Inverse scattering problems on Lorentzian manifolds

Spyros Alexakis

April 11, 2024

(ロ)、(型)、(E)、(E)、 E) のQ(()

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour.

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour. E. g. *Calderón Problem*: Consider

$$\sum_{i=1}^{N} (\sigma(x) \cdot \partial_i u) = 0$$

over $\Omega \subset \mathbb{R}^N$, N = 2, 3, subject to $u|_{\partial\Omega} = f$. Define

$$\Lambda_{\sigma}: H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega).$$

(日)(1)<p

 $\Lambda_{\sigma} = \partial_{\nu} u |_{\partial \Omega}.$

Knowledge of $\sigma \in C^1(\Omega)$ determines Λ_{σ} . (Forward problem).

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour. E. g. *Calderón Problem*: Consider

$$\sum_{i=1}^{N} (\sigma(x) \cdot \partial_i u) = 0$$

over $\Omega \subset \mathbb{R}^N$, N = 2, 3, subject to $u|_{\partial\Omega} = f$. Define

$$\Lambda_{\sigma}: H^{1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega).$$

 $\Lambda_{\sigma} = \partial_{\nu} u |_{\partial \Omega}.$

Knowledge of $\sigma \in C^1(\Omega)$ determines Λ_{σ} . (Forward problem). *Calderón Inverse Problem:* knowing Λ_{σ} determine σ ?

Wave inverse problems.

Consider a static Lorenzian metric: $g = -a(x)dt^2 + \overline{g}$; Consider associated operators

 $\mathcal{L} = \Box_g$, or $\mathcal{L} = \Box_g + a^i(x)\partial_i + V(x)$.

Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $(g, a^i, V??)$.

Wave inverse problems.

Consider a static Lorenzian metric: $g = -a(x)dt^2 + \overline{g}$; Consider associated operators

$$\mathcal{L} = \Box_g$$
, or $\mathcal{L} = \Box_g + a^i(x)\partial_i + V(x)$.

Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $(g, a^i, V??)$.

Theme B: Consider *non-linear operators* \mathcal{N} , such as:

$$\mathcal{N}[u] = \Box_g u + u^3.$$

Assume knowledge of scattering map (for small data). Can one reconstruct the operator? (g??).

Wave inverse problems.

Consider a static Lorenzian metric: $g = -a(x)dt^2 + \overline{g}$; Consider associated operators

$$\mathcal{L} = \Box_g$$
, or $\mathcal{L} = \Box_g + a^i(x)\partial_i + V(x)$.

Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $(g, a^i, V??)$.

Theme B: Consider *non-linear operators* \mathcal{N} , such as:

$$\mathcal{N}[u] = \Box_g u + u^3.$$

Assume knowledge of scattering map (for small data). Can one reconstruct the operator? (g??).

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \operatorname{on}\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial \overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T].$

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \text{on}\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial \overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T]$. "Lorenzian" $\Lambda_{\mathcal{L}}^{T}$.

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \text{on}\,\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial\overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T]$. "Lorenzian" $\Lambda_{\mathcal{L}}^{T}$. Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L} .

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \text{on}\,\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial\overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T]$. "Lorenzian" $\Lambda_{\mathcal{L}}^{T}$. Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L} .

Infinite scattering: Consider asymptotically flat space-times (M,g) with complete null infinities $\mathcal{I}^-, \mathcal{I}^+$. Consider the map S_g : $\mathcal{C}_0^\infty(\mathcal{I}^-) \to H^1(\mathcal{I}^+)$, for suitably small initial data.

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \text{on}\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial \overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T]$. "Lorenzian" $\Lambda_{\mathcal{L}}^{T}$. Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L} .

Infinite scattering: Consider asymptotically flat space-times (M, g) with complete null infinities $\mathcal{I}^-, \mathcal{I}^+$. Consider the map $S_g: C_0^\infty(\mathcal{I}^-) \to H^1(\mathcal{I}^+)$, for suitably small initial data. Reconstruct the metric g from this map?

First consider $g = -a(x)dt^2 + \overline{g}(x)dx^2$ static. Finite scattering: Say $(\overline{M}, \overline{g})$ is a compact manifold with boundary. Assume knowledge of the *Lorenzian* Dirichlet-to-Neumann map: Solve:

$$\mathcal{L}[u] = 0, \text{on}\overline{M} \times [0, T], u|_{t=0}, \partial_t u|_{t=0} = 0, u(x, t) = f(x, t)x \in \partial \overline{M}$$

Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \overline{M} \times [0, T]$. "Lorenzian" $\Lambda_{\mathcal{L}}^{T}$. Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L} .

Infinite scattering: Consider asymptotically flat space-times (M,g) with complete null infinities $\mathcal{I}^-, \mathcal{I}^+$. Consider the map S_g : $\mathcal{C}_0^\infty(\mathcal{I}^-) \to H^1(\mathcal{I}^+)$, for suitably small initial data. Reconstruct the metric g from this map? Start with *non-linear* setting.

Brief history of nonlinear wave inverse problems

- Kurylev, Lassas, Uhlmann (2014-2018): Using nonlinearity and higher order linearization to solve inverse problems
- Since then, techniques using nonlinearity as a tool have been extremely popular: T Balehowsky, C Cârstea, X Chen, M de Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G Nakamura, L Oksanen, G Paternain, A Rüland, M Salo, P Stefanov, G Uhlmann, Y Wang, J Zhai, and many more

Motivation for the scattering problem

Can one recover the spacetime structure from scattering data? A couple of examples

- Sá Barreto (2005): if space part of spacetime is asymptotically hyperbolic and setting is time-independent (static), then Carleman estimates and boundary control yield unique determination of metric: Φ*g₁ = g₂
- Sá Barreto, Wang, Uhlmann (2021): nonlinear scattering. Potential recovery for (∂²_t − Δ)u + f(u), f(u) ∼ u⁵, via Melrose-type compactification (stereographic projection to compactify space)

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ .

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}$, $k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ . Then we can find conformal class of g.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ . Then we can find conformal class of g. If $A = Const \ne 0$, we can find g.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ . Then we can find conformal class of g. If $A = Const \ne 0$, we can find g.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Idea: Well-posedness of forward problem

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ . Then we can find conformal class of g. If $A = Const \ne 0$, we can find g.

Idea: Well-posedness of forward problem(i. e. well-definedness of scattering map $R^{-}[u]|_{\mathcal{I}^{-}} \rightarrow R^{+}[u]|_{\mathcal{I}^{+}}$).

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version) Consider (M^{3+1}, g) complete with $g_{ab} = \eta_{ab} + d_{ab}$, $d_{ab}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^-, \mathcal{I}^+$ exist). Consider $\mathcal{N}[u] = \Box_g u + A \cdot u^k$, $k \in \mathbb{N}, k \ge 4$. Consider incoming scattering data on u at \mathcal{I}^- . (Incoming radiation field $R^-[u]$). Solve $\mathcal{N}[u] = 0$ in M^{3+1} and measure radiation $\mathcal{R}^+[u]$ at \mathcal{I}^+ . Then we can find conformal class of g. If $A = Const \ne 0$, we can find g.

Idea: Well-posedness of forward problem(i. e. well-definedness of scattering map $R^{-}[u]|_{\mathcal{I}^{-}} \rightarrow R^{+}[u]|_{\mathcal{I}^{+}}$). Use nonlinearity to "generate" point sources (of tiny amplitude).

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{\text{bottom}}, \partial M^{3+1}|_{\text{top}}$ and time-like "side" $\partial M^{3+1}|_{\text{side}}$.

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{\text{bottom}}, \partial M^{3+1}|_{\text{top}}$ and time-like "side" $\partial M^{3+1}|_{\text{side}}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$.

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{\text{bottom}}, \partial M^{3+1}|_{\text{top}}$ and time-like "side" $\partial M^{3+1}|_{\text{side}}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known.

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{bottom}, \partial M^{3+1}|_{top}$ and time-like "side" $\partial M^{3+1}|_{side}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g,V}$ for: $\mathcal{L}[u] = 0$ on M, $u = \partial_t u = 0$ on $\partial M|_{bottom}$, u = f(x, t).

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{bottom}, \partial M^{3+1}|_{top}$ and time-like "side" $\partial M^{3+1}|_{side}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g,V}$ for: $\mathcal{L}[u] = 0$ on M, $u = \partial_t u = 0$ on $\partial M|_{bottom}$, u = f(x, t).**Goal:** Reconstruct V?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)].

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{bottom}, \partial M^{3+1}|_{top}$ and time-like "side" $\partial M^{3+1}|_{side}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g,V}$ for: $\mathcal{L}[u] = 0$ on M, $u = \partial_t u = 0$ on $\partial M|_{bottom}$, u = f(x, t).**Goal:** Reconstruct V?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g = \eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand).

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{bottom}, \partial M^{3+1}|_{top}$ and time-like "side" $\partial M^{3+1}|_{side}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g,V}$ for: $\mathcal{L}[u] = 0$ on M, $u = \partial_t u = 0$ on $\partial M|_{bottom}$, u = f(x, t).**Goal:** Reconstruct V?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g = \eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand). Our results first for *time-dependent metrics:*

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\partial M^{3+1}|_{bottom}, \partial M^{3+1}|_{top}$ and time-like "side" $\partial M^{3+1}|_{side}$. Consider linear operator $\mathcal{L}[u] = \Box_g u + V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g,V}$ for: $\mathcal{L}[u] = 0$ on M, $u = \partial_t u = 0$ on $\partial M|_{bottom}$, u = f(x, t).**Goal:** Reconstruct V?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g = \eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand). Our results first for *time-dependent metrics:*

Theorem (A-Feizmohammadi-Oksanen 2021, Rough version) Assume g "tall enough", "spatial exponential map smooth", "no trapping" and "non-positive null sectional curvature". Then V can be reconstructed from $\Lambda_{g,V}$ in a "thick time slab" in M^{3+1} . Linear scattering: The Lorenzian Calderon problem. Key to reconstruction of V is an "optimal" unique continuation result for the metric g:

Proposition

Assume g satisfies the geometric assumptions in theorem: No trapping, no null conjugate points, $R(N, v, N, v) \ge 0, \forall v \perp N, N$ null. Choose any point $P \in M^{3+1}$ and let \mathcal{E}_P be the *exterior* of null cone at P. Assume $u \in H^{-s}(M)$ solves $\mathcal{L}[u] = 0$; assume $u, \partial_{\nu}u$ vanish on $\mathcal{E}_P \bigcap \partial M^{3+1}$. Then u vanishes on \mathcal{E}_P .

Optimal from point of view of characterizing the region where one obtains vanishing.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P .

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g).

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.

Require $u \in H^s$, s < 0 suitably. Can "identify" solutions to $\mathcal{L}u = 0$ with support of $\partial_t u$ at the point P only.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.

Require $u \in H^s$, s < 0 suitably. Can "identify" solutions to $\mathcal{L}u = 0$ with support of $\partial_t u$ at the point P only.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.

Require $u \in H^s$, s < 0 suitably. Can "identify" solutions to $\mathcal{L}u = 0$ with support of $\partial_t u$ at the point P only. Integration by parts trick: Find V at P.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.

Require $u \in H^s$, s < 0 suitably. Can "identify" solutions to $\mathcal{L}u = 0$ with support of $\partial_t u$ at the point P only. Integration by parts trick: Find V at P. P can lie in "slab".

Key feature: We obtain reconstruction of lower-order terms for open space of metrics. But with current ideas: We need to know the metric *g*, and we find the lower-order terms. (Analogous picture in the "classical" Calderón elliptic inverse problem—in all settings where it has been solved the metric is *known* and we find lower-order terms).

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic ∂M^{3+1}) $\rightarrow u$ smooth in \mathcal{E}_P . To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_P . Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.

Require $u \in H^s$, s < 0 suitably. Can "identify" solutions to $\mathcal{L}u = 0$ with support of $\partial_t u$ at the point P only. Integration by parts trick: Find V at P. P can lie in "slab".

Key feature: We obtain reconstruction of lower-order terms for open space of metrics. But with current ideas: We need to know the metric *g*, and we find the lower-order terms. (Analogous picture in the "classical" Calderón elliptic inverse problem—in all settings where it has been solved the metric is *known* and we find lower-order terms).

In non-linear wave problems, we find the metric .:

Let (\mathbb{R}^{1+3}, η) be the Minkowski space with its standard metric η in polar coordinates (t, r, θ, ϕ) :

$$\eta = -dt^2 + \mathrm{d}r^2 + r^2 \left(\mathrm{d}\theta^2 + \sin^2(\theta)\mathrm{d}\varphi^2\right)$$

We make a conformal change to $\tilde{\eta}:=\Omega^2\eta$ with

$$\Omega = 4 \frac{1}{1 + (t+r)^2} \frac{1}{1 + (t-r)^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Penrose conformal compactification

• Let
$$\tilde{\eta} = \Omega^2 \eta$$
, where

$$\Omega = 4 \frac{1}{1 + (t + r)^2} \frac{1}{1 + (t - r)^2}$$

 $\blacktriangleright~\Phi:\mathbb{R}^{1+3}\to\mathbb{R}\times\mathbb{S}^3,$ defined by

$$\Phi(t,r,\theta,\varphi)=(T,R,\theta,\varphi),$$

where

$$T = \arctan(t+r) + \arctan(t-r),$$

 $R = \arctan(t+r) - \arctan(t-r),$
 $-\pi < T + R < \pi, \quad -\pi < T - R < \pi, \quad R \ge 0.$

On \mathbb{S}^3 we have the standard spherical coordinates (R, θ, φ) , and the metric on the cylinder $\mathbb{R} \times \mathbb{S}^3$ is of the form

$$\Phi_*(\Omega^2 \eta) = g_{\mathbb{R} \times \mathbb{S}^3} = -dT^2 + dR^2 + \sin^2(R) \left(d\theta^2 + \sin^2(\theta) d\varphi^2 \right).$$

Penrose conformal compactification

Thus

$$\Phi:\mathbb{R}^{1+3}\to\mathbb{R}\times\mathbb{S}^3$$

is conformal diffeomorphism. We call

$$\widehat{N} = \Phi(\mathbb{R}^{1+3}) \subset \mathbb{R} imes \mathbb{S}^3$$

the Penrose diagram of \mathbb{R}^{1+3} and Φ the Penrose map.

Right picture: R. Wald *General relativ-ity*, 1984

Penrose conformal compactification

Thus

 $\Phi:\mathbb{R}^{1+3}\to\mathbb{R}\times\mathbb{S}^3$

is conformal (isometric) diffeomorphism. We call

$$\widehat{N} = \Phi(\mathbb{R}^{1+3}) \subset \mathbb{R} imes \mathbb{S}^3$$

the Penrose diagram of \mathbb{R}^{1+3} .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Notation for the wave equation

Let (\mathbb{R}^{1+3}, g) be a globally hyperbolic Lorentzian manifold and consider the nonlinear wave equation

$$\Box_g u(t,y) + a(t,y)u(t,y)^\kappa = 0, \quad (t,y) \in \mathbb{R}^{1+3}$$

where $\kappa \ge 4$ is an integer and a(t, y) a smooth rapidly decaying function.

Here \Box_g is the D'Alembertian wave operator

$$\Box_g u = -\sum_{a,b=0}^n \frac{1}{\sqrt{|\det(g)|}} \frac{\partial}{\partial x^a} \left(\sqrt{|\det(g)|} g^{ab} \frac{\partial u}{\partial x^b} \right)$$

Towards a scattering problem

- Let η be the standard Minkowski metric on \mathbb{R}^{n+1} .
- Let g be a globally hyperbolic Lorentzian metric on ℝⁿ⁺¹, such that g_{ij}(x) − η_{ij} is a Schwartz rapidly decaying function and
- Let $\tilde{g} = \Omega^2 g$ be a conformal metric to g and let $\hat{g} = \Phi_* \tilde{g}$ be the pushforward metric on the Penrose diagram.

Then u satisfies the nonlinear wave equation

$$\Box_g u + a u^{\kappa} = 0$$

iff $\tilde{u} = (\Omega^{-1}u) \circ \Phi^{-1}$ satisfies

$$(\Box_{\widehat{g}} + B)\widetilde{u} + A\widetilde{u}^{\kappa} = 0$$

in \widehat{N} , where

$$A := (\Phi^{-1})^* (a\Omega^{\kappa-3}), \quad B := \frac{1}{6} (\Phi^{-1})^* (R_{\Omega^2 g} - \Omega^{-2} R_g).$$

A geometric scattering problem

We say that a function $u \in H^m_{loc}(\mathbb{R} \times \mathbb{R}^3)$ is a solution of the scattering problem on $(\mathbb{R} \times \mathbb{R}^3, g)$, with the past radiation field h_- ,

$$\left\{ egin{array}{ll} \Box_g u(x)+a(x)\cdot u(x)^\kappa=0, & ext{in } \mathbb{R} imes \mathbb{R}^3, \ u(x)\sim h_-(x) & ext{as } x ext{ goes to } \mathcal{I}^- \end{array}
ight.$$

if the function $\tilde{u} = (\Omega^{-1}u) \circ \Phi^{-1}$ satisfies $\tilde{u} \in H^m(\widehat{N})$ and it is a solution of the Goursat-Cauchy boundary value problem

$$\begin{cases} \Box_{\widehat{g}} \widetilde{u}(x) + B(x)\widetilde{u}(x) + A(x) \cdot \widetilde{u}(x)^{\kappa} = 0, \text{ in } \widehat{N}, \\ \widetilde{u}|_{\mathcal{I}^{-}} = \widetilde{h}_{-}, \end{cases}$$

Scattering problem has a solution

Lemma

Let g be a globally hyperbolic Lorentzian metric on \mathbb{R}^{3+1} , where $g - \eta$ is in the Schwartz class. Let $(\widehat{N}, \Omega^2 g)$ be the Penrose diagram. Let $-\pi < T_- < t_- < 0 < t_+ < T_+ < \pi$. There is $0 < \varepsilon << 1$, m large such that the following holds: Let $h \in H^m(\mathcal{I}^-)$ be such that $\supp(h) \subset \{x \in \mathcal{I}^- \mid T_- < t(x) < t_-\}$ and $\|h\|_{H^m(\mathcal{I}^-)} < \varepsilon$ (m large enough). Then the non-linear scattering problem

$$\begin{cases} (\Box_g + B)u + Au^{\kappa} = 0, & \text{in } \{x \in \widehat{N} : t(x) < T_+\}, \\ u|_{\mathcal{I}^-} = h, & (1) \\ u = 0 \text{ in } \{x \in \widehat{N} : t(x) < T_-\} \end{cases}$$

has a unique solution depending continuously on h

Defining the scattering operator

We define the (geometric) scattering operator on \widehat{N} by

$$\begin{split} S: C^{\infty}_c(\mathcal{I}^-) \supset U \to C^{\infty}(\mathcal{I}^+), \\ S(u|_{\mathcal{I}^-}) = u|_{\mathcal{I}^+}, \quad u = h \in U, \end{split}$$

for a neighbourhood U of the zero function in $C_c^{\infty}(\mathcal{I})$. Here u solves the (non-linear) scattering problem

$$\begin{cases} (\Box_g + B)u + Au^{\kappa} = 0, & \text{in } \{x \in \widehat{N} : t(x) < T_+\}, \\ u|_{\mathcal{I}^-} = h, \\ u = 0 \text{ in } \{x \in \widehat{N} : t(x) < T_-\} \end{cases}$$
(2)

Metric reconstruction result

Theorem (A, Isozaki, Lassas, Tyni-2024)

If $\operatorname{supp}(a) = \mathbb{R}^{1+3}$, the non-linear scattering operator *S*, defined in a neighborhood of the zero function in $C_0^{\infty}(\mathcal{I}^-)$, determines the conformal class of *g*.

Idea of proof: Compactification and a non-physical extension

Assume that

- the metric g is globally hyperbolic Lorentzian metric and g_{ij} - η_{ij} belong to the Schwartz class
- $\widehat{g} := \Phi_* \widetilde{g}$ is the push-forward metric of $\widetilde{g} := \Omega^2 g$ on the Penrose diagram

Then \widehat{g} can be smoothly extended to $\mathbb{R} \times \mathbb{S}^3$ by defining $g_e = \widehat{g}$ in \widehat{N} and $g_e = \eta$, for $x \in \mathbb{R} \times \mathbb{S}^3 \setminus \widehat{N}$

Measurements beyond infinity

We can do an artificial extension of the Penrose diagram \widehat{N} by gluing it into the cylinder $\mathbb{R} \times \mathbb{S}^3$:

Scattering operator determines a source-to-solution map

Given a source f supported in the non-physical past, we solve a linear wave equation

$$\begin{cases} (\Box_{g_e} + B)u = f, & \text{in } N_{\text{ext}}, \\ \operatorname{supp}(u) \subset J^+(\operatorname{supp}(f)). \end{cases}$$

up to \mathcal{I}^- . Restricting u to \mathcal{I}^- , this is equivalent to

$$\begin{cases} (\Box_{g_e} + B)u = f, & \text{in } N_{\text{ext}}, \\ u|_{\mathcal{I}^-} = h^-, \\ u(T_-, x) = \partial_t u(T_-, x) = 0, \end{cases}$$

which is a scattering problem in the Penrose diagram. (Here $T_{-} \leq \inf t(\operatorname{supp}(f))$).

Then the scattering operator determines $h^+ := u|_{\mathcal{I}^+} = S(u|_{\mathcal{I}^+}).$ Finally, solving the linear Cauchy-Goursat problem

$$\begin{cases} (\Box_{g_e} + B)u = 0, & \text{in } N_{\text{ext}}, \\ u|_{\mathcal{I}^+} = h^+, \end{cases}$$

shows that we determine *u* in the nonphysical future.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Rough sketch of the inverse scattering problem

- Scattering operator determines the source-to-solution map
 The source-to-solution map determines the scattering relation: using the nonlinearity
 - A. Feizmohammadi, M. Lassas, L. Oksanen: Inverse problems for non-linear hyperbolic equations with disjoint sources and receivers. Forum of Mathematics, Pi 9 (2021), Paper No. e10, 52

Higher order linearization

A k-fold linearization of the nonlinear equation

$$(\Box_g + B)u + Au^k = \sum_{j=1}^k \varepsilon_j f_j$$
(3)

with respect to ε_j yields

$$(\Box_g + B)w + Av_1v_2\cdots v_k = 0 \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where

$$(\Box_g + B)v_j = f_j, \text{ in } \widehat{N}$$

The products $v_1v_2 \cdots v_k$ can be used to produce point sources.

Scattering relation from the \mathcal{I}^- -to- \mathcal{I}^+ map

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Rough sketch of the inverse scattering problem

- The scattering relation determines the arrival time functions
- Arrival time functions determine light observation sets (and the differentiable structure of the manifold)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rough sketch of the inverse scattering problem

- The light observation sets determine parts of lightcones, which themselves determine the full lightcones
- Knowledge of the lightcones determines the metric up to a conformal factor
- ▶ If the nonlinear term $A \equiv 1$, then one could also recover the conformal factor of the metric