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Soft theorem

• Soft theorem is a statement in QFT that derives from studying Feynman

diagrams.

lim
ω→0

An+1(k,±) = lim
ω→0

(
1

ω
S±
−1 + S±

0 +O(ω)

)
An

• 1
ω
S±
−1 is of order 1/ω and diverges as ω → 0.

S±
0 is independent of ω and is convergent.
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Soft theorem

lim
ω→0

An+1(k,±) = lim
ω→0

(
1

ω
S±
−1 + S±

0 +O(ω)

)
An

• Leading soft photon theorem

1

ω
S±
−1 =

∑
i

Qi
pi · ϵ±(k)
pi · k

• Subleading soft photon theorem (tree-level)

S±
0 = −i

∑
i

Qi
k · Ji · ϵ±(k)

pi · k

• Also leading/subleading soft graviton theorems, soft gluon theorem, soft photino

theorem...
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Asymptotic symmetry

• What is an asymptotic symmetry?

asymptotic symmetry =
allowed gauge symmetry

trivial gauge symmetry

There are exceptions, but it is a useful way to think about this.

• Aren’t all gauge transformations trivial?

No. If you follow the Noether procedure, you notice that there is a falloff

condition on the parameter for the symmetry to be trivial.

• This asymptotic symmetry group is often referred to as large gauge

transformations (LGT). This definition allows for topologically trivial LGTs.

This is also referred to as the improper gauge transformation.
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Asymptotic symmetry

Penrose diagram of Minkowski spacetime

(drawing taken from Strominger’s lecture notes)
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Asymptotic symmetry

• The asymptotic symmetry of QED is the set of U(1) gauge transformations

whose gauge parameter does not vanish at infinity.

Aµ → Aµ + ∂µα, ϕ → eieαϕ, lim
r→∞

α ̸= 0

• The LGT generator does not vanish on shell; these are physical transformations.

Q+[α] =

∫
I+
−

α ∗F Q−[α] =

∫
I−
+

α ∗F

• Asymptotic symmetries are symmetries of the S-matrix

⟨out|(Q+S − SQ−)|in⟩ = 0

This is the Ward identity of the asymptotic symmetry generators Q±.
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Asymptotic symmetries and soft theorems

• There is a remarkable link that have been established between many asymptotic

symmetries and soft theorems.

⟨out|(Q+S − SQ−)|in⟩ = 0 ⇐⇒ soft theorem

- Convergent LGT (“superphaserotation”) ⇐⇒ Leading soft photon theorem

[He, Mitra, Porfyriadis, Strominger]

- BMS supertranslations ⇐⇒ Leading soft graviton theorem

[He, Mitra, Lysov, Strominger]

- Divergent LGT ⇐⇒ Tree-level subleading soft photon theorem

[Campiglia, Laddha]

- BMS superrotations ⇐⇒ Tree-level subleading soft graviton theorem

[Kapec, Lysov, Pasterski, Strominger]

- This even extends to higher dimensions [He, Mitra]

- · · ·
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Asymptotic symmetries and soft theorems
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Divergent LGT ⇐⇒ Tree-level subleading soft theorem

• Consider a gauge transformation δAµ = ∂µα where α = O(r) for large r. The

Lorenz gauge condition ∇2α = 0 dictates its form,

α(u, r, x̂) = rλ(x̂) + u(1 + D2

2
)λ(x̂) + · · ·

• If we compute the charge on a constant time slice Σt, the divergent term

organizes into t times the LGT (“superphaserotation”) charge. Regulating this

by introducing a cutoff t → Λ−1 and taking t → ∞ with u = t− r = fixed, we

find [Campiglia, Laddha]

Q[α] = Λ−1Q[λ] +
1

2

∫
I+

du d2x̂ λ(x̂)

[
DA

2

jA − uD2
2

ju + u∂uD
2DA

0

AA

]
.

The divergent Λ−1 term can be removed by phase space renormalization [Peraza] .

• The Ward identity of this charge is equivalent to the tree-level subleading soft

photon theorem. [Lysov, Pasterski, Strominger]

Sangmin Choi Institut Henri Poincaré 27 Mar 2024 9 / 24



Loop corrections to subleading soft theorem

• It turns out that the subleading soft theorem receives one-loop corrections that

are infrared-divergent that have to be regularized [Bern, Davies, Nohle]

lim
ω→0

An+1(k,±)
1-loop
= lim

ω→0

(
1

ω
S±
−1 + S±

0 +
1

ϵ
S±
0,div +O(ω)

)
An

The soft factor is divergent at loop-order! Is the soft theorem ill-defined?

• This seems to be a consequence of assuming power series in ω. Allowing

non-analytic terms of order lnω in the soft photon energy yields logarithmic soft

factors [Sahoo, Sen]

lim
ω→0

An+1(k,±)
1-loop
= lim

ω→0

(
1

ω
S±
−1 + lnωS±

ln + S±
0 +O(ω)

)
An

There is a logarithmic soft theorem that is more leading compared to the

subleading soft theorem.
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Loop corrections to subleading soft theorem

• Here is what the logarithmic soft photon factor looks like:

S±
ln =

i

4π

∑
i̸=j

ηiηj=1

Q2
iQjp

2
i p

2
j

[
(pi · ϵ±)(pj · k)− (i ↔ j)

]
(pi · k)((pi · pj)2 − p2i p

2
j )

3
2

−
i

8π2

∑
i ̸=j

Q2
iQj

pi · k
(ϵ± · Ji · k)

(pi · pj)√
(pi · pj)2 − p2i p

2
j

ln

pi · pj +
√

(pi · pj)2 − p2i p
2
j

pi · pj −
√

(pi · pj)2 − p2i p
2
j


• What is the associated asymptotic symmetry?
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Massive scalar QED with long-range interactions

• We work with massive scalar QED.

• To study large-time behavior of massive particles, we employ the “blowup” of i+

in terms of hyperbolic coordinate (τ, ρ, x̂),

τ =
√

t2 − r2, ρ =
r√

t2 − r2

• τ → ∞ with ρ fixed follows the future trajectory of massive particles.

• For massless particles (photons) we use the usual retarded coordinates (u, r, x̂)

where u = t− r. Then r → ∞ with fixed u follows the trajectory of massless

particles.
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Massive charge with long-range interactions

• The divergent LGT in Lorenz gauge has the large-r behavior

δAµ = ∂µα, α(u, r, x̂) = rλ(x̂) + u(1 + D2

2
)λ(x̂) +O( ln r

r
)

• For massive charges it has the following large-τ behavior

δϕ = ieαϕ, α(τ, ρ, x̂) = τ λ̄(ρ, x̂) +O( ln τ
τ

)

• We match the two asymptotics using the Euclidean AdS3 bulk-to-boundary

propagator G(3)(ρ, x̂; q̂)

λ̄(ρ, x̂) =

∫
d2q̂ G(3)(ρ, x̂; q̂)λ(x̂)

such that τ λ̄ → rλ as ρ → ∞.
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Massive charge with long-range interactions

• At large times τ → ∞, one usually approximates matter fields to be free, i.e. as

a solution of the Klein-Gordon equation

(∇2 −m2)ϕ = 0

But actually, interactions with the gauge field lead to the equation as τ → ∞

(D2 −m2)ϕ = (∇2 −m2 − 2ieAτ∂τ + · · · )ϕ = 0

where the gauge field has falloff Aτ = 1
τ

1

Aτ + · · · .

• This means the phase space does not consist of free massive fields at i+; it

consists of the dressed fields [Campiglia, Laddha]

ϕ(τ, ρ, x̂)
τ→∞
= eie ln τ

1
Aτ

√
m

2(2πτ)3/2

[
e−imτ b0(ρ, x̂) + eimτd†0(ρ, x̂)

]
︸ ︷︷ ︸

free field
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Massive charge with long-range interactions

• This motivates the following ansatz for the large-τ behavior of dressed matter

fields

ϕ =

√
m

2(2π)3/2

e−imτ

 ln

b 0 ln τ

τ3/2
+

b0
τ3/2

+

ln

b 1 ln τ

τ5/2
+

b1
τ5/2

+ · · ·

+ eimτ
(
b → d†

)
Plugging this into the equations of motion, we obtain a series of algebraic

equations in which all other coefficients can be solved in terms of b0 and d†0.

• The symplectic form of massive scalar fields is

Ωi+ = lim
τ→∞

∫
dΣτ τ

3
(
−δϕ† ∧ δϕ̇+ h.c.

)
• One can see that both the symplectic form and the charge are formally divergent

at τ → ∞. Therefore we regulate this using an infrared cutoff τ → Λ−1.
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Massive charge with long-range interactions

• The hard charge is obtained by Ωi+(δ, δα) = δQH with δαϕ = ieτ λ̄ϕ. We find

QH [λ̄] = lnΛ−1Q
(ln)
H [λ̄] +Q

(0)
H [λ̄] + · · ·

• As in tree-level, one finds a linear term Λ−1Q
(1)
H associated with the leading soft

photon theorem, which has been renormalized away using a corner term.

• Q
(0)
H is the tree-level hard charge of the divergent LGTs, associated with

tree-level subleading soft photon theorem.

• Q
(ln)
H is the hard part of the logarithmic charge proposed by Laddha and

Campiglia, whose Ward identity is the Sen-Sahoo log soft photon theorem.
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Soft charge with long-range interactions

• Now we turn to the photon side of the story (the soft charge).

• The presence of interactions lead to logarithmic terms in the large-r expansions

of the gauge field and field strength,

Fur =
1

r2

2

Fur +
ln r

r3

ln

Fur +
1

r3

3

Fur + · · ·

FrA =
ln r

r2

ln

F rA +
1

r2

2

F rA + · · ·

AA =
0

AA +
ln r

r

ln

AA +
1

r

1

AA + · · ·

and to the large-u expansions as well

2

F rA
u→±∞
= u

2,−1

F ±
rA + lnu

2,ln

F ±
rA + · · ·

0

AA
u→±∞
=

0,0

A±
A +

1

u

0,1

A±
A + · · ·
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Soft charge with long-range interactions

• The divergent LGT in Lorenz gauge

δAµ = ∂µα, α(u, r, x̂) = rλ(x̂) + u(1 + D2

2
)λ(x̂) + · · ·

with the new falloffs has following soft charge

QS [α] =
1

2

∫
I+

du d2x̂ λ(x̂)u∂uD
2DA

0

AA

where again the linear term Λ−1Q
(1)
S [λ] has been removed with a corner term.

• One finds that this expression is the same as what you would get from free

massive fields, so has anything changed?
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Soft charge with long-range interactions

• The soft charge and the relevant new term introduced to
0

AA are

QS =
1

2

∫
I+

du d2x̂ λ u∂uD
2DA

0

AA,
0

AA
u→±∞
=

0,0

A±
A +

1

u

0,1

A±
A + · · ·

• The new term makes this charge divergent, so we regulate it using a large-time

cutoff Λ−1. By choosing a suitably large but finite u0 < Λ−1, we write∫ ∞

−∞
duu∂u

0

AA =

(∫ −u0

−Λ−1

+

∫ Λ−1

u0

)
duu∂u

0

AA + · · ·

= lnΛ−1

(
0,1

A+
A −

0,1

A−
A

)
+ · · ·

= lnΛ−1

∫ ∞

−∞
du (−∂uu

2∂u

0

AA) + · · ·
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Soft charge with long-range interactions

• Thus the divergent part of the soft part can be pulled out as

QS [α] = lnΛ−1Q
(ln)
S [λ] +Q

(0)
S [λ] + · · ·

where

Q
(ln)
S [λ] =

1

2

∫
I+

du d2x̂ λ ∂uu
2∂uD

2DA
0

AA,

Q
(0)
S [λ] =

1

2

∫
I+

du d2x̂ λ u∂uD
2DA(

0

AA)tree

• Here Q
(ln)
S is soft part of the logarithmic charge whose Ward identity is known

to yield Sen-Sahoo log soft theorem. Q
(0)
S is the tree-level soft charge of the

divergent LGTs, associated with tree-level subleading soft photon theorem.

• Note that the two are the same operators with different projectors ∂uu
2∂u and

u∂u, which in Fourier space pick out lnω and ω0 terms respectively.
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Divergent LGT with long-range interactions

• The total charge becomes

Q[α] = lnΛ−1
[
Q

(ln)
H (λ̄) +Q

(ln)
S (λ)

]
+Q

(0)
H (λ̄) +Q

(0)
S (λ) + · · ·

• The coefficient of lnΛ−1 is exactly the “logarithmic charge” proposed by

Campiglia and Laddha whose Ward identity yields the logarithmic soft theorem.

• The Ward identity ⟨out|(Q+S − SQ−)|in⟩ = 0 amounts to

lim
ω→0

lnΛ−1∂ωω
2∂ωAn+1(ω,±) = lnΛ−1S±

lnAn +O(Λ0)

which is finite as the cutoff is removed Λ → 0.

• The Ward identity of the divergent LGT is the log soft theorem.
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Gravity

• The story in gravity is exactly analogous. The superrotation charge takes the

form

Q[Y ] = lnΛ−1
[
Q(ln)

H (Ȳ ) +Q(ln)
S (Y )

]
+Q(0)

H (Ȳ ) +Q(0)
S (Y ) + · · ·

where Ȳ α on i+ is obtained from Y A on I+ by smearing with a vector

bulk-to-boundary propagator.

• The only notable difference from QED is that there is no term linear in Λ−1 to

renormalize.

• The Ward identity of superrotation is the log soft graviton theorem.
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Summary

• Therefore, we have established the following correspondence from phase space:

Divergent LGT/superrotation ⇐⇒ Logarithmic soft photon/graviton theorem

• More precisely, the charges Q± that generate the subleading asymptotic

symmetry has the following Ward identities:

▶ Free fields: Q± are finite, and

⟨out|(Q+S − SQ−)|in⟩ = 0 → tree-level subleading soft theorem

▶ Fields with interactions: Q± have logarithmic divergence lnΛ−1, and

⟨out|(Q+S − SQ−)|in⟩ = 0 → logarithmic soft theorem

• The asymptotic symmetry that corresponds to tree-level soft theorem leads to

loop corrections once long-range interactions are taken into account.
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Thank you for your attention!
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