# Estimates for Low Regularity Wave Maps on $\mathbb{R} \times \mathbb{S}^{3}$ 

G. Taujanskas (Cambridge)

Quantum and Classical Fields Interacting with Geometry Institut Henri Poincaré

25 March 2024

## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
> Fourier Analysis via Peter-Weyl Theory
- Method of Proof
> Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 +


## Introduction

- Preliminaries
- Classical Null Form Estimates of Klainerman-Machedon
- Main Results
- Fourier Analysis via Peter-Weyl Theory
- Method of Proof
- Concluding Remarks
- Based on arXiv:2307.13052 + .


## Preliminaries

Definition (Wave Maps on Minkowski Space)
Given a Riemannian manifold ( $M, g$ ), a function on Minkowski space $\mathbb{R}^{1+n}$

$$
\phi: \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \rightarrow M
$$

satisfies the wave map equation if

$$
\begin{equation*}
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}=\Gamma_{j k}^{i}(\phi) Q_{0}\left(\phi^{j}, \phi^{k}\right), \tag{1}
\end{equation*}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of $g$ and $\alpha$ 's are contracted using the Minkowski metric. Equation (1) is the Euler-Lagrange equation for


Lorentzian analogue of harmonic maps.

## Preliminaries

Definition (Wave Maps on Minkowski Space)
Given a Riemannian manifold ( $M, g$ ), a function on Minkowski space $\mathbb{R}^{1+n}$

$$
\phi: \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \rightarrow M
$$

satisfies the wave map equation if

$$
\begin{equation*}
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}=\Gamma_{j k}^{i}(\phi) Q_{0}\left(\phi^{j}, \phi^{k}\right), \tag{1}
\end{equation*}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of $g$ and $\alpha$ 's are contracted using the Minkowski metric. Equation (1) is the Euler-Lagrange equation for


Lorentzian analogue of harmonic maps.

## Preliminaries

Definition (Wave Maps on Minkowski Space)
Given a Riemannian manifold ( $M, g$ ), a function on Minkowski space $\mathbb{R}^{1+n}$

$$
\phi: \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \rightarrow M
$$

satisfies the wave map equation if

$$
\begin{equation*}
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}=\Gamma_{j k}^{i}(\phi) Q_{0}\left(\phi^{j}, \phi^{k}\right), \tag{1}
\end{equation*}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of $g$ and $\alpha$ 's are contracted using the Minkowski metric. Equation (1) is the Euler-Lagrange equation for

$$
L_{M}[\phi]=\int_{\mathbb{R} \times \mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}-\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} t \mathrm{~d} x .
$$

Lorentzian analogue of harmonic maps.

## Preliminaries

## Definition (Wave Maps on Minkowski Space)

Given a Riemannian manifold ( $M, g$ ), a function on Minkowski space $\mathbb{R}^{1+n}$

$$
\phi: \mathbb{R}_{t} \times \mathbb{R}_{x}^{n} \rightarrow M
$$

satisfies the wave map equation if

$$
\begin{equation*}
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}=\Gamma_{j k}^{i}(\phi) Q_{0}\left(\phi^{j}, \phi^{k}\right), \tag{1}
\end{equation*}
$$

where $\Gamma_{j k}^{i}$ are the Christoffel symbols of $g$ and $\alpha$ 's are contracted using the Minkowski metric. Equation (1) is the Euler-Lagrange equation for

$$
L_{M}[\phi]=\int_{\mathbb{R} \times \mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}-\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} t \mathrm{~d} x .
$$

Lorentzian analogue of harmonic maps.

## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
- in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
$>$ nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s)
- for wave maps on $\mathbb{R}^{1+n}$, can hope to reduce this to $s \geqslant \frac{n}{2}$, and can hope for global solutions (e.g. Christodoulou '86)


## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega....)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
$\Rightarrow$ in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
- nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay
properties than expected (Klainerman '80s)
- for wave maps on $\mathbb{R}^{1+n}$, can hope to reduce this to $s \geqslant \frac{n}{2}$, and can hope for global solutions (e.g. Christodoulou '86)


## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
$\Rightarrow$ for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
- in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
- nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s)
$\Rightarrow$ for wave maps on $\mathbb{R}^{1+n}$, can hope to reduce this to $s \geqslant \frac{n}{2}$, and can hope for global solutions (e.g. Christodoulou '86)


## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)


## $\Rightarrow$ in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81) <br> - nonlinearity $Q_{0}\left(\phi^{j} \cdot \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{a} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s) for global solutions (e.g. Christodoulou '86)

## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
- in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
$\Rightarrow$ nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s)


## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
- in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
- nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s)
$\rightarrow$ for wave maps on $\mathbb{R}^{1+n}$, can hope to reduce this to $s \geqslant \frac{n}{2}$, and can hope for global solutions (e.g. Christodoulou '86)


## Preliminaries

Wave maps:

- appear in the study of Yang-Mills \& Einstein equations (e.g. as equations for the gauge)
- nonlinear $\sigma$-models in theoretical physics, magnetism, materials...
- extremely well-studied when the background is Minkowski (Christodoulou, Kenig, Klainerman, Krieger, Lindblad, Machedon, Metcalfe, Nirenberg, Ponce, Rodnianski, Selberg, Shatah, Sideris, Sterbenz, Struwe, Tao, Tataru, Vega...)
- for general nonlinearities in $n=3$ cannot expect well-posedness unless data is in $H^{s}\left(\mathbb{R}^{3}\right) \times H^{s-1}\left(\mathbb{R}^{3}\right)$ for $s>2$ (Ponce-Sideris '93, Lindblad '93, '96)
- in general even if local solutions exist $(s>2)$, they may blow up in finite time (John '81)
- nonlinearity $Q_{0}\left(\phi^{j}, \phi^{k}\right)=\partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is "null", i.e. has better decay properties than expected (Klainerman '80s)
- for wave maps on $\mathbb{R}^{1+n}$, can hope to reduce this to $s \geqslant \frac{n}{2}$, and can hope for global solutions (e.g. Christodoulou '86)


## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :
> a natural problem is to consider initial data $\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$
and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi^{\prime}(\dot{t}, x) \longrightarrow \phi_{\lambda}(\dot{t}, x)=\phi^{\prime}(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:

$$
E[\phi]=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}+\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} x, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} E[\phi]=0 .
$$

But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\cdots$ for global existence must focus on small data

- has a conserved energy:


But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.
$\Rightarrow$ is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x)
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93) $\leadsto$ for global existence must focus on small data

- has a conserved energy:


But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data
> has a conserved energy:


But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf.
Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:

$$
E[\phi]=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}+\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} x, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} E[\phi]=0
$$

But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:


But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data


But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:

$$
E[\phi]=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}+\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} x, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} E[\phi]=0
$$

But $E[\phi]$ is "below scaling"

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:

$$
E[\phi]=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}+\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} x, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} E[\phi]=0
$$

But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Preliminaries

The wave map equation $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$ is a (nonlinear) hyperbolic PDE on $\mathbb{R}^{1+n}$ :

- a natural problem is to consider initial data

$$
\left(\phi_{0}, \phi_{1}\right) \in H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)
$$

and seek a solution $\phi \in C^{0}\left([-T, T] ; H^{s}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left([-T, T] ; H^{s-1}\left(\mathbb{R}^{n}\right)\right)$, possibly with $T=\infty$.

- is invariant with respect to the scaling

$$
\phi(t, x) \longrightarrow \phi_{\lambda}(t, x)=\phi(\lambda t, \lambda x), \quad \lambda \in \mathbb{R}
$$

$\rightsquigarrow$ self-similar blow-up solutions possible for large data (if no symmetry, cf. Christodoulou-Tahvildar-Zadeh '93)
$\rightsquigarrow$ for global existence must focus on small data

- has a conserved energy:

$$
E[\phi]=\frac{1}{2} \int_{\mathbb{R}^{n}}\left|\partial_{t} \phi\right|_{g}^{2}+\left|\nabla_{x} \phi\right|_{g}^{2} \mathrm{~d} x, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} E[\phi]=0
$$

But $E[\phi]$ is "below scaling" $\rightsquigarrow$ not useful unless $n \leqslant 2$.

## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.
Question
How much can one reduce s? The $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as
e. exponent $s=\frac{n}{2}$ is critical.
$\rightarrow$ For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
$\rightarrow$ For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
o $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
o $s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)
$\rightarrow$ For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS
of
$\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$
becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{5}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the
winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg
'95];

## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

Question
How much can one reduce $s$ ? The $H^{s}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as
 $\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$
becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];

## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
- $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small clata, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS of
$\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$
becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];


## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
$\Rightarrow$ For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
- $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
$\circ s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS of
$\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$
becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];


## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{5}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
$\circ s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS

$$
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{n} \phi^{i} \partial_{\alpha} \phi^{k}
$$

becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];

## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{5}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
- $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
$\circ s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS
$\square \phi^{i}=\Gamma^{j}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}$
becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];


## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{5}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
$\circ s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
$\circ s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS of

becomes problematic;
$\rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];


## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{5}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)},
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;
- $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
$\circ s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)
- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS of

$$
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}
$$

becomes problematic;
$\Rightarrow$ For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg 95];

## Criticality

For $s>\frac{n+2}{2}$ local well-posedness is "easy" and follows from standard energy estimates + Sobolev embedding argument.

## Question

How much can one reduce $s$ ? The $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$ norm of $\phi$ scales as

$$
\left\|\phi_{\lambda}\right\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}=\lambda^{s-\frac{n}{2}}\|\phi\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}
$$

i.e. exponent $s=\frac{n}{2}$ is critical.

- For $s>\frac{n}{2}$ can trade time of local existence against size of initial data;
- For $s \leqslant \frac{n}{2}$ the problem is non-local in time;

○ $s=\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (small data, large time)
$\circ s<\frac{n}{2}$ (small data, small time) $\Longleftrightarrow$ (large data, large time)

- For $s \leqslant \frac{n}{2}$ no Sobolev embedding $H^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow C^{0}\left(\mathbb{R}^{n}\right)$ so interpreting RHS of

$$
\square \phi^{i}=\Gamma_{j k}^{i}(\phi) \partial^{\alpha} \phi^{j} \partial_{\alpha} \phi^{k}
$$

becomes problematic;

- For $s<\frac{n}{2}$ even defining $H^{s}\left(\mathbb{R}^{n} ; M\right)$ is problematic: e.g. when $M=\mathbb{S}^{n}$, the winding number of a function in $H^{s}\left(\mathbb{R}^{n} ; \mathbb{S}^{n}\right)$ is ill-defined [Brezis-Nirenberg '95];

Major results
Theorem (D'Ancona-Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

```
Theorem
The wave map equation on Minkowski space is locally well-posed for initial
data in H}\mp@subsup{H}{}{s}(\mp@subsup{\mathbb{R}}{}{n})\times\mp@subsup{H}{}{s-1}(\mp@subsup{\mathbb{R}}{}{n})\mathrm{ for initial data in }s>\frac{n}{2}\mathrm{ .
    > Bourgain '93 (n=3), Klainerman-Machedon '95 (n\geqslant4),s> n
    - Zhou '97: }n=2,s\geqslant\frac{9}{8}\mathrm{ ,
    | Klainerman-Selberg '97: all }n\geqslant2,s>\frac{n}{2}\mathrm{ ,
    > Keel-Tao '98: n=1,s> 2
Theorem
For }n\geqslant2\mathrm{ and "reasonable" target manifolds }M\mathrm{ the wave map equation on
Minkowski space is globally ( }\Longleftrightarrow\mathrm{ locally) well-posed for small initial data in
H}\mp@subsup{\dot{H}}{}{\frac{n}{2}}(\mp@subsup{\mathbb{R}}{}{n})\times\mp@subsup{\dot{H}}{}{\frac{n}{2}-1}(\mp@subsup{\mathbb{R}}{}{n})
    - Tao '00: }n\geqslant5,M=\mp@subsup{\mathbb{S}}{}{m-1}\mathrm{ ,
    | Klainerman-Rodnianski '00: n\geqslant5, more general M,
    - Tao '01: }n\geqslant2,M=\mp@subsup{\mathbb{S}}{}{m-1}\mathrm{ ,
    - Tataru '05: n\geqslant2, more general M
    - Tao '00: }n=1,s=\frac{n}{2}\mathrm{ is ill-posed.
```

Major results
Theorem (D'Ancona-Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.
Theorem
The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

```
> Bourgain '93 (n=3), Klainerman-Machedon '95 ( n\geqslant4), s> n
- Zhou '97: }n=2,s\geqslant\frac{9}{8}\mathrm{ ,
| Klainerman-Selberg '97: all n\geqslant2,s> n
> Keel-Tao '98: n=1, s> n
Theorem
For }n\geqslant2\mathrm{ and "reasonable" target manifolds }M\mathrm{ the wave map equation on
Minkowski space is globally ( }\Longleftrightarrow\mathrm{ locally) well-posed for small initial data in
H}\mp@subsup{\dot{H}}{}{\frac{n}{2}}(\mp@subsup{\mathbb{R}}{}{n})\times\mp@subsup{\dot{H}}{}{\frac{n}{2}-1}(\mp@subsup{\mathbb{R}}{}{n}
- Tао '00: }n\geqslant5,M=\mp@subsup{\mathbb{S}}{}{m-1}\mathrm{ ,
> Klainerman-Rodnianski '00: n\geqslant5, more general M,
- Tao '01: }n\geqslant2,M=\mp@subsup{\mathbb{S}}{}{m-1
- Tataru '05: n\geqslant2, more general M
> Tao '00: }n=1,s=\frac{n}{2}\mathrm{ is ill-posed.
```

Major results
Theorem (D'Ancona-Georgiev '05)
The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.
Theorem
The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,

```
    * Zhou
```

    - Klainerman-Selberg '97: all \(n \geqslant 2, s>\frac{n}{2}\),
    - Keel-Tao '98: \(n=1, s>\frac{n}{2}\).
    Theorem
    For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on
Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in
$\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$
- Tataru '05: $n \geqslant 2$, more general $M$
- Tao '00: $n=1, s=\frac{n}{2}$ is ill-posed.


## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

Theorem
The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,

```
> Keel-Tao '98: n=1, s> n
```

Theorem
For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally $(\Longleftrightarrow$ locally) well-posed for small initial data in $H^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times H^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$
- Tataru '05: $n \geqslant 2$, more general $M$
- Tao '00: $n=1, s=\frac{n}{2}$ is ill-posed.


## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.
Theorem
The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,

Theorem
For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally $(\longleftrightarrow$ locally $)$ well-posed for small initial data in $H^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times H^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$.
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$
- Tataru '05: $n \geqslant 2$, more general $M$
- Tao '00: $n=1, s=\frac{n}{2}$ is ill-posed.


## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.
Theorem
The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.



## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.
$\begin{aligned} & \text { Tao '00: } n \geqslant 5, M=\mathbb{S}^{m-1}, \\ & \text { - Klainerman-Rodnianski '00: } n \geqslant 5 \text {, more general } M \text {, } \\ & \text { - } \text { Tao ' }^{\prime} 01: n \geqslant 2, M=\mathbb{S}^{m-1}, \\ & \text { - Tataru '05: } n \geqslant 2, \text { more general } M \\ &> \text { Tao '00: } n=1, s=\frac{n}{2} \text { is ill-posed. }\end{aligned}$

## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,



## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,


## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$,



## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$,
- Tataru '05: $n \geqslant 2$, more general $M$


## Major results

## Theorem (D'Ancona-Georgiev '05)

The wave map equation on Minkowski space is ill-posed with data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for $s<\frac{n}{2}$.

## Theorem

The wave map equation on Minkowski space is locally well-posed for initial data in $H^{s}\left(\mathbb{R}^{n}\right) \times H^{s-1}\left(\mathbb{R}^{n}\right)$ for initial data in $s>\frac{n}{2}$.

- Bourgain '93 $(n=3)$, Klainerman-Machedon '95 $(n \geqslant 4), s>\frac{n}{2}$,
- Zhou '97: $n=2, s \geqslant \frac{9}{8}$,
- Klainerman-Selberg '97: all $n \geqslant 2, s>\frac{n}{2}$,
- Keel-Tao '98: $n=1, s>\frac{n}{2}$.


## Theorem

For $n \geqslant 2$ and "reasonable" target manifolds $M$ the wave map equation on Minkowski space is globally ( $\Longleftrightarrow$ locally) well-posed for small initial data in $\dot{H}^{\frac{n}{2}}\left(\mathbb{R}^{n}\right) \times \dot{H}^{\frac{n}{2}-1}\left(\mathbb{R}^{n}\right)$.

- Tao '00: $n \geqslant 5, M=\mathbb{S}^{m-1}$,
- Klainerman-Rodnianski '00: $n \geqslant 5$, more general $M$,
- Tao '01: $n \geqslant 2, M=\mathbb{S}^{m-1}$,
- Tataru '05: $n \geqslant 2$, more general $M$
- Tao '00: $n=1, s=\frac{n}{2}$ is ill-posed.


## Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\phi^{ \pm} \mathscr{\mathscr { F }}^{ \pm} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 \text { ? }
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(c f . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \operatorname{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

$>$ Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(c f . \quad \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$

- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \operatorname{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(\mathrm{cf}. . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \operatorname{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(\mathrm{cf} . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \mathrm{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(\mathrm{cf} . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \operatorname{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

## Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(\mathrm{cf}. . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \mathrm{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

## Open questions: scattering

- Related to global existence is the question of scattering: do there exist scattering states $\left.\phi^{ \pm}\right|_{\mathscr{I}} \in \mathcal{H}$ in some space $\mathcal{H}$ such that

$$
\lim _{t \pm \infty}\left\|\phi(t)-\left.\phi^{ \pm}\right|_{\mathscr{I}}\right\|_{\mathcal{H}}=0 ?
$$

- Tataru '01: scattering in Besov spaces $\dot{B}_{3 / 2}^{2,1} \times \dot{B}_{1 / 2}^{2,1}$ and $\dot{H}^{s} \times \dot{H}^{s-1}$ for $s>\frac{3}{2}\left(\mathrm{cf} . \dot{B}_{3 / 2}^{2,1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{\infty}\left(\mathbb{R}^{3}\right)\right)$
- Geba, Nakanishi, Rajeev, da Silva, ... '11: scattering in Besov spaces for "Skyrme wave maps"
- AFAIK scattering in $\dot{H}^{3 / 2} \times \dot{H}^{1 / 2}$ open
- For GR, would like a geometric interpretation of scattering as a characteristic initial value problem
- Would also like well-posedness results on more general backgrounds, i.e. $\phi:(N, h) \rightarrow(M, g)$ critical points of

$$
\int_{N} \nabla_{\mu} \phi^{\alpha} \nabla_{\nu} \phi^{\beta} g_{\alpha \beta} h^{\mu \nu} \operatorname{dvol}_{N} \Longleftrightarrow \square_{h} \phi=\Gamma_{g}(\phi) Q_{0}^{h}(\phi, \phi)
$$

for $(N, h)$ a Lorentzian manifold.

Open questions: curved backgrounds

Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}$, $h$ a perturbation of $\eta$,
- Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}$ - ẽ, ẽ a perturbation of Euclidean metric,
- Lawrie-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times \mathbb{H}^{n}$,


## Conjecture

The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$

$$
\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)
$$

is locally well-posed for small initial data in $H^{s}\left(\mathbb{S}^{3}\right) \times H^{s-1}\left(\mathbb{S}^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.
$>$ Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.

Open questions: curved backgrounds

Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}, h$ a perturbation of $\eta$,
$\Rightarrow$ Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}-\tilde{e}$, ẽ a perturbation of Euclidean metric,
- Lawric-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times H^{n}$,

Conjecture
The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$

$$
\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)
$$

is locally well-posed for small initial data in $H^{s}\left(\mathbb{S}^{3}\right) \times H^{s-1}\left(\mathbb{S}^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.
$>$ Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.

Open questions: curved backgrounds
Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}, h$ a perturbation of $\eta$,
- Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}-\tilde{e}$, ẽ a perturbation of Euclidean metric,
- Lawrie-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times \mathbb{H}^{n}$,

Conjecture
The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$ $\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)$
is locally well-posed for small initial data in $\boldsymbol{H}^{5}\left(\mathbb{S}^{3}\right) \times \boldsymbol{H}^{-1}\left(\mathbb{S}^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.

- Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.

Open questions: curved backgrounds
Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}, h$ a perturbation of $\eta$,
- Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}-\tilde{e}$, ẽ a perturbation of Euclidean metric,
- Lawrie-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times \mathbb{H}^{n}$,

Conjecture
The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$ $\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)$
is locally well-posed for small initial data in $H^{s}\left(\mathbb{S}^{3}\right) \times H^{5-1}\left(S^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.

- Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.


## Open questions: curved backgrounds

Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}, h$ a perturbation of $\eta$,
- Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}-\tilde{e}, \tilde{e}$ a perturbation of Euclidean metric,
- Lawrie-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times \mathbb{H}^{n}$,


## Conjecture

The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$

$$
\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)
$$

is locally well-posed for small initial data in $H^{s}\left(\mathbb{S}^{3}\right) \times H^{s-1}\left(\mathbb{S}^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.
> Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.

## Open questions: curved backgrounds

Some previous work on curved spacetimes:

- Shatah-Struwe '02: $N=\mathbb{R} \times \mathbb{R}^{n}$ flat, $n \geqslant 4, s=\frac{n}{2}$, moving frame approach,
- Geba '09: $3 \leqslant n \leqslant 5, s>\frac{n}{2}, N=\mathbb{R} \times \mathbb{R}^{n}, h$ a perturbation of $\eta$,
- Lawrie '12: $N=\mathbb{R} \times \mathbb{R}^{4}, s=\frac{n}{2}, h=d t^{2}-\tilde{e}, \tilde{e}$ a perturbation of Euclidean metric,
- Lawrie-Oh-Shahshahani '16: $n \geqslant 4, s=\frac{n}{2}, N=\mathbb{R} \times \mathbb{H}^{n}$,


## Conjecture

The wave map equation on $\mathbb{R} \times \mathbb{S}^{3}$

$$
\square \phi+\phi=\Gamma(\phi) Q_{0}(\phi, \phi)
$$

is locally well-posed for small initial data in $H^{s}\left(\mathbb{S}^{3}\right) \times H^{s-1}\left(\mathbb{S}^{3}\right)$ for $s>\frac{3}{2}$, or $\dot{H}^{3 / 2}\left(\mathbb{S}^{3}\right) \times \dot{H}^{1 / 2}\left(\mathbb{S}^{3}\right)$.

- Need "null form estimates" on $\mathbb{R} \times \mathbb{S}^{3}$.


## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$,
$\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate
$\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
- similar estimates also hold for the "Yang-Mills/MKG" null forms

$$
Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\beta} \phi \nabla_{\alpha} \psi
$$

$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao,
> forthcoming work on $\mathbb{R} \times \mathbb{S}^{3}$ with J.-P. Nicolas

## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$,
$\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}
$$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
- similar estimates also hold for the "Yang-Mills/MKG" null forms

$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao, - forthcoming work on $\mathbb{R} \times \mathbb{S}^{3}$ with J.-P. Nicolas


## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$, $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}
$$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
> similar estimates also hold for the "Yang-Mills/MKG" null forms
$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao,


## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$, $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}
$$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
- similar estimates also hold for the "Yang-Mills/MKG" null forms
$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao, $\rightarrow$ forthcoming work on $\mathbb{R} \times \mathbb{S}^{3}$ with J.-P. Nicolas


## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$, $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}
$$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
- similar estimates also hold for the "Yang-Mills/MKG" null forms

$$
Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\beta} \phi \nabla_{\alpha} \psi
$$

$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao, ...

## Null Form Estimates

The key nonlinearity to understand is

$$
Q_{0}(\phi, \psi)=\partial_{\alpha} \phi \partial^{\alpha} \psi=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi
$$

Breakthrough result of Klainerman-Machedon ('95) relied on:
Theorem (Klainerman-Machedon, '93)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$, $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ the null form $Q_{0}(\phi, \psi)$ satisfies the estimate

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{4}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{R}^{3}\right) \oplus L^{2}\left(\mathbb{R}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{R}^{3}\right) \oplus H^{1}\left(\mathbb{R}^{3}\right)}
$$

- loosely, replaces the forbidden $L_{t}^{2} L_{x}^{\infty}$ Strichartz estimate in $n=3$
- gain of $\approx 1$ derivative
- similar estimates also hold for the "Yang-Mills/MKG" null forms

$$
Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\beta} \phi \nabla_{\alpha} \psi
$$

$\rightsquigarrow$ finite energy well-posedness of the Yang-Mills and MKG equations (Klainerman-Machedon '95, Selberg-Tesfahun '10, Oh '15), also Tao, Keel-Roy-Tao, ...

- forthcoming work on $\mathbb{R} \times \mathbb{S}^{3}$ with J.-P. Nicolas


## Null Form Estimates

"Deeper" estimates to get close to criticality:
Theorem (Foschi-Klainerman, '00)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and
$\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ there holds

$$
\begin{aligned}
\left\|D^{\beta_{0}} D_{+}^{\beta_{+}} D_{-}^{\beta-} Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{1+n}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{1}-1}\left(\mathbb{R}^{n}\right)} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{2}-1}\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

for any $\alpha_{i}, \beta_{0}, \beta_{ \pm}$satisfying


$\alpha_{1}+\alpha_{2} \geqslant \frac{1}{2}, \quad \alpha_{i} \leqslant \beta_{-}+\frac{n+1}{2}$,

$$
\left(\alpha_{1}+\alpha_{2}, \beta_{-}\right) \neq\left(\frac{1}{2},-\frac{n+1}{4}\right), \quad\left(\alpha_{i}, \beta_{-}\right) \neq\left(\frac{n+1}{4},-\frac{n+1}{4}\right)
$$

where $D, D_{+}, D_{-}$are $\psi D$ Os with symbols $|\xi|,|\tau|+|\xi|$ and $||\tau|-|\xi||$ respectively. These estimates are sharp.

## Null Form Estimates

"Deeper" estimates to get close to criticality:
Theorem (Foschi-Klainerman, '00)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ there holds

for any $\alpha_{i}, \beta_{0}, \beta_{ \pm}$satisfying


## Null Form Estimates

"Deeper" estimates to get close to criticality:
Theorem (Foschi-Klainerman, '00)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ there holds

$$
\begin{aligned}
\left\|D^{\beta_{0}} D_{+}^{\beta_{+}} D_{-}^{\beta_{-}} Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{1+n}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{1}-1}\left(\mathbb{R}^{n}\right)} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{2}-1}\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

for any $\alpha_{i}, \beta_{0}, \beta_{ \pm}$satisfying

$$
\begin{aligned}
\beta_{0}+\beta_{+}+\beta_{-}=\alpha_{1}+\alpha_{2}-\frac{n+3}{2}, & \beta_{-} \geqslant-\frac{n+1}{4}, \quad \beta_{0}>-\frac{n-1}{2} \\
\alpha_{1}+\alpha_{2} \geqslant \frac{1}{2}, \quad & \alpha_{i} \leqslant \beta_{-}+\frac{n+1}{2}, \\
\left(\alpha_{1}+\alpha_{2}, \beta_{-}\right) \neq\left(\frac{1}{2},-\frac{n+1}{4}\right), & \left(\alpha_{i}, \beta_{-}\right) \neq\left(\frac{n+1}{4},-\frac{n+1}{4}\right)
\end{aligned}
$$

where $D, D_{+}, D_{-}$are $\Psi D O$ s with symbols $|\xi|,|\tau|+|\xi|$ and $\| \tau|-|\xi||$ respectively.

## Null Form Estimates

"Deeper" estimates to get close to criticality:
Theorem (Foschi-Klainerman, '00)
For $\phi, \psi$ satisfying $\square \phi=0=\square \psi$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ there holds

$$
\begin{aligned}
\left\|D^{\beta_{0}} D_{+}^{\beta_{+}} D_{-}^{\beta_{-}} Q_{0}(\phi, \psi)\right\|_{L^{2}\left(\mathbb{R}^{1+n}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{1}-1}\left(\mathbb{R}^{n}\right)} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}\left(\mathbb{R}^{n}\right) \oplus H^{\alpha_{2}-1}\left(\mathbb{R}^{n}\right)}}
\end{aligned}
$$

for any $\alpha_{i}, \beta_{0}, \beta_{ \pm}$satisfying

$$
\begin{aligned}
\beta_{0}+\beta_{+}+\beta_{-}=\alpha_{1}+\alpha_{2}-\frac{n+3}{2}, & \beta_{-} \geqslant-\frac{n+1}{4}, \quad \beta_{0}>-\frac{n-1}{2} \\
\alpha_{1}+\alpha_{2} \geqslant \frac{1}{2}, \quad & \alpha_{i} \leqslant \beta_{-}+\frac{n+1}{2}, \\
\left(\alpha_{1}+\alpha_{2}, \beta_{-}\right) \neq\left(\frac{1}{2},-\frac{n+1}{4}\right), & \left(\alpha_{i}, \beta_{-}\right) \neq\left(\frac{n+1}{4},-\frac{n+1}{4}\right)
\end{aligned}
$$

where $D, D_{+}, D_{-}$are $\Psi D O$ s with symbols $|\xi|,|\tau|+|\xi|$ and $\| \tau|-|\xi||$ respectively. These estimates are sharp.

## Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge, Georgiev-Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev-Schirmer '93) For $\square \phi=0=\square \psi$ on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left([0, \varepsilon] \times \mathbb{S}^{3}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{S}^{3}\right) \oplus L^{2}\left(\mathbb{S}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{S}^{3}\right) \oplus H^{1}\left(\mathbb{S}^{3}\right)}
$$

> Proof uses FIOs to localize and flatten the metric and then Klainerman \&
> Machedon's original techniques. (Sogge treats more general compact manifolds $K$ in place of $\mathbb{S}^{3}$ of any dimension, but no estimates with multipliers.)

Question
Do Foschi-Klainerman estimates hold on curved backgrounds?

## Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge, Georgiev-Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev-Schirmer '93) For $\square \phi=0=\square \psi$ on $\mathbb{R} \times \mathbb{S}^{3}$,
$\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left([0, \varepsilon] \times \Omega^{3}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(S^{3}\right) \oplus L^{2}\left(S^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(S^{3}\right) \oplus H^{1}\left(S^{3}\right)}$.

> Proof uses FIOs to localize and flatten the metric and then Klainerman \& Machedon's original techniques. (Sogge treats more general compact manifolds $K$ in place of $\mathbb{S}^{3}$ of any dimension, but no estimates with multipliers.)

Question
Do Foschi-Klainerman estimates hold on curved backgrounds?

## Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge, Georgiev-Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev-Schirmer '93)
For $\square \phi=0=\square \psi$ on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left([0, \varepsilon] \times \mathbb{S}^{3}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{S}^{3}\right) \oplus L^{2}\left(\mathbb{S}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{S}^{3}\right) \oplus H^{1}\left(\mathbb{S}^{3}\right)}
$$

> Proof uses FIOs to localize and flatten the metric and then Klainerman \& Machedon's original techniques. (Sogge treats more general compact manifolds $K$ in place of $\mathbb{S}^{3}$ of any dimension, but no estimates with multipliers.)

Question
Do Foschi-Klainerman estimates hold on curved backgrounds?

## Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge, Georgiev-Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev-Schirmer '93)
For $\square \phi=0=\square \psi$ on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left([0, \varepsilon] \times \mathbb{S}^{3}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{S}^{3}\right) \oplus L^{2}\left(\mathbb{S}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{S}^{3}\right) \oplus H^{1}\left(\mathbb{S}^{3}\right)}
$$

Proof uses FIOs to localize and flatten the metric and then Klainerman \& Machedon's original techniques. (Sogge treats more general compact manifolds $K$ in place of $\mathbb{S}^{3}$ of any dimension, but no estimates with multipliers.)

Question
Do Foschi-Klainerman estimates hold on curved backgrounds?

## Curved spacetimes

For curved spacetimes less is known. Basic estimate was obtained by Sogge, Georgiev-Schirmer, Sogge-Smith, Tataru.

Theorem (Sogge '93, Georgiev-Schirmer '93)
For $\square \phi=0=\square \psi$ on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\left\|Q_{0}(\phi, \psi)\right\|_{L^{2}\left([0, \varepsilon] \times \mathbb{S}^{3}\right)} \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{1}\left(\mathbb{S}^{3}\right) \oplus L^{2}\left(\mathbb{S}^{3}\right)}\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{2}\left(\mathbb{S}^{3}\right) \oplus H^{1}\left(\mathbb{S}^{3}\right)}
$$

Proof uses FIOs to localize and flatten the metric and then Klainerman \& Machedon's original techniques. (Sogge treats more general compact manifolds $K$ in place of $\mathbb{S}^{3}$ of any dimension, but no estimates with multipliers.)

## Question

Do Foschi-Klainerman estimates hold on curved backgrounds?

## Main theorem

Theorem (T. '23/'24)
For free waves $\phi, \psi$ satisfying

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi+\phi=0=\square_{\mathbb{R} \times \mathbb{S}^{3}} \psi+\psi
$$

with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ on $\mathbb{R} \times \mathbb{S}^{3}$ the estimate

$$
\begin{aligned}
\left\|J^{\beta_{0}} W^{\beta_{w}} Q_{0}(\phi, \psi)\right\|_{L^{2}\left([-\pi, \pi] \times \mathbb{S}^{3}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}}\left(\mathbb{S}^{3}\right) \oplus H^{\alpha_{1}-1}\left(\mathbb{S}^{3}\right)} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}}\left(\mathbb{S}^{3}\right) \oplus H^{\alpha_{2}-1}\left(\mathbb{S}^{3}\right)}
\end{aligned}
$$

where $J=\left(1-\Delta_{\mathbb{S}^{3}}\right)^{1 / 2}, W=\left(2+\square_{\mathbb{R} \times \mathbb{S}^{3}}\right)$, provided*

$$
\begin{array}{rlrl}
\alpha_{1}+\alpha_{2} & >3+2 \beta_{w}+\beta_{0}, & & \alpha_{1}+\alpha_{2} \geqslant 3+2 \beta_{w} \\
\alpha_{1} \geqslant 1+\beta_{w}+\beta_{0}, & & \alpha_{2} \geqslant 1+\beta_{w}+\beta_{0} \\
\beta_{w} \geqslant-1, & & -3 / 2-2 \beta_{w} \leqslant \beta_{0} \leqslant 1 / 2
\end{array}
$$

## Main theorem

Theorem (T. '23/'24)
For free waves $\phi, \psi$ satisfying

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi+\phi=0=\square_{\mathbb{R} \times \mathbb{S}^{3}} \psi+\psi
$$

with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ on $\mathbb{R} \times \mathbb{S}^{3}$ the estimate

$$
\begin{aligned}
\left\|J^{\beta_{0}} W^{\beta_{w}} Q_{0}(\phi, \psi)\right\|_{L^{2}\left([-\pi, \pi] \times S^{3}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}\left(S^{3}\right) \oplus H^{\alpha_{1}-1}\left(S^{3}\right)}} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}\left(S^{3}\right) \oplus H^{\alpha_{2}-1}\left(S^{3}\right)}},
\end{aligned}
$$

where $J=\left(1-\Delta_{\mathbb{S}^{3}}\right)^{1 / 2}, W=\left(2+\square_{\mathbb{R} \times \mathbb{S}^{3}}\right)$, provided ${ }^{*}$

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & >3+2 \beta_{w}+\beta_{0}, & & \alpha_{1}+\alpha_{2} \geqslant 3+2 \beta_{w}, \\
\alpha_{1} & \geqslant 1+\beta_{w}+\beta_{0}, & & \alpha_{2} \geqslant 1+\beta_{w}+\beta_{0}, \\
\beta_{w} & \geqslant-1, & & -3 / 2-2 \beta_{w} \leqslant \beta_{0} \leqslant 1 / 2 .
\end{aligned}
$$

## Main theorem

Theorem (T. '23/'24)
For free waves $\phi, \psi$ satisfying

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi+\phi=0=\square_{\mathbb{R} \times \mathbb{S}^{3}} \psi+\psi
$$

with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(\phi_{0}, \phi_{1}\right)$ and $\left.\left(\psi, \partial_{t} \psi\right)\right|_{t=0}=\left(\psi_{0}, \psi_{1}\right)$ on $\mathbb{R} \times \mathbb{S}^{3}$ the estimate

$$
\begin{aligned}
\left\|J^{\beta_{0}} W^{\beta_{w}} Q_{0}(\phi, \psi)\right\|_{L^{2}\left([-\pi, \pi] \times S^{3}\right)} & \lesssim\left\|\left(\phi_{0}, \phi_{1}\right)\right\|_{H^{\alpha_{1}\left(S^{3}\right) \oplus H^{\alpha_{1}-1}\left(S^{3}\right)}} \\
& \times\left\|\left(\psi_{0}, \psi_{1}\right)\right\|_{H^{\alpha_{2}\left(S^{3}\right) \oplus H^{\alpha_{2}-1}\left(S^{3}\right)}},
\end{aligned}
$$

where $J=\left(1-\Delta_{\mathbb{S}^{3}}\right)^{1 / 2}, W=\left(2+\square_{\mathbb{R} \times \mathbb{S}^{3}}\right)$, provided ${ }^{*}$

$$
\begin{aligned}
\alpha_{1}+\alpha_{2} & >3+2 \beta_{w}+\beta_{0}, & & \alpha_{1}+\alpha_{2} \geqslant 3+2 \beta_{w}, \\
\alpha_{1} & \geqslant 1+\beta_{w}+\beta_{0}, & & \alpha_{2} \geqslant 1+\beta_{w}+\beta_{0}, \\
\beta_{w} & \geqslant-1, & & -3 / 2-2 \beta_{w} \leqslant \beta_{0} \leqslant 1 / 2 .
\end{aligned}
$$

## Cancellations in Fourier space

Key observation in $\mathbb{R}^{3}$ : for free waves $\phi, \psi$ the spacetime Fourier symbol of $Q_{0}(\phi, \psi)=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi$ is

$$
q_{0}^{ \pm}(\eta, \zeta)= \pm|\eta \| \zeta|-\eta \cdot \zeta
$$

which vanishes when $\eta$ and $\zeta$ are parallel. Captures cancellations in $Q_{0}$ between parallel waves. Classical proof of null form estimates goes in 3 steps:

Step 1: positive/negative frequency splitting
For $\square \phi=0$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right)$ the solution is

$$
\hat{\phi}(t, \xi)=\frac{\sin (|\xi| t)}{|\xi|} \hat{\phi}_{1}(\xi)=\frac{1}{2 i}\left(\hat{\phi}^{+}(t, \xi)-\hat{\phi}^{-}(t, \xi)\right)
$$

where

$$
\phi^{ \pm}(t, x)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{ \pm i t|\xi|+i x \cdot \xi}}{|\xi|} \hat{\phi}_{1}(\xi) \mathrm{d} \xi
$$

By bilinearity, enough to understand $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$.

## Cancellations in Fourier space

Key observation in $\mathbb{R}^{3}$ : for free waves $\phi, \psi$ the spacetime Fourier symbol of $Q_{0}(\phi, \psi)=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi$ is

$$
q_{0}^{ \pm}(\eta, \zeta)= \pm|\eta||\zeta|-\eta \cdot \zeta
$$

which vanishes when $\eta$ and $\zeta$ are parallel. Captures cancellations in $Q_{0}$ between parallel waves.

Step 1: positive/negative frequency splitting
For $\square \phi=0$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right)$ the solution is

$$
\hat{\phi}(t, \xi)=\frac{\sin (|\xi| t)}{|\xi|} \hat{\phi}_{1}(\xi)=\frac{1}{2 i}\left(\hat{\phi}^{+}(t, \xi)-\hat{\phi}^{-}(t, \xi)\right)
$$

where

$$
\phi^{ \pm}(t, x)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{ \pm i t|\xi|+i x \cdot \xi}}{|\xi|} \hat{\phi}_{1}(\xi) \mathrm{d} \xi
$$

By bilinearity, enough to understand $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$.

## Cancellations in Fourier space

Key observation in $\mathbb{R}^{3}$ : for free waves $\phi, \psi$ the spacetime Fourier symbol of $Q_{0}(\phi, \psi)=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi$ is

$$
q_{0}^{ \pm}(\eta, \zeta)= \pm|\eta \||\zeta|-\eta \cdot \zeta,
$$

which vanishes when $\eta$ and $\zeta$ are parallel. Captures cancellations in $Q_{0}$ between parallel waves. Classical proof of null form estimates goes in 3 steps:

Step 1: positive/negative frequency splitting
For $\square \phi=0$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right)$ the solution is

$$
\hat{\phi}(t, \xi)=\frac{\sin (|\xi| t)}{|\xi|} \hat{\phi}_{1}(\xi)=\frac{1}{2 i}\left(\hat{\phi}^{+}(t, \xi)-\hat{\phi}^{-}(t, \xi)\right)
$$

where

$$
\phi^{ \pm}(t, x)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{ \pm i t|\xi|+i x \times \xi}}{|\xi|} \hat{\phi}_{1}(\xi) \mathrm{d} \xi
$$

By bilinearity, enough to understand $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$.

## Cancellations in Fourier space

Key observation in $\mathbb{R}^{3}$ : for free waves $\phi, \psi$ the spacetime Fourier symbol of $Q_{0}(\phi, \psi)=\partial_{t} \phi \partial_{t} \psi-\nabla_{x} \phi \cdot \nabla_{x} \psi$ is

$$
q_{0}^{ \pm}(\eta, \zeta)= \pm|\eta \| \zeta|-\eta \cdot \zeta
$$

which vanishes when $\eta$ and $\zeta$ are parallel. Captures cancellations in $Q_{0}$ between parallel waves. Classical proof of null form estimates goes in 3 steps:

## Step 1: positive/negative frequency splitting

For $\square \phi=0$ with data $\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right)$ the solution is

$$
\hat{\phi}(t, \xi)=\frac{\sin (|\xi| t)}{|\xi|} \hat{\phi}_{1}(\xi)=\frac{1}{2 i}\left(\hat{\phi}^{+}(t, \xi)-\hat{\phi}^{-}(t, \xi)\right)
$$

where

$$
\phi^{ \pm}(t, x)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{e^{ \pm i t|\xi|+i x \cdot \xi}}{|\xi|} \hat{\phi}_{1}(\xi) \mathrm{d} \xi
$$

By bilinearity, enough to understand $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$.

## Cancellations in Fourier space

Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.
Step 3: Planchere' a Cauchy-Schwarz

$$
\begin{aligned}
\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{t, x}^{4}\right)}^{2} & \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{\tau, \xi}^{4}\right)}^{2} \\
& \lesssim \int_{\mathbb{R}^{3}} \mathrm{~d} \xi \int_{0}^{\infty} \mathrm{d} \alpha \int_{\mathbb{S}^{2}} \mathrm{~d}^{2} \omega \alpha^{4}\left|\hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right)\right|^{2}\left|\hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right)\right|^{2} \\
& \lesssim \int_{\mathbb{R}^{3}} \mathrm{~d} \xi \int_{\mathbb{R}^{3}} \mathrm{~d} \xi^{\prime}\left|\xi^{\prime}\right|^{2}\left|\hat{\phi}_{1}\left(\xi^{\prime}\right)\right|^{2}\left|\hat{\psi}_{1}\left(\xi-\xi^{\prime}\right)\right|^{2} \\
& \lesssim\left\|\phi_{1}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}\left\|\psi_{1}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} .
\end{aligned}
$$

Cancellations in Fourier space
Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.
Step 3: Planchere' a Cauchy-Schwarz

$$
\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{t, x}^{4}\right)}^{2} \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{\tau, \xi}^{4}\right)}^{2}
$$



Cancellations in Fourier space
Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.
Step 3: Plancherel \& Cauchy-Schwarz

$$
\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{t, x}^{4}\right)}^{2} \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{\tau, \xi}^{4}\right)}^{2}
$$


$\lesssim \int_{\mathbb{R}^{3}} \mathrm{~d} \xi \int_{\mathbb{R}^{3}} \mathrm{~d} \xi^{\prime}\left|\xi^{\prime}\right|^{2}\left|\hat{\phi}_{1}\left(\xi^{\prime}\right)\right|^{2}\left|\hat{\psi}_{1}\left(\xi-\xi^{\prime}\right)\right|^{2}$
$\lesssim\left\|\phi_{1}\right\|_{H^{1}(\mathbb{P} 3)}^{2}\left\|\psi_{1}\right\|_{12(\mathbb{\mathbb { R }} 3)}^{2}$.

Cancellations in Fourier space

## Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$

Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.
Step 3: Plancherel \& Cauchy-Schwarz

$\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{t, x}^{4}\right)}^{2} \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{T, \xi}^{4}\right)}^{2}$

$\lesssim\left\|\phi_{1}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}\left\|\psi_{1}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}$.

Cancellations in Fourier space

## Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$

Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.

## Step 3: Plancherel \& Cauchy-Schwarz

$\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{t, x}^{4}\right)}^{2} \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{T, \xi}^{4}\right)}^{2}$

$\lesssim\left\|\phi_{1}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}\left\|\psi_{1}\right\|_{L^{( }\left(\mathbb{R}^{3}\right)}^{2}$.

## Cancellations in Fourier space

## Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$

Using $2 Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)=\square\left(\phi^{ \pm} \psi^{ \pm}\right)$, the inverse convolution formula gives

$$
\begin{aligned}
\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)(\tau, \xi) & =\frac{1}{2}\left(\tau^{2}-|\xi|^{2}\right) \mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) \\
& =\pi^{2} \int_{\mathbb{S}^{2}} \alpha^{2} \hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right) \hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right) \mathrm{d}^{2} \omega,
\end{aligned}
$$

where $\alpha=\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}$.

## Step 3: Plancherel \& Cauchy-Schwarz

$$
\begin{aligned}
\left\|Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right\|_{L^{2}\left(\mathbb{R}_{R}^{4}, x\right)}^{2} & \simeq\left\|\mathcal{F}_{t, x}\left(Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)\right)\right\|_{L^{2}\left(\mathbb{R}_{T}^{4}, \xi\right)}^{2} \\
& \lesssim \int_{\mathbb{R}^{3}} \mathrm{~d} \xi \int_{0}^{\infty} \mathrm{d} \alpha \int_{\mathbb{S}^{2}} \mathrm{~d}^{2} \omega \alpha^{4}\left|\hat{\phi}_{1}\left(\frac{\alpha}{2} \omega\right)\right|^{2}\left|\hat{\psi}_{1}\left(\xi-\frac{\alpha}{2} \omega\right)\right|^{2} \\
& \lesssim \int_{\mathbb{R}^{3}} \mathrm{~d} \xi \int_{\mathbb{R}^{3}} \mathrm{~d} \xi^{\prime}\left|\xi^{\prime}\right|^{2}\left|\hat{\phi}_{1}\left(\xi^{\prime}\right)\right|^{2}\left|\hat{\psi}_{1}\left(\xi-\xi^{\prime}\right)\right|^{2} \\
& \lesssim\left\|\phi_{1}\right\|_{H^{1}\left(\mathbb{R}^{3}\right)}^{2}\left\|\psi_{1}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} .
\end{aligned}
$$

## Global method on $\mathbb{R} \times \mathbb{S}^{3}$

Observation
Using $\mathbb{S}^{3} \simeq \operatorname{SU}(2)$, may try to replicate the method on $\mathbb{R} \times \operatorname{SU}(2)$ by exploiting global Lie group structure.

Very brief recap of Peter-Weyl theory
G a compact Lie groun.
Definition
The unitary dual $\hat{G}$ of $G$ is the set of equivalence classes of unitary irreducible representations of G .

Definition
Let $f \in L^{1}(\mathrm{G})$. For each $\pi \in \hat{\mathrm{G}}$ the Fourier coefficient $\hat{f}(\pi)$ is the operator

$$
\hat{f}(\pi)=\int_{G} f(g) \pi\left(g^{-1}\right) d \mu(g) .
$$

## Global method on $\mathbb{R} \times \mathbb{S}^{3}$

Observation
Using $\mathbb{S}^{3} \simeq \operatorname{SU}(2)$, may try to replicate the method on $\mathbb{R} \times \operatorname{SU}(2)$ by exploiting global Lie group structure. $\operatorname{SU}(2)$ non-abelian, so no Pontryagin duality; need Peter-Weyl theory.

Very brief recap of Peter-Weyl theory
G a compact Lie group.
Definition
The unitary dual $\hat{\mathrm{G}}$ of G is the set of equivalence classes of unitary irreducible representations of G .

Definition
Let $f \in L^{1}(\mathrm{G})$. For each $\pi \in \hat{\mathrm{G}}$ the Fourier coefficient $\hat{f}(\pi)$ is the operator

$$
\hat{f}(\pi)=\int_{G} f(g) \pi\left(g^{-1}\right) \mathrm{d} \mu(g) .
$$

## Global method on $\mathbb{R} \times \mathbb{S}^{3}$

Observation
Using $\mathbb{S}^{3} \simeq \operatorname{SU}(2)$, may try to replicate the method on $\mathbb{R} \times \operatorname{SU}(2)$ by exploiting global Lie group structure. $\operatorname{SU}(2)$ non-abelian, so no Pontryagin duality; need Peter-Weyl theory.

Very brief recap of Peter-Weyl theory
G a compact Lie group.
Definition
The unitary dual $\hat{G}$ of $G$ is the set of equivalence classes of unitary irreducible representations of G .

Definition
Let $f \in L^{1}(\mathrm{G})$. For each $\pi \in \hat{\mathrm{G}}$ the Fourier coefficient $\hat{f}(\pi)$ is the operator

$$
\hat{f}(\pi)=\int_{G} f(g) \pi\left(g^{-1}\right) d \mu(g)
$$

## Global method on $\mathbb{R} \times \mathbb{S}^{3}$

Observation
Using $\mathbb{S}^{3} \simeq \operatorname{SU}(2)$, may try to replicate the method on $\mathbb{R} \times \operatorname{SU}(2)$ by exploiting global Lie group structure. $\operatorname{SU}(2)$ non-abelian, so no Pontryagin duality; need Peter-Weyl theory.

Very brief recap of Peter-Weyl theory
G a compact Lie group.
Definition
The unitary dual G of G is the set of equivalence classes of unitary irreducible representations of G .

Definition
Let $f \in L^{1}(\mathrm{G})$. For each $\pi \in \hat{\mathrm{G}}$ the Fourier coefficient $\hat{f}(\pi)$ is the operator

$$
\hat{f}(\pi)=\int_{G} f(g) \pi\left(g^{-1}\right) \mathrm{d} \mu(g) .
$$

## Global method on $\mathbb{R} \times \mathbb{S}^{3}$

## Observation

Using $\mathbb{S}^{3} \simeq \operatorname{SU}(2)$, may try to replicate the method on $\mathbb{R} \times \operatorname{SU}(2)$ by exploiting global Lie group structure. $\operatorname{SU}(2)$ non-abelian, so no Pontryagin duality; need Peter-Weyl theory.

Very brief recap of Peter-Weyl theory
G a compact Lie group.
Definition
The unitary dual $\hat{G}$ of G is the set of equivalence classes of unitary irreducible representations of G .

Definition
Let $f \in L^{1}(\mathrm{G})$. For each $\pi \in \hat{\mathrm{G}}$ the Fourier coefficient $\hat{f}(\pi)$ is the operator

$$
\hat{f}(\pi)=\int_{\mathrm{G}} f(g) \pi\left(g^{-1}\right) \mathrm{d} \mu(g) .
$$

## Peter-Weyl theory

Theorem (Peter-Weyl)
The matrix coefficients of unitary irreducible representations of G are dense in $L^{2}(\mathrm{G}):$

where $\mathcal{M}_{\pi}$ is the subspace of $L^{2}(G)$ spanned by matrix coefficients of $\pi \in \hat{\mathrm{G}}$.
Theorem (Plancherel)
Let $f \in L^{2}(G)$. Then

in $L^{2}(G)$, and moreover

where $\|\|\cdot\|\|^{2}$ is the Frobenius norm.

## Peter-Weyl theory

Theorem (Peter-Weyl)
The matrix coefficients of unitary irreducible representations of G are dense in $L^{2}(\mathrm{G}):$

$$
L^{2}(\mathrm{G})={\overline{\bigoplus_{\pi \in \hat{\mathrm{G}}}} \mathcal{M}_{\pi}}_{L^{2}},
$$

where $\mathcal{M}_{\pi}$ is the subspace of $L^{2}(\mathrm{G})$ spanned by matrix coefficients of $\pi \in \hat{\mathrm{G}}$.
Theorem (Plancherel)
Let $f \in L^{2}(\mathrm{G})$. Then

in $L^{2}(G)$, and moreover

where $\|\|\cdot\|\|^{2}$ is the Frobenius norm.

## Peter-Weyl theory

Theorem (Peter-Weyl)
The matrix coefficients of unitary irreducible representations of G are dense in $L^{2}(\mathrm{G}):$

$$
L^{2}(\mathrm{G})={\overline{\bigoplus_{\pi \in \hat{\mathrm{G}}}} \mathcal{M}_{\pi}}_{L^{2}},
$$

where $\mathcal{M}_{\pi}$ is the subspace of $L^{2}(\mathrm{G})$ spanned by matrix coefficients of $\pi \in \hat{\mathrm{G}}$.
Theorem (Plancherel)
Let $f \in L^{2}(\mathrm{G})$. Then

in $L^{2}(\mathrm{G})$, and moreover

where
is the Frobenius norm.

## Peter-Weyl theory

Theorem (Peter-Weyl)
The matrix coefficients of unitary irreducible representations of G are dense in $L^{2}(\mathrm{G}):$

$$
L^{2}(\mathrm{G})={\overline{\bigoplus_{\pi \in \hat{\mathrm{G}}}} \mathcal{M}_{\pi}}_{L^{2}},
$$

where $\mathcal{M}_{\pi}$ is the subspace of $L^{2}(\mathrm{G})$ spanned by matrix coefficients of $\pi \in \hat{\mathrm{G}}$.
Theorem (Plancherel)
Let $f \in L^{2}(\mathrm{G})$. Then

$$
f(g)=\sum_{\pi \in \hat{\mathrm{G}}} d_{\pi} \operatorname{Tr}(\hat{f}(g) \pi(g))
$$

in $L^{2}(\mathrm{G})$, and moreover

where $\|\|\cdot\|\|^{2}$ is the Frobenius norm.

## Peter-Weyl theory

Theorem (Peter-Weyl)
The matrix coefficients of unitary irreducible representations of G are dense in $L^{2}(\mathrm{G}):$

$$
L^{2}(\mathrm{G})={\overline{\bigoplus_{\pi \in \hat{\mathrm{G}}}} \mathcal{M}_{\pi}}_{L^{2}},
$$

where $\mathcal{M}_{\pi}$ is the subspace of $L^{2}(\mathrm{G})$ spanned by matrix coefficients of $\pi \in \hat{\mathrm{G}}$.
Theorem (Plancherel)
Let $f \in L^{2}(\mathrm{G})$. Then

$$
f(g)=\sum_{\pi \in \hat{\mathrm{G}}} d_{\pi} \operatorname{Tr}(\hat{f}(g) \pi(g))
$$

in $L^{2}(\mathrm{G})$, and moreover

$$
\|f\|_{L^{2}(\mathrm{G})}^{2}=\sum_{\pi \in \hat{\mathrm{G}}} d_{\pi}\| \| \hat{f}(\pi)\| \|^{2},
$$

where $\|\|\cdot\|\|^{2}$ is the Frobenius norm.

Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :
$\Rightarrow$ the characters $e^{ \pm i x \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
$\Rightarrow \pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
$\Rightarrow$ eigenvalues of $\Delta_{\mathbb{D} 3}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathbb{C} 3}$ discrete
$\Rightarrow e^{ \pm i x \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$

- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\mathrm{SU}(2)$ on Fourier side via Plancherel:

$$
\|f\|_{H^{k}\left(S^{3}\right)}^{2} \simeq \sum_{m \geqslant 0}(m+1)^{2 k+1}\| \| \hat{f}\left(\pi_{m}\right)\| \|^{2}
$$

$-e^{i x \cdot \xi} e^{i x \cdot \eta}=e^{i x \cdot(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n} \quad:$ instead have Clebsch-Gordan expansion

$$
\pi_{m} \otimes \pi_{n} \simeq \bigoplus_{k=0}^{\min (m, n)} \pi|m-n|+2 k
$$

Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i x \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
$\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathbb{S}^{3}}$ discrete
- $e^{ \pm i \times \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\mathrm{SU}(2)$ on Fourier side via Plancherel:

$$
\|f\|_{H k\left(s^{3}\right)}^{2} \simeq \sum_{m \geqslant 0}(m+1)^{2 k+1}\left\|\hat{f}\left(\pi_{m}\right)\right\|^{2}
$$

$\triangleright e^{i x \cdot \xi} e^{i x \cdot \eta}=e^{i x \times(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n} \quad:$ instead have Clebsch-Gordan expansion


Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i x \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
$\Rightarrow$ eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{S U(2)}=\Delta_{\mathbb{S}^{3}}$ discrete
- $e^{ \pm i x \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension ( $m+1$ )
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\mathrm{SU}(2)$ on Fourier side via Plancherel:

$\Rightarrow e^{i x \cdot \xi} e^{i x \cdot \eta}=e^{i x \cdot(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n} \quad:$ instead have Clebsch-Gordan expansion

$\pi|m-n|+2 k$

Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i \times \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathbb{S}^{3}}$ discrete
$\Rightarrow e^{ \pm i \times \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\mathrm{SU}(2)$ on Fourier side via Plancherel:

$>e^{i x \cdot \xi} e^{i x \cdot \eta}=e^{i x \cdot(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n} \quad:$ instead have Clebsch-Gordan expansion


Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i \times \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathbb{S}^{3}}$ discrete
- $e^{ \pm i \times \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\mathrm{SU}(2)$ on Fourier side via Plancherel:

expansion

$\pi|m-n|+2 k$


## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i \times \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathbb{S}^{3}}$ discrete
- $e^{ \pm i \times \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on SU(2) on Fourier side via Plancherel:



## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i x \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathrm{S}^{3}}$ discrete
- $e^{ \pm i x \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\operatorname{SU}(2)$ on Fourier side via Plancherel:

$$
\|f\|_{H^{k}\left(\mathbb{S}^{3}\right)}^{2} \simeq \sum_{m \geqslant 0}(m+1)^{2 k+1}\left\|\mid \hat{f}\left(\pi_{m}\right)\right\| \|^{2}
$$

## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i x \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathrm{S}^{3}}$ discrete
- $e^{ \pm i x \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\operatorname{SU}(2)$ on Fourier side via Plancherel:

$$
\|f\|_{H^{k}\left(\mathbb{S}^{3}\right)}^{2} \simeq \sum_{m \geqslant 0}(m+1)^{2 k+1}\left\|\hat{f}\left(\pi_{m}\right)\right\| \|^{2}
$$

- $e^{i \times \cdot \xi} e^{i \times \cdot \eta}=e^{i x \cdot(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n}$ : instead have Clebsch-Gordan
expansion



## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- the characters $e^{ \pm i \times \cdot \xi}$ of $\mathbb{R}^{3}$ are replaced with irreps $\pi$ on $\operatorname{SU}(2)$
- $\pi_{m}: \mathrm{SU}(2) \rightarrow \mathrm{GL}\left(V_{m}\right)$ for $m \in \mathbb{Z}_{\geqslant 0}$ and $\Delta_{\mathrm{SU}(2)} \pi_{m}=-m(m+2) \pi_{m}$
- eigenvalues of $\Delta_{\mathbb{R}^{3}}$ continuous, of $\Delta_{\mathrm{SU}(2)}=\Delta_{\mathrm{S}^{3}}$ discrete
- $e^{ \pm i x \cdot \xi} 1$-dimensional but $\pi_{m}$ has dimension $(m+1)$
- the Fourier transform $\hat{f}\left(\pi_{m}\right)$ is operator-valued $\in \mathbb{C}^{(m+1) \times(m+1)}$
- $H^{k}$ norms on $\operatorname{SU}(2)$ on Fourier side via Plancherel:

$$
\|f\|_{H^{k}\left(\mathbb{S}^{3}\right)}^{2} \simeq \sum_{m \geqslant 0}(m+1)^{2 k+1}\left\|\hat{f}\left(\pi_{m}\right)\right\| \|^{2}
$$

- $e^{i \times \cdot \xi} e^{i \times \cdot \eta}=e^{i x \cdot(\xi+\eta)}$ but $\pi_{m} \otimes \pi_{n} \neq \pi_{m+n}$ : instead have Clebsch-Gordan expansion

$$
\pi_{m} \otimes \pi_{n} \simeq \bigoplus_{k=0}^{\min (m, n)} \pi_{|m-n|+2 k}
$$

Fourier analysis on $\mathrm{SU}(2)$
With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :
$>$ an explicit choice of $\pi_{m}$ 's is given by Wigner's D-matrices

$$
\begin{aligned}
D^{(j)}(\{\alpha \beta \gamma\})_{\mu^{\prime} \mu} & =\sum_{x}(-1)^{x} \frac{\sqrt{(j+\mu)!(j-\mu)!\left(j+\mu^{\prime}\right)!}\left(j-\mu^{\prime}\right)!}{\left(j-\mu^{\prime}-x\right)!(j+m u-x)!x!\left(x+\mu^{\prime}-m\right)!} \\
& \times e^{i \mu^{\prime} \alpha} \cos ^{2 j+\mu-\mu^{\prime}-2 x} \frac{1}{2} \beta \cdot \sin ^{2 x+\mu^{\prime}-\mu} \frac{1}{2} \beta \cdot e^{i \mu \gamma}
\end{aligned}
$$

[Wigner '59, Group Theory and Atomic Spectra]

- Closely related to spin-weighted spherical harmonics ${ }_{s} Y_{l m}$
- First two Wigner's D-matrices are

$$
\pi_{0}=1, \quad \pi_{1}=\left(\begin{array}{cc}
e^{-\frac{1}{2} i \alpha}\left(\cos \frac{1}{2} \beta\right) e^{-\frac{1}{2} i \gamma} & -e^{-\frac{1}{2} i \alpha}\left(\sin \frac{1}{2} \beta\right) e^{\frac{1}{2} i \gamma} \\
e^{\frac{1}{2} i \alpha}\left(\sin \frac{1}{2} \beta\right) e^{-\frac{1}{2} i \gamma} & e^{\frac{1}{2} i \alpha}\left(\cos \frac{1}{2} \beta\right) e^{\frac{1}{2} i \gamma}
\end{array}\right)
$$

where $\alpha, \beta, \gamma$ are the Euler angles on $\operatorname{SU}(2)$.

Fourier analysis on $\mathrm{SU}(2)$
With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- an explicit choice of $\pi_{m}$ 's is given by Wigner's D-matrices

$$
\begin{aligned}
\mathcal{D}^{(j)}(\{\alpha \beta \gamma\})_{\mu^{\prime} \mu} & =\sum_{x}(-1)^{x} \frac{\sqrt{(j+\mu)!(j-\mu)!\left(j+\mu^{\prime}\right)!\left(j-\mu^{\prime}\right)!}}{\left(j-\mu^{\prime}-x\right)!(j+m u-x)!x!\left(x+\mu^{\prime}-m\right)!} \\
& \times e^{i \mu^{\prime} \alpha} \cos ^{2 j+\mu-\mu^{\prime}-2 x} \frac{1}{2} \beta \cdot \sin ^{2 x+\mu^{\prime}-\mu} \frac{1}{2} \beta \cdot e^{i \mu \gamma}
\end{aligned}
$$

[Wigner '59, Group Theory and Atomic Spectra]

- Closely related to spin-weighted spherical harmonics ${ }_{s} Y_{l m}$
- First two Wigner's D-matrices are

$$
\pi_{0}=1
$$

where $\alpha, \beta, \gamma$ are the Euler angles on $\mathrm{SU}(2)$.

## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- an explicit choice of $\pi_{m}$ 's is given by Wigner's D-matrices

$$
\begin{aligned}
\mathcal{D}^{(j)}(\{\alpha \beta \gamma\})_{\mu^{\prime} \mu} & =\sum_{x}(-1)^{x} \frac{\sqrt{(j+\mu)!(j-\mu)!\left(j+\mu^{\prime}\right)!\left(j-\mu^{\prime}\right)!}}{\left(j-\mu^{\prime}-x\right)!(j+m u-x)!x!\left(x+\mu^{\prime}-m\right)!} \\
& \times e^{i \mu^{\prime} \alpha} \cos ^{2 j+\mu-\mu^{\prime}-2 x} \frac{1}{2} \beta \cdot \sin ^{2 x+\mu^{\prime}-\mu} \frac{1}{2} \beta \cdot e^{i \mu \gamma}
\end{aligned}
$$

[Wigner '59, Group Theory and Atomic Spectra]

- Closely related to spin-weighted spherical harmonics ${ }_{s} Y_{I m}$
- First two Wigner's D-matrices are
where $\alpha, \beta, \gamma$ are the Euler angles on $\mathrm{SU}(2)$.


## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- an explicit choice of $\pi_{m}$ 's is given by Wigner's D-matrices

$$
\begin{aligned}
\mathcal{D}^{(j)}(\{\alpha \beta \gamma\})_{\mu^{\prime} \mu} & =\sum_{x}(-1)^{x} \frac{\sqrt{(j+\mu)!(j-\mu)!\left(j+\mu^{\prime}\right)!\left(j-\mu^{\prime}\right)!}}{\left(j-\mu^{\prime}-x\right)!(j+m u-x)!x!\left(x+\mu^{\prime}-m\right)!} \\
& \times e^{i \mu^{\prime} \alpha} \cos ^{2 j+\mu-\mu^{\prime}-2 x} \frac{1}{2} \beta \cdot \sin ^{2 x+\mu^{\prime}-\mu} \frac{1}{2} \beta \cdot e^{i \mu \gamma}
\end{aligned}
$$

[Wigner '59, Group Theory and Atomic Spectra]

- Closely related to spin-weighted spherical harmonics ${ }_{s} Y_{I m}$
- First two Wigner's D-matrices are
where $\alpha, \beta, \gamma$ are the Euler angles on $\mathrm{SU}(2)$.


## Fourier analysis on $\mathrm{SU}(2)$

With $\mathrm{G}=\mathrm{SU}(2)=\mathbb{S}^{3}$ :

- an explicit choice of $\pi_{m}$ 's is given by Wigner's D-matrices

$$
\begin{aligned}
\mathcal{D}^{(j)}(\{\alpha \beta \gamma\})_{\mu^{\prime} \mu} & =\sum_{x}(-1)^{x} \frac{\sqrt{(j+\mu)!(j-\mu)!\left(j+\mu^{\prime}\right)!\left(j-\mu^{\prime}\right)!}}{\left(j-\mu^{\prime}-x\right)!(j+m u-x)!x!\left(x+\mu^{\prime}-m\right)!} \\
& \times e^{i \mu^{\prime} \alpha} \cos ^{2 j+\mu-\mu^{\prime}-2 x} \frac{1}{2} \beta \cdot \sin ^{2 x+\mu^{\prime}-\mu} \frac{1}{2} \beta \cdot e^{i \mu \gamma}
\end{aligned}
$$

[Wigner '59, Group Theory and Atomic Spectra]

- Closely related to spin-weighted spherical harmonics ${ }_{s} Y_{l m}$
- First two Wigner's D-matrices are

$$
\pi_{0}=1, \quad \pi_{1}=\left(\begin{array}{cc}
e^{-\frac{1}{2} i \alpha}\left(\cos \frac{1}{2} \beta\right) e^{-\frac{1}{2} i \gamma} & -e^{-\frac{1}{2} i \alpha}\left(\sin \frac{1}{2} \beta\right) e^{\frac{1}{2} i \gamma} \\
e^{\frac{1}{2} i \alpha}\left(\sin \frac{1}{2} \beta\right) e^{-\frac{1}{2} i \gamma} & e^{\frac{1}{2} i \alpha}\left(\cos \frac{1}{2} \beta\right) e^{\frac{1}{2} i \gamma}
\end{array}\right)
$$

where $\alpha, \beta, \gamma$ are the Euler angles on $\mathrm{SU}(2)$.

## Time periodicity

Recall in step 3 (Plancherel \& Cauchy-Schwarz) defined

$$
2 \xi^{\prime}=\alpha \omega=\left(\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}\right) \omega:
$$

- $\alpha(\tau, \xi)$ mixes time and space Fourier variables on $\mathbb{R}^{1+3}$
- On $\mathbb{R} \times \operatorname{SU}(2)$ the snace Fourier variable $m$ is discrete, but time Fourier variable is continuous
b but for solutions of the modified wave equation on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\square \phi+\phi=0,
$$

are periodic in time:

$$
\begin{aligned}
\partial_{t}^{2 \hat{\phi}\left(\pi_{m}\right)+\left(1+m^{\prime}(m+2)\right) \hat{\phi}\left(\pi_{m}\right)=0} & \Longrightarrow \partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)=-(m+1)^{2} \hat{\phi}\left(\pi_{m}\right) \\
& \Longrightarrow \hat{\phi}\left(\pi_{m}\right)(t) \sim e^{ \pm i(m+1) t} \\
& \Longrightarrow \text { periodic in } t
\end{aligned}
$$

## Time periodicity

Recall in step 3 (Plancherel \& Cauchy-Schwarz) defined

$$
2 \xi^{\prime}=\alpha \omega=\left(\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}\right) \omega:
$$

- $\alpha(\tau, \xi)$ mixes time and space Fourier variables on $\mathbb{R}^{1+3}$
$\Rightarrow$ On $\mathbb{R} \times \operatorname{SU}(2)$ the space Fourier variable $m$ is discrete, but time Fourier variable is continuous
- but for solutions of the modified wave equation on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\square \phi+\phi=0,
$$

are periodic in time:

$$
\begin{aligned}
\partial_{t}^{2 \hat{\phi}\left(\pi_{m}\right)+\left(1+m^{\prime}(m+2)\right) \hat{\phi}\left(\pi_{m}\right)=0} & \Longrightarrow \partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)=-(m+1)^{2} \hat{\phi}\left(\pi_{m}\right) \\
& \Longrightarrow \hat{\phi}\left(\pi_{m}\right)(t) \sim e^{ \pm i(m+1) t} \\
& \Longrightarrow \text { periodic in } t
\end{aligned}
$$

## Time periodicity

Recall in step 3 (Plancherel \& Cauchy-Schwarz) defined

$$
2 \xi^{\prime}=\alpha \omega=\left(\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}\right) \omega:
$$

- $\alpha(\tau, \xi)$ mixes time and space Fourier variables on $\mathbb{R}^{1+3}$
- On $\mathbb{R} \times \operatorname{SU}(2)$ the space Fourier variable $m$ is discrete, but time Fourier variable is continuous
$\Rightarrow$ but for solutions of the modified wave equation on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\square \phi+\phi=0,
$$

are periodic in time:


## Time periodicity

Recall in step 3 (Plancherel \& Cauchy-Schwarz) defined

$$
2 \xi^{\prime}=\alpha \omega=\left(\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}\right) \omega:
$$

- $\alpha(\tau, \xi)$ mixes time and space Fourier variables on $\mathbb{R}^{1+3}$
- On $\mathbb{R} \times \operatorname{SU}(2)$ the space Fourier variable $m$ is discrete, but time Fourier variable is continuous
- but for solutions of the modified wave equation on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\square \phi+\phi=0,
$$

are periodic in time:
$\partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)+\left(1+m^{( }(m+2)\right) \hat{\phi}\left(\pi_{m}\right)=0 \Longrightarrow \partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)=-(m+1)^{2} \hat{\phi}\left(\pi_{m}\right)$

$\Longrightarrow$ periodic in $t$

## Time periodicity

Recall in step 3 (Plancherel \& Cauchy-Schwarz) defined

$$
2 \xi^{\prime}=\alpha \omega=\left(\frac{\tau^{2}-|\xi|^{2}}{\tau-\xi \cdot \omega}\right) \omega:
$$

- $\alpha(\tau, \xi)$ mixes time and space Fourier variables on $\mathbb{R}^{1+3}$
- On $\mathbb{R} \times \operatorname{SU}(2)$ the space Fourier variable $m$ is discrete, but time Fourier variable is continuous
- but for solutions of the modified wave equation on $\mathbb{R} \times \mathbb{S}^{3}$,

$$
\square \phi+\phi=0,
$$

are periodic in time:

$$
\begin{aligned}
\partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)+(1+m(m+2)) \hat{\phi}\left(\pi_{m}\right)=0 & \Longrightarrow \partial_{t}^{2} \hat{\phi}\left(\pi_{m}\right)=-(m+1)^{2} \hat{\phi}\left(\pi_{m}\right) \\
& \Longrightarrow \hat{\phi}\left(\pi_{m}\right)(t) \sim e^{ \pm i(m+1) t} \\
& \Longrightarrow \text { periodic in } t
\end{aligned}
$$

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

where $Q_{0}(\phi, \psi)=g_{R \times{ }^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting


Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)=\mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) .
$$

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

i.e.

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi^{i}+\phi^{i}=\Gamma(\phi)_{j k}^{i} Q_{0}\left(\phi^{j}, \phi^{k}\right),
$$

where $Q_{0}(\phi, \psi)=g_{\mathbb{R} \times \mathbb{S}^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting


Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)=\mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) .
$$

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

i.e.

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi^{i}+\phi^{i}=\Gamma(\phi)_{j k}^{i} Q_{0}\left(\phi^{j}, \phi^{k}\right),
$$

where $Q_{0}(\phi, \psi)=g_{\mathbb{R} \times S^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting


Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)=\mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) .
$$

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

i.e.

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi^{i}+\phi^{i}=\Gamma(\phi)_{j k}^{i} Q_{0}\left(\phi^{j}, \phi^{k}\right),
$$

where $Q_{0}(\phi, \psi)=g_{\mathbb{R} \times S^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting

$$
\phi^{ \pm}(t, x)=\sum_{m \geqslant 0} e^{ \pm i(m+1) t} \operatorname{Tr}\left(\hat{\phi}_{1}\left(\pi_{m}\right) \pi_{m}(x)\right)
$$

Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula
$\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)=\mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right)$.

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

i.e.

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi^{i}+\phi^{i}=\Gamma(\phi)_{j k}^{i} Q_{0}\left(\phi^{j}, \phi^{k}\right),
$$

where $Q_{0}(\phi, \psi)=g_{\mathbb{R} \times S^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting

$$
\phi^{ \pm}(t, x)=\sum_{m \geqslant 0} e^{ \pm i(m+1) t} \operatorname{Tr}\left(\hat{\phi}_{1}\left(\pi_{m}\right) \pi_{m}(x)\right)
$$

Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula

## Modified equation

On $\mathbb{R} \times \mathbb{S}^{3}$ study instead $Q_{0}(\phi, \psi)$ for $\phi, \psi$ satisfying

$$
\square \phi+\phi=0 \quad \text { with }\left.\quad\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=\left(0, \phi_{1}\right),
$$

i.e.

$$
\square_{\mathbb{R} \times \mathbb{S}^{3}} \phi^{i}+\phi^{i}=\Gamma(\phi)_{j k}^{i} Q_{0}\left(\phi^{j}, \phi^{k}\right),
$$

where $Q_{0}(\phi, \psi)=g_{R \times \times^{3}}^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \psi$.
Step 1: positive/negative frequency splitting

$$
\phi^{ \pm}(t, x)=\sum_{m \geqslant 0} e^{ \pm i(m+1) t} \operatorname{Tr}\left(\hat{\phi}_{1}\left(\pi_{m}\right) \pi_{m}(x)\right)
$$

Step 2: spacetime FT of $Q_{0}\left(\phi^{ \pm}, \psi^{ \pm}\right)$
In $\mathbb{R}^{1+3}$ this relies on "inverse" convolution formula

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)=\mathcal{F}_{t, x}\left(\phi^{ \pm}\right) * \mathcal{F}_{t, x}\left(\psi^{ \pm}\right) .
$$

Non-abelian step 2
In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse' convolution formula.

On $\mathbb{R} \times \mathrm{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}$
Recall $\pi_{l} \otimes \pi_{n-1}$ "smears" over a range of irreps, with probability amplitude weights.

Non-abelian step 2
In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y) .
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $f(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse' convolution formula.

On $\mathbb{R} \times \operatorname{SU}(2)$ need to compute $\mathcal{F}_{t, \times}\left(\phi^{*} \psi^{*}\right)$ directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}$
Recall $\pi_{1} \otimes \pi_{n-1}$ "smears" over a range of irreps, with probability amplitude weights.

Non-abelian step 2
In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse' convolution formula.

On $\mathbb{D} \times \operatorname{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}$
Recall $\pi_{l} \otimes \pi_{n-1}$ "smears" over a range of irreps, with probability amplitude weights.

Non-abelian step 2
In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
(\widehat{f * g})(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse" convolution formula.

On $\mathbb{R} \times \operatorname{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}$
Recall $\pi_{l} \otimes \pi_{n-l}$ "smears" over a range of irreps, with probability amplitude weights.

Non-abelian step 2
In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse" convolution formula.

On $\mathbb{R} \times \operatorname{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly:


## Non-abelian step 2

In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
(\widehat{f * g})(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse" convolution formula.

On $\mathbb{R} \times \mathrm{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor,


## Non-abelian step 2

In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{\mathrm{G}}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse" convolution formula.

On $\mathbb{R} \times \mathrm{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)\left(\pi_{m}\right)_{n}=\sum_{l} \underbrace{\hat{\phi}_{1}\left(\pi_{l}\right) \hat{\psi}_{1}\left(\pi_{n-l}\right) \int_{\mathrm{SU}(2)} \pi_{l} \otimes \pi_{n-l} \otimes \pi_{m}^{\dagger} \mathrm{d} \mu}_{\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}}
$$

## Non-abelian step 2

In non-abelian setting for $f, g: G \rightarrow \mathbb{R}$ one can define

$$
(f * g)(x)=\int_{G} f(y) g\left(x y^{-1}\right) \mathrm{d} \mu(y)
$$

Then the forward convolution formula

$$
\widehat{(f * g)}(\pi)=\hat{f}(\pi) \circ \hat{g}(\pi)
$$

holds; $\hat{f}(\pi), \hat{g}(\pi)$ are operators.
In general there is insufficient structure on $\hat{G}$ to define $\hat{f} * \hat{g} \rightsquigarrow$ no "inverse" convolution formula.

On $\mathbb{R} \times \mathrm{SU}(2)$ need to compute $\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)$directly: OK using inverse convolution in $\mathbb{R}$ factor, schematically

$$
\mathcal{F}_{t, x}\left(\phi^{ \pm} \psi^{ \pm}\right)\left(\pi_{m}\right)_{n}=\sum_{l} \underbrace{\hat{\phi}_{1}\left(\pi_{l}\right) \hat{\psi}_{1}\left(\pi_{n-l}\right) \int_{\mathrm{SU}(2)} \pi_{l} \otimes \pi_{n-l} \otimes \pi_{m}^{\dagger} \mathrm{d} \mu}_{\stackrel{\text { def }}{=}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}} .
$$

Recall $\pi_{l} \otimes \pi_{n-1}$ "smears" over a range of irreps, with probability amplitude weights.

Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-l}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{l(n-l)} \mathcal{C}_{m j(q-j)}^{l(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

Lemma
For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|^{2}\| \| \hat{\psi}_{1}\left(\pi_{n-1}\right)\| \|^{2}
$$

Observation
Here $\sum_{m}$ not $\sum \rightsquigarrow$ loss of arbitrarily small amount of regularity.

Non-abelian step 3
Step 3: Plancherel \& Cauchy-Schwarz
After a calculation, must handle a Clebsch-Gordan expansion of the form


- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

```
Using orthogonality of Clebsch-Gordan coefficients C, can recover a discrete
Young's inequality for convolutions for }\mp@subsup{\varpi}{l}{}(\mp@subsup{\pi}{m}{}\mp@subsup{)}{n}{}\mathrm{ :
Lemma
For the matrices }\mp@subsup{\varpi}{1}{}(\pim)n\mathrm{ there hold the estimates
```

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\| \| \hat{\phi}_{1}\left(\pi_{l}\right)\| \|^{2}\| \| \hat{\psi}_{1}\left(\pi_{n-l}\right)\| \|^{2}
$$

Observation
Here $\sum_{m}$ not $\sum, \rightsquigarrow$ loss of arbitrarily small amount of regularity.

Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi /\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-I)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically - requires estimating "matrix convolutions"

> Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

Iemma
For the matrices $\varpi_{J}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|\left\|^{2}\right\| \hat{\psi}_{1}\left(\pi_{n-1}\right)\| \|^{2}
$$

Observation
Here $\sum$ not $\sum, \rightsquigarrow$ loss of arbitrarily small amount of regularity.

Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
> does not localize around a single $\pi$, even asymptotically - requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients C, can recover a discrete Young's inequality for convolutions for $\varpi /\left(\pi_{m}\right)_{n}$ :

Lemma
For the matrices $\omega_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|\left\|^{2}\right\| \hat{\psi}_{1}\left(\pi_{n-1}\right)\| \|^{2}
$$

Observation
$\square$

## Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
> requires estimating "matrix convolutions"
Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

Lemma
For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates


Observation
Here $\sum$ not $\sum$

Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :
lemma
For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates


Observation
Here $\sum$ not $\sum$

## Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi /\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-I)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

Lemma
For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates


Observation
Here $\sum$ not $\sum$

## Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

## Lemma

For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|\left\|^{2}\right\| \hat{\psi}_{1}\left(\pi_{n-l}\right)\| \|^{2}
$$

Observation
Here $\sum_{m}$ not $\sum_{l} \rightsquigarrow$ loss of arbitrarily small amount of regularity.

## Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

## Lemma

For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|\left\|^{2}\right\|\left\|\hat{\psi}_{1}\left(\pi_{n-l}\right)\right\| \|^{2}
$$

Observation Here $\sum_{m}$ not $\sum_{l} \leadsto$ loss of arbitrarily small amount of regularity.

## Non-abelian step 3

## Step 3: Plancherel \& Cauchy-Schwarz

After a calculation, must handle a Clebsch-Gordan expansion of the form

$$
\sum_{l}(m+1)\left(\varpi_{l}\left(\pi_{m}\right)_{n}\right)_{p q}=\sum_{l} \hat{\phi}_{1}\left(\pi_{l}\right)_{j i} \hat{\psi}_{1}\left(\pi_{n-1}\right)_{(q-j)(p-i)} \mathcal{C}_{m i(p-i)}^{\prime(n-l)} \mathcal{C}_{m j(q-j)}^{\prime(n-l)}
$$

- fundamentally different from calculation in abelian case
- does not localize around a single $\pi$, even asymptotically
- requires estimating "matrix convolutions"

Using orthogonality of Clebsch-Gordan coefficients $\mathcal{C}$, can recover a discrete Young's inequality for convolutions for $\varpi_{l}\left(\pi_{m}\right)_{n}$ :

## Lemma

For the matrices $\varpi_{l}\left(\pi_{m}\right)_{n}$ there hold the estimates

$$
\sum_{m}\| \|(m+1) \varpi_{l}\left(\pi_{m}\right)_{n}\| \|^{2} \leqslant\left\|\hat{\phi}_{1}\left(\pi_{l}\right)\right\|\left\|^{2}\right\|\left\|\hat{\psi}_{1}\left(\pi_{n-l}\right)\right\| \|^{2}
$$

Observation
Here $\sum_{m}$ not $\sum_{l} \rightsquigarrow$ loss of arbitrarily small amount of regularity.

Further questions
This allows to define wave-Sobolev spaces $\boldsymbol{H}^{s, b}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\left.\|u\|_{H^{s, b}\left(\mathbb{R}^{1+3}\right)}=\|\left\langle\langle \rangle^{s}\langle | \xi\right|-|\tau|\right\rangle^{b} \widetilde{u}(\tau, \xi) \|_{L_{\tau,}^{2}}
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
$\rightarrow$ There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
$\rightarrow$ Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
$\rightarrow$ Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$$
\square \phi+m^{2} \phi=\ldots
$$

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on $G$
$\rightarrow$ Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?

- Critical problem...?

Further questions
This allows to define wave-Sobolev spaces $\boldsymbol{H}^{s, b}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2},} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
> - There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
> - Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
> - Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on $G$

- Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?
- Critical problem...?


## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{s, b}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
$\rightarrow$ Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
$\rightarrow$ Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations
$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on $G$
- Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?


## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{\boldsymbol{s}, \boldsymbol{b}}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{\mathcal{H}^{s},\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
- Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on $G$
$\rightarrow$ Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?


## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{\boldsymbol{s}, \boldsymbol{b}}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
- Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
- Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$$
\square \phi+m^{2} \phi=\ldots
$$

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on $G$

- Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?


## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{\boldsymbol{s}, \boldsymbol{b}}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times s^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
- Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
- Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$$
\square \phi+m^{2} \phi=\ldots
$$

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on G

## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{\boldsymbol{s}, \boldsymbol{b}}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times \mathbb{S}^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
- Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
- Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$$
\square \phi+m^{2} \phi=\ldots
$$

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on G

- Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?


## Further questions

This allows to define wave-Sobolev spaces $\boldsymbol{H}^{\boldsymbol{s}, \boldsymbol{b}}$ of Bourgain \& Klainerman et al on $\mathbb{R} \times \mathbb{S}^{3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R} \times \mathbb{S}^{3}\right)}=\left\|(m+1)^{s+\frac{1}{2}}\langle(m+1)-| n| \rangle^{b} \widetilde{u}\left(\pi_{m}\right)_{n}\right\|_{\ell_{m}^{2} \ell_{n}^{2}}
$$

Compare to $\mathbb{R}^{1+3}$ :

$$
\|u\|_{H^{s}, b\left(\mathbb{R}^{1+3}\right)}=\left\|\langle\xi\rangle^{s}\langle | \xi|-|\tau|\rangle^{b} \widetilde{u}(\tau, \xi)\right\|_{L_{\tau, \xi}^{2}} .
$$

- Then main theorem amounts to $H^{s, b}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ estimates for wave maps
- There exists a standard contraction mapping argument in these spaces (Bourgain, Kenig-Ponce-Vega, Klainerman-Machedon, ...) which should lead to just subcritical well-posedness for wave maps on $\mathbb{R} \times \mathbb{S}^{3}$
- Are there conformally covariant combinations of $J^{-\beta_{0}} W^{\beta_{w}}$ which may lead to new estimates on hyperboloids in Minkowski space?
- Ideas in principle extendible to more general $\mathbb{R} \times G$ space-times where $G$ Lie group for equations

$$
\square \phi+m^{2} \phi=\ldots
$$

$\rightsquigarrow$ interaction between $m^{2}$ and $\Delta$ eigenvalues on G

- Is there a geometric formalism to extend ideas to YM null forms $Q_{\alpha \beta}(\phi, \psi)=\nabla_{\alpha} \phi \nabla_{\beta} \psi-\nabla_{\alpha} \psi \nabla_{\beta} \phi$ ?
- Critical problem...?

Thank you!

