ = Γg (φ)Q

h
0 (φ,φ)

for (N, h) a Lorentzian manifold.
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s > 3
2
(cf. Ḃ2,1
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3/2 × Ḃ2,1
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3/2(R
3) ↩→ L∞(R3))

◮ Geba, Nakanishi, Rajeev, da Silva, ... ’11: scattering in Besov spaces for
“Skyrme wave maps”

◮ AFAIK scattering in Ḣ3/2 × Ḣ1/2 open
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Open questions: curved backgrounds

Some previous work on curved spacetimes:

◮ Shatah–Struwe ’02: N = R× Rn flat, n 󰃍 4, s = n
2
, moving frame

approach,

◮ Geba ’09: 3 󰃑 n 󰃑 5, s > n
2
, N = R× Rn, h a perturbation of η,

◮ Lawrie ’12: N = R× R4, s = n
2
, h = dt2 − ẽ, ẽ a perturbation of

Euclidean metric,

◮ Lawrie–Oh–Shahshahani ’16: n 󰃍 4, s = n
2
, N = R×Hn,

Conjecture

The wave map equation on R× S3

□φ+ φ = Γ(φ)Q0(φ,φ)

is locally well-posed for small initial data in Hs(S3)× Hs−1(S3) for s > 3
2
, or

Ḣ3/2(S3)× Ḣ1/2(S3).

◮ Need “null form estimates” on R× S3.

9 / 25



Open questions: curved backgrounds

Some previous work on curved spacetimes:

◮ Shatah–Struwe ’02: N = R× Rn flat, n 󰃍 4, s = n
2
, moving frame

approach,

◮ Geba ’09: 3 󰃑 n 󰃑 5, s > n
2
, N = R× Rn, h a perturbation of η,

◮ Lawrie ’12: N = R× R4, s = n
2
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Ḣ3/2(S3)× Ḣ1/2(S3).

◮ Need “null form estimates” on R× S3.

9 / 25



Open questions: curved backgrounds

Some previous work on curved spacetimes:

◮ Shatah–Struwe ’02: N = R× Rn flat, n 󰃍 4, s = n
2
, moving frame

approach,

◮ Geba ’09: 3 󰃑 n 󰃑 5, s > n
2
, N = R× Rn, h a perturbation of η,

◮ Lawrie ’12: N = R× R4, s = n
2
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Null Form Estimates

The key nonlinearity to understand is

Q0(φ,ψ) = ∂αφ∂αψ = ∂tφ∂tψ −∇xφ ·∇xψ.

Breakthrough result of Klainerman–Machedon (’95) relied on:

Theorem (Klainerman–Machedon, ’93)

For φ, ψ satisfying □φ = 0 = □ψ with data (φ, ∂tφ)|t=0 = (φ0,φ1),
(ψ, ∂tψ)|t=0 = (ψ0,ψ1) the null form Q0(φ,ψ) satisfies the estimate

󰀂Q0(φ,ψ)󰀂L2(R4) ≲ 󰀂(φ0,φ1)󰀂H1(R3)⊕L2(R3)󰀂(ψ0,ψ1)󰀂H2(R3)⊕H1(R3)

◮ loosely, replaces the forbidden L2
tL

∞
x Strichartz estimate in n = 3

◮ gain of ≈ 1 derivative

◮ similar estimates also hold for the “Yang–Mills/MKG” null forms

Qαβ(φ,ψ) = ∇αφ∇βψ −∇βφ∇αψ

⇝ finite energy well-posedness of the Yang–Mills and MKG equations
(Klainerman–Machedon ’95, Selberg–Tesfahun ’10, Oh ’15), also Tao, Keel–Roy–Tao, ...

◮ forthcoming work on R× S3 with J.-P. Nicolas
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Null Form Estimates

“Deeper” estimates to get close to criticality:

Theorem (Foschi–Klainerman, ’00)

For φ, ψ satisfying □φ = 0 = □ψ with data (φ, ∂tφ)|t=0 = (φ0,φ1) and
(ψ, ∂tψ)|t=0 = (ψ0,ψ1) there holds

󰀂Dβ0D
β+
+ D

β−
− Q0(φ,ψ)󰀂L2(R1+n) ≲ 󰀂(φ0,φ1)󰀂Hα1 (Rn)⊕Hα1−1(Rn)

× 󰀂(ψ0,ψ1)󰀂Hα2 (Rn)⊕Hα2−1(Rn)

for any αi , β0, β± satisfying

β0 + β+ + β− = α1 + α2 −
n + 3

2
, β− 󰃍 −n + 1

4
, β0 > −n − 1

2
,

α1 + α2 󰃍
1

2
, αi 󰃑 β− +

n + 1

2
,

(α1 + α2,β−) ∕=
󰀕
1

2
,−n + 1

4

󰀖
, (αi ,β−) ∕=

󰀕
n + 1

4
,−n + 1

4

󰀖
,

where D, D+, D− are ΨDOs with symbols |ξ|, |τ |+ |ξ| and ||τ |− |ξ||
respectively. These estimates are sharp.
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, αi 󰃑 β− +

n + 1

2
,

(α1 + α2,β−) ∕=
󰀕
1

2
,−n + 1

4

󰀖
, (αi ,β−) ∕=

󰀕
n + 1

4
,−n + 1

4

󰀖
,

where D, D+, D− are ΨDOs with symbols |ξ|, |τ |+ |ξ| and ||τ |− |ξ||
respectively. These estimates are sharp.
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Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge,
Georgiev–Schirmer, Sogge–Smith, Tataru.

Theorem (Sogge ’93, Georgiev–Schirmer ’93)

For □φ = 0 = □ψ on R× S3,

󰀂Q0(φ,ψ)󰀂L2([0,ε]×S3) ≲ 󰀂(φ0,φ1)󰀂H1(S3)⊕L2(S3)󰀂(ψ0,ψ1)󰀂H2(S3)⊕H1(S3).

Proof uses FIOs to localize and flatten the metric and then Klainerman &
Machedon’s original techniques. (Sogge treats more general compact manifolds
K in place of S3 of any dimension, but no estimates with multipliers.)

Question
Do Foschi–Klainerman estimates hold on curved backgrounds?
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Main theorem

Theorem (T. ’23/’24)

For free waves φ, ψ satisfying

□R×S3φ + φ = 0 = □R×S3ψ + ψ

with data (φ, ∂tφ)|t=0 = (φ0,φ1) and (ψ, ∂tψ)|t=0 = (ψ0,ψ1) on R× S3 the
estimate

󰀂Jβ0W βwQ0(φ,ψ)󰀂L2([−π,π]×S3) ≲ 󰀂(φ0,φ1)󰀂Hα1 (S3)⊕Hα1−1(S3)

× 󰀂(ψ0,ψ1)󰀂Hα2 (S3)⊕Hα2−1(S3),

where J = (1−∆S3)
1/2, W = (2 +□R×S3), provided*

α1 + α2 > 3 + 2βw + β0, α1 + α2 󰃍 3 + 2βw ,

α1 󰃍 1 + βw + β0, α2 󰃍 1 + βw + β0,

βw 󰃍 −1, −3/2− 2βw 󰃑 β0 󰃑 1/2.
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Cancellations in Fourier space

Key observation in R3: for free waves φ, ψ the spacetime Fourier symbol of
Q0(φ,ψ) = ∂tφ∂tψ −∇xφ ·∇xψ is

q±
0 (η, ζ) = ±|η||ζ|− η · ζ,

which vanishes when η and ζ are parallel. Captures cancellations in Q0 between
parallel waves. Classical proof of null form estimates goes in 3 steps:

Step 1: positive/negative frequency splitting

For □φ = 0 with data (φ, ∂tφ)|t=0 = (0,φ1) the solution is

φ̂(t, ξ) =
sin(|ξ|t)

|ξ| φ̂1(ξ) =
1

2i
(φ̂+(t, ξ)− φ̂−(t, ξ)),

where

φ±(t, x) =
1

(2π)3

󰁝

R3

e±it|ξ|+ix·ξ

|ξ| φ̂1(ξ) dξ

By bilinearity, enough to understand Q0(φ
±,ψ±).
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Cancellations in Fourier space

Step 2: spacetime FT of Q0(φ
±,ψ±)

Using 2Q0(φ
±,ψ±) = □(φ±ψ±), the inverse convolution formula gives

Ft,x

󰀃
Q0(φ

±,ψ±)
󰀄
(τ, ξ) =

1

2
(τ 2 − |ξ|2)Ft,x(φ

±) ∗ Ft,x(ψ
±)

= π2

󰁝

S2
α2φ̂1

󰀓α
2
ω
󰀔
ψ̂1

󰀓
ξ − α

2
ω
󰀔

d2ω,

where α = τ2−|ξ|2
τ−ξ·ω .

Step 3: Plancherel & Cauchy–Schwarz

󰀂Q0(φ
±,ψ±)󰀂2L2(R4

t,x )
≃ 󰀂Ft,x(Q0(φ

±,ψ±))󰀂2L2(R4
τ,ξ

)

≲
󰁝

R3

dξ
󰁝 ∞

0

dα
󰁝

S2
d2ω α4

󰀏󰀏󰀏φ̂1

󰀓α
2
ω
󰀔󰀏󰀏󰀏

2 󰀏󰀏󰀏ψ̂1

󰀓
ξ − α

2
ω
󰀔󰀏󰀏󰀏

2

≲
󰁝

R3

dξ
󰁝

R3

dξ′|ξ′|2|φ̂1(ξ
′)|2|ψ̂1(ξ − ξ′)|2

≲ 󰀂φ1󰀂2H1(R3)󰀂ψ1󰀂2L2(R3).
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Global method on R× S3

Observation
Using S3 ≃ SU(2), may try to replicate the method on R× SU(2) by exploiting
global Lie group structure. SU(2) non-abelian, so no Pontryagin duality; need
Peter–Weyl theory.

Very brief recap of Peter–Weyl theory

G a compact Lie group.

Definition
The unitary dual Ĝ of G is the set of equivalence classes of unitary irreducible
representations of G.

Definition
Let f ∈ L1(G). For each π ∈ Ĝ the Fourier coefficient f̂ (π) is the operator

f̂ (π) =

󰁝

G
f (g)π(g−1) dµ(g).
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The unitary dual Ĝ of G is the set of equivalence classes of unitary irreducible
representations of G.

Definition
Let f ∈ L1(G). For each π ∈ Ĝ the Fourier coefficient f̂ (π) is the operator

f̂ (π) =

󰁝

G
f (g)π(g−1) dµ(g).

16 / 25



Peter–Weyl theory

Theorem (Peter–Weyl)

The matrix coefficients of unitary irreducible representations of G are dense in
L2(G):

L2(G) =
󰁐

π∈Ĝ

Mπ

L2

,

where Mπ is the subspace of L2(G) spanned by matrix coefficients of π ∈ Ĝ.

Theorem (Plancherel)

Let f ∈ L2(G). Then
f (g) =

󰁛

π∈Ĝ

dπ Tr(f̂ (g)π(g))

in L2(G), and moreover

󰀂f 󰀂2L2(G) =
󰁛

π∈Ĝ

dπ|||f̂ (π)|||2,

where ||| · |||2 is the Frobenius norm.

17 / 25



Peter–Weyl theory

Theorem (Peter–Weyl)

The matrix coefficients of unitary irreducible representations of G are dense in
L2(G):

L2(G) =
󰁐

π∈Ĝ
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dπ Tr(f̂ (g)π(g))

in L2(G), and moreover

󰀂f 󰀂2L2(G) =
󰁛

π∈Ĝ
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Fourier analysis on SU(2)

With G = SU(2) = S3:

◮ the characters e±ix·ξ of R3 are replaced with irreps π on SU(2)

◮ πm : SU(2) → GL(Vm) for m ∈ Z󰃍0 and ∆SU(2)πm = −m(m + 2)πm

◮ eigenvalues of ∆R3 continuous, of ∆SU(2) = ∆S3 discrete

◮ e±ix·ξ 1-dimensional but πm has dimension (m + 1)

◮ the Fourier transform f̂ (πm) is operator-valued ∈ C(m+1)×(m+1)

◮ Hk norms on SU(2) on Fourier side via Plancherel:

󰀂f 󰀂2Hk (S3) ≃
󰁛

m󰃍0

(m + 1)2k+1|||f̂ (πm)|||2

◮ e ix·ξe ix·η = e ix·(ξ+η) but πm ⊗ πn ∕= πm+n : instead have Clebsch–Gordan
expansion

πm ⊗ πn ≃
min(m,n)󰁐

k=0

π|m−n|+2k

18 / 25
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Fourier analysis on SU(2)

With G = SU(2) = S3:

◮ an explicit choice of πm’s is given by Wigner’s D-matrices

D(j)({αβγ})µ′µ =
󰁛

x

(−1)x
󰁳

(j + µ)!(j − µ)!(j + µ′)!(j − µ′)!

(j − µ′ − x)!(j +mu − x)!x!(x + µ′ −m)!

× e iµ
′α cos2j+µ−µ′−2x 1

2
β · sin2x+µ′−µ 1

2
β · e iµγ

[Wigner ’59, Group Theory and Atomic Spectra]

◮ Closely related to spin-weighted spherical harmonics sYlm

◮ First two Wigner’s D-matrices are

π0 = 1, π1 =

󰀣
e−

1
2
iα(cos 1

2
β)e−

1
2
iγ −e−

1
2
iα(sin 1

2
β)e

1
2
iγ

e
1
2
iα(sin 1

2
β)e−

1
2
iγ e

1
2
iα(cos 1

2
β)e

1
2
iγ

󰀤
,

where α, β, γ are the Euler angles on SU(2).
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Time periodicity

Recall in step 3 (Plancherel & Cauchy–Schwarz) defined

2ξ′ = αω =

󰀕
τ 2 − |ξ|2

τ − ξ · ω

󰀖
ω :

◮ α(τ, ξ) mixes time and space Fourier variables on R1+3

◮ On R× SU(2) the space Fourier variable m is discrete, but time Fourier
variable is continuous

◮ but for solutions of the modified wave equation on R× S3,

□φ + φ = 0,

are periodic in time:

∂2
t φ̂(πm) + (1 +m(m + 2))φ̂(πm) = 0 =⇒ ∂2

t φ̂(πm) = −(m + 1)2φ̂(πm)

=⇒ φ̂(πm)(t) ∼ e±i(m+1)t

=⇒ periodic in t
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Modified equation

On R× S3 study instead Q0(φ,ψ) for φ, ψ satisfying

□φ+ φ = 0 with (φ, ∂tφ)|t=0 = (0,φ1),

i.e.
□R×S3φ

i + φi = Γ(φ)ijkQ0(φ
j ,φk),

where Q0(φ,ψ) = gαβ

R×S3∂αφ∂βψ.

Step 1: positive/negative frequency splitting

φ±(t, x) =
󰁛

m󰃍0

e±i(m+1)t Tr
󰀓
φ̂1(πm)πm(x)

󰀔

Step 2: spacetime FT of Q0(φ
±,ψ±)

In R1+3 this relies on “inverse” convolution formula

Ft,x(φ
±ψ±) = Ft,x(φ

±) ∗ Ft,x(ψ
±).
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□φ+ φ = 0 with (φ, ∂tφ)|t=0 = (0,φ1),

i.e.
□R×S3φ

i + φi = Γ(φ)ijkQ0(φ
j ,φk),

where Q0(φ,ψ) = gαβ

R×S3∂αφ∂βψ.

Step 1: positive/negative frequency splitting

φ±(t, x) =
󰁛

m󰃍0

e±i(m+1)t Tr
󰀓
φ̂1(πm)πm(x)

󰀔

Step 2: spacetime FT of Q0(φ
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Non-abelian step 2

In non-abelian setting for f , g : G → R one can define

(f ∗ g)(x) =
󰁝

G
f (y)g(xy−1) dµ(y).

Then the forward convolution formula

󰁦(f ∗ g)(π) = f̂ (π) ◦ ĝ(π)

holds; f̂ (π), ĝ(π) are operators.

In general there is insufficient structure on Ĝ to define f̂ ∗ ĝ ⇝ no “inverse”
convolution formula.

On R× SU(2) need to compute Ft,x(φ
±ψ±) directly: OK using inverse

convolution in R factor, schematically

Ft,x(φ
±ψ±)(πm)n =

󰁛

l

φ̂1(πl)ψ̂1(πn−l)

󰁝

SU(2)
πl ⊗ πn−l ⊗ π†

m dµ

󰁿 󰁾󰁽 󰂀
def
= (m+1)(ϖl (πm)n)pq

.

Recall πl ⊗ πn−l “smears” over a range of irreps, with probability amplitude
weights.

22 / 25



Non-abelian step 2

In non-abelian setting for f , g : G → R one can define

(f ∗ g)(x) =
󰁝

G
f (y)g(xy−1) dµ(y).

Then the forward convolution formula

󰁦(f ∗ g)(π) = f̂ (π) ◦ ĝ(π)
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holds; f̂ (π), ĝ(π) are operators.

In general there is insufficient structure on Ĝ to define f̂ ∗ ĝ ⇝ no “inverse”
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Non-abelian step 3

Step 3: Plancherel & Cauchy–Schwarz

After a calculation, must handle a Clebsch–Gordan expansion of the form

󰁛

l

(m + 1)(ϖl(πm)n)pq =
󰁛

l

φ̂1(πl)ji ψ̂1(πn−l)(q−j)(p−i)C l (n−l)
m i (p−i)C

l (n−l)
m j (q−j)

◮ fundamentally different from calculation in abelian case

◮ does not localize around a single π, even asymptotically

◮ requires estimating “matrix convolutions”

Using orthogonality of Clebsch–Gordan coefficients C, can recover a discrete
Young’s inequality for convolutions for ϖl(πm)n:

Lemma
For the matrices ϖl(πm)n there hold the estimates

󰁛

m

|||(m + 1)ϖl(πm)n|||2 󰃑 |||φ̂1(πl)|||2 |||ψ̂1(πn−l)|||2

Observation
Here

󰁓
m not

󰁓
l ⇝ loss of arbitrarily small amount of regularity.
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Further questions

This allows to define wave-Sobolev spaces Hs,b of Bourgain & Klainerman et al
on R× S3:

󰀂u󰀂Hs,b(R×S3) = 󰀂(m + 1)s+
1
2 〈(m + 1)− |n|〉b󰁨u(πm)n󰀂ℓ2mℓ2n

Compare to R1+3:

󰀂u󰀂Hs,b(R1+3) = 󰀂〈ξ〉s〈|ξ|− |τ |〉b󰁨u(τ, ξ)󰀂L2
τ,ξ

.

◮ Then main theorem amounts to Hs,b(R× S3) estimates for wave maps
◮ There exists a standard contraction mapping argument in these spaces

(Bourgain, Kenig–Ponce–Vega, Klainerman–Machedon, ...) which should
lead to just subcritical well-posedness for wave maps on R× S3

◮ Are there conformally covariant combinations of J−β0W βw which may lead
to new estimates on hyperboloids in Minkowski space?

◮ Ideas in principle extendible to more general R× G space-times where G
Lie group for equations

□φ+m2φ = ...

⇝ interaction between m2 and ∆ eigenvalues on G
◮ Is there a geometric formalism to extend ideas to YM null forms

Qαβ(φ,ψ) = ∇αφ∇βψ −∇αψ∇βφ ?
◮ Critical problem...?
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on R× S3:
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1
2 〈(m + 1)− |n|〉b󰁨u(πm)n󰀂ℓ2mℓ2n

Compare to R1+3:

󰀂u󰀂Hs,b(R1+3) = 󰀂〈ξ〉s〈|ξ|− |τ |〉b󰁨u(τ, ξ)󰀂L2
τ,ξ

.

◮ Then main theorem amounts to Hs,b(R× S3) estimates for wave maps
◮ There exists a standard contraction mapping argument in these spaces

(Bourgain, Kenig–Ponce–Vega, Klainerman–Machedon, ...) which should
lead to just subcritical well-posedness for wave maps on R× S3

◮ Are there conformally covariant combinations of J−β0W βw which may lead
to new estimates on hyperboloids in Minkowski space?

◮ Ideas in principle extendible to more general R× G space-times where G
Lie group for equations

□φ+m2φ = ...

⇝ interaction between m2 and ∆ eigenvalues on G
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Thank you!
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