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Wave inverse problems: scattering maps

First consider g = —a(x)dt? + g(x)dx? static. Finite scattering:
Say (M, g) is a compact manifold with boundary.

Assume knowledge of the Lorenzian Dirichlet-to-Neumann map:
Solve:

L[u] = 0,onM x [0, T], u]t=0, Oru|t=0 = 0, u(x, t) = f(x, t)x € OM

Measure d,u(x, t) on (x,t) € 9M x [0, T]. “Lorenzian” AL.
Challenge: Knowing /\Z reconstruct L.

Infinite scattering: Consider asymptotically flat space-times
(M, g) with complete null infinities Z~,Z". Consider the map S,:
CS°(Z7) — HY(ZT), for suitably small initial data. Reconstruct the
metric g from this map?

Start with non-linear setting.



Brief history of nonlinear wave inverse problems

» Kurylev, Lassas, Uhlmann (2014-2018): Using nonlinearity and
higher order linearization to solve inverse problems

» Since then, techniques using nonlinearity as a tool have been
extremely popular: T Balehowsky, C Carstea, X Chen, M de
Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H
Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G
Nakamura, L Oksanen, G Paternain, A Riland, M Salo, P
Stefanov, G Uhlmann, Y Wang, J Zhai, and many more



Motivation for the scattering problem

Can one recover the spacetime structure from scattering data?
A couple of examples

» Sa Barreto (2005): if space part of spacetime is asymptotically
hyperbolic and setting is time-independent (static), then
Carleman estimates and boundary control yield unique
determination of metric: ®*g; = g

» Sa Barreto, Wang, Uhlmann (2021): nonlinear scattering.
Potential recovery for (02 — A)u + f(u), f(u) ~ u®, via
Melrose-type compactification (stereographic projection to
compactify space)



Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider (M3+1, g) complete with g.p = Nap + dap, dap(t, x)
Schwarz. (So null infinities T~ ,Z% exist). Consider
Nlul=0gu+A-uk, ke N k>4
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Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)

Consider (M3+1, g) complete with g.p = Nap + dap, dap(t, x)
Schwarz. (So null infinities T~ ,Z% exist). Consider
Nlul=0gu+A-uk, ke N k>4

Consider incoming scattering data on u at Z~. (Incoming radiation
field R~ [u]). Solve N'[u] = 0 in M3*! and measure radiation
R*[u] at Z+. Then we can find conformal class of g. If

A = Const # 0, we can find g.

Idea: Well-posedness of forward problem(i. e. well-definedness of
scattering map R~ [u]|z- — R™[u]|z+). Use nonlinearity to
“generate” point sources (of tiny amplitude).
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Llu] =0gu+ V - u. Here g is known and V is not known.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map
Ng.v for:

Llu] =00on M, u=0;u =0 on IM|pottom, U = f(x,t).Goal:
Reconstruct V7

Problem solved in the ultra-static case [Boundary Control Method
(Belishev-Kurylev), plus Unique Continuation (Tataru)]. If g =7
(Minkowski) and V' time dependent (Stefanov). (Further: Eskin,
Isakov, Sjostrand). Our results first for time-dependent metrics:

Theorem (A-Feizmohammadi-Oksanen 2021, Rough version)

Assume g “tall enough”, “spatial exponential map smooth”, “no
trapping” and “non-positive null sectional curvature”. Then V can
be reconstructed from Ng v in a "thick time slab" in M3+,



Linear scattering: The Lorenzian Calderon problem.
Key to reconstruction of V is an

“optimal” unique continuation result
for the metric g:

Proposition

Assume g satisfies the geometric
assumptions in theorem: No
trapping, no null conjugate points,
R(N,v,N,v)>0,Yv L N,N null.
Choose any point P € M3t1 and let
Ep be the exterior of null cone at P.
Assume u € H=*(M) solves

L[u] = 0; assume u, J,, u vanish on
Ep (N OM3*1. Then u vanishes on
Ep.

Optimal from point of view of charac-
terizing the region where one obtains
vanishing.
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Idea for Uniqueness Proposition: Micro-local ellipticity (and
non-characteristic 9M3*1) — u smooth in Ep. To derive
uniqueness (using Carleman estimates) need a pseudo-convex
foliation of the entire Ep. Foliation constructed from distance
function from point P (after conformal change of g). Use
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Require u € H*, s < 0 suitably. Can “identify” solutions to Lu =0
with support of 9;u at the point P only. Integration by parts trick:
Find V at P. P can lie in “slab".

Key feature: We obtain reconstruction of lower-order terms for
open space of metrics. But with current ideas: We need to know
the metric g, and we find the lower-order terms. (Analogous
picture in the “classical” Calderén elliptic inverse problem—in all
settings where it has been solved the metric is known and we find
lower-order terms).

In non-linear wave problems, we find the metric.:



Non-linear scattering: Penrose conformal compactification

Let (R*3,7) be the Minkowski space with its standard metric 7 in
polar coordinates (t, r, 0, ¢):

n=—dt® +dr* + r* (d6? + sin*(0)dp?)
We make a conformal change to 7j := Q°n with

1 1

Q=4
14+ (t+r)21+(t—r)




Penrose conformal compactification
> Let 7j = Q°n, where

1 1
1+ (t+r)?14(t—r)?

> RT3 5 R x S3, defined by
o(t,r,0,0) =(T,R,0,¢p),
where

T = arctan(t + r) + arctan(t — r),
R = arctan(t + r) — arctan(t — r),
< T+R<m, —7w<T—-R<mwm, R2>0.

On S we have the standard spherical coordinates (R, 8, ), and
the metric on the cylinder R x S3 is of the form

P.(Q%n) = grxss = —dT? + dR? +sin*(R) (d6? + sin®(0)d¢?) .



Penrose conformal compactification

Thus
¢RI SRS

is conformal diffeomor-
phism. We call

N=oR")CRxS?

the Penrose diagram of
1+3

R and & the Penrose Right picture: R. Wald General relativ-

map. ity, 1984



Penrose conformal compactification

Thus
¢RI SRS

is conformal (iso-
metric)  diffeomor-
phism. We call

N = o(R3) c RxS?

the Penrose diagram
of R*3.

2)

Tt

RxS?

io



Notation for the wave equation

Let (R*3, g) be a globally hyperbolic Lorentzian manifold and
consider the nonlinear wave equation

Ogu(t,y) + a(t,y)u(t,y)* =0, (ty)e€ R

where k > 4 is an integer and a(t,y) a smooth rapidly decaying
function.
Here [g is the D'Alembertian wave operator

/7 ou
;o \/NTﬁxE’( |det(e)le ba b)



Towards a scattering problem

» Let 1) be the standard Minkowski metric on R"*1.

> Let g be a globally hyperbolic Lorentzian metric on R™!, such
that gjj(x) — 1 is a Schwartz rapidly decaying function and

> Let & = Q°g be a conformal metric to g and let § = $,& be
the pushforward metric on the Penrose diagram.

Then u satisfies the nonlinear wave equation
Ogu+au™ =0
iff i = (Q1u) o ®1 satisfies
(O + B)i + A" =0

in N, where



A geometric scattering problem

We say that a function u € H™ (R x R3) is a solution of the

scattering problem on (R x R3, g), with the past radiation field h_,

Ogu(x) 4+ a(x) - u(x)® =0, inRxR3
u(x) ~ h_(x) as x goestoZ~

if the function & = (Q u) o ®~! satisfies i € H"’(N) and it is a
solution of the Goursat-Cauchy boundary value problem

{ Ogii(x) + B()E(x) + A(x) - 5()" =0, in N,
ilz- = h_,



Scattering problem has a solution

Lemma

Let g be a globally hyperbolic Lorentzian metric on R3t1, where
g — 1 is in the Schwartz class. Let (N,Q2g) be the Penrose
diagram. Let —m < T_ <t_ <0<ty < Ty <m.Thereis

0 < e << 1, m large such that the following holds: Let

h € H™(Z™) be such that supp(h) C {x € T~ | T_ < t(x) < t_}
and |h||ymz-y < & (m large enough).

Then the non-linear scattering problem

(g + B)u+ Au®" =0, in{xe N: t(x) < Ty,
dp =h (1)
u=0in{xeN: t(x) < T_}

has a unique solution depending continuously on h



Defining the scattering operator

We define the (geometric) scattering operator on N by

S:CX(IT)DdU— C®(IH),
S(U‘I_) = u’I+, u=heU,

for a neighbourhood U of the zero function in C2°(Z). Here u
solves the (non-linear) scattering problem

(Og+ B)u+Au® =0, in{xe N : t(x) < T4},
oy = h @
u=0in{xeN: t(x) < T_}



Metric reconstruction result

Theorem (A, Isozaki, Lassas, Tyni—2024)

If supp(a) = R*3, the non-linear scattering operator S, defined in
a neighborhood of the zero function in C§°(Z~), determines the
conformal class of g.



|dea of proof: Compactification and a non-physical extension

Assume that
» the metric g is globally hyperbolic Lorentzian metric and
gij — nij belong to the Schwartz class
» g := ®.g is the push-forward metric of g := Qg on the
Penrose diagram

Then g can be smoothly extended to R x S? by defining g = g in
Nand go =1, for x c R x S3\ N



Measurements beyond infinity

We can do an artificial extension of the Penrose diagram N by
gluing it into the cylinder R x S3:

P+2

(m,{SP})
w

(0,{NP})

(=, {SP})

R x S?




Scattering operator determines a source-to-solution map

Given a source f supported in the non-physical past, we solve a
linear wave equation

(Og. + B)u = f, in N,
supp(u) C J* (supp(f)).

up to Z~. Restricting u to Z—, this is equivalent to

(Dge + B)U = f’ in Nexta
“’I— =h",
u(T-,x) = 0ru(T_-,x) =0,

which is a scattering problem in the Penrose diagram. (Here
T_ < inft(supp(f))).



Then the scattering
operator  determines
ht = ul, = S(ul;. )

Finally,  solving the
linear Cauchy-Goursat
problem

(Hg. + B)u=0,

uly. = ht,

shows that we deter-
mine u in the non-
physical future.

n Nextv

=)

I+

~N

10




Rough sketch of the inverse scattering problem

> Scattering operator determines the source-to-solution map
» The source-to-solution map determines the scattering relation:
using the nonlinearity

» A. Feizmohammadi, M. Lassas, L. Oksanen: Inverse problems for
non-linear hyperbolic equations with disjoint sources and receivers.
Forum of Mathematics, Pi 9 (2021), Paper No. €10, 52



Higher order linearization

A k-fold linearization of the nonlinear equation
k
(Og + B)u + Aux = Z&tjﬁ-
j=1
with respect to ¢; yields
(g +B)w+Aviva- v =0

where R
(Og +B)vj =1, inN

The products vivs - - - v, can be used to produce point sources.



Scattering relation from the Z—-to-Z" map

iy

=)

T+

7-

N

R x S*

it

=)

T+

» 10




Rough sketch of the inverse scattering problem

» The scattering * I+
relation
determines the
arrival time

functions

» Arrival time
functions
determine light
observation sets
(and the
differentiable
structure of the T-
manifold) i
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Rough sketch of the inverse scattering problem

» The light observation sets determine parts of lightcones, which
themselves determine the full lightcones

» Knowledge of the lightcones determines the metric up to a
conformal factor

» |f the nonlinear term A = 1, then one could also recover the
conformal factor of the metric
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