Inverse scattering problems on Lorentzian manifolds

Spyros Alexakis

April 11, 2024

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour.

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour.
E. g. Calderón Problem:

Consider

$$
\sum_{i=1}^{N}\left(\sigma(x) \cdot \partial_{i} u\right)=0
$$

over $\Omega \subset \mathbb{R}^{N}, N=2,3$, subject to $\left.u\right|_{\partial \Omega}=f$. Define

$$
\Lambda_{\sigma}: H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)
$$

$\Lambda_{\sigma}=\left.\partial_{\nu} u\right|_{\partial \Omega}$.
Knowledge of $\sigma \in \mathcal{C}^{1}(\Omega)$ determines Λ_{σ}. (Forward problem).

Inverse problems: General framework.

Seek to reconstruct an operator (say Partial Differential operator) on manifold with boundary, from knowledge of boundary behaviour.
E. g. Calderón Problem:

Consider

$$
\sum_{i=1}^{N}\left(\sigma(x) \cdot \partial_{i} u\right)=0
$$

over $\Omega \subset \mathbb{R}^{N}, N=2,3$, subject to $\left.u\right|_{\partial \Omega}=f$. Define

$$
\Lambda_{\sigma}: H^{1 / 2}(\partial \Omega) \rightarrow H^{-1 / 2}(\partial \Omega)
$$

$\Lambda_{\sigma}=\left.\partial_{\nu} u\right|_{\partial \Omega}$.
Knowledge of $\sigma \in \mathcal{C}^{1}(\Omega)$ determines Λ_{σ}. (Forward problem).
Calderón Inverse Problem: knowing Λ_{σ} determine σ ?

Wave inverse problems.

Consider a static Lorenzian metric: $g=-a(x) d t^{2}+\bar{g}$; Consider associated operators
$\mathcal{L}=\square_{g}$, or $\mathcal{L}=\square_{g}+a^{i}(x) \partial_{i}+V(x)$.
Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $\left(g, a^{i}, V ? ?\right)$.

Wave inverse problems.

Consider a static Lorenzian metric: $g=-a(x) d t^{2}+\bar{g}$; Consider associated operators
$\mathcal{L}=\square_{g}$, or $\mathcal{L}=\square_{g}+a^{i}(x) \partial_{i}+V(x)$.
Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $\left(g, a^{i}, V ? ?\right)$.
Theme B: Consider non-linear operators \mathcal{N}, such as:

$$
\mathcal{N}[u]=\square_{g} u+u^{3} .
$$

Assume knowledge of scattering map (for small data). Can one reconstruct the operator? (g ??).

Wave inverse problems.

Consider a static Lorenzian metric: $g=-a(x) d t^{2}+\bar{g}$; Consider associated operators
$\mathcal{L}=\square_{g}$, or $\mathcal{L}=\square_{g}+a^{i}(x) \partial_{i}+V(x)$.
Theme A: Assume knowledge of "finite" scattering map. Can one reconstruct the operator? $\left(g, a^{i}, V ? ?\right)$.
Theme B: Consider non-linear operators \mathcal{N}, such as:

$$
\mathcal{N}[u]=\square_{g} u+u^{3} .
$$

Assume knowledge of scattering map (for small data). Can one reconstruct the operator? (g ??).

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$ Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$.

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$
Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$. "Lorenzian" $\wedge_{\mathcal{L}}^{T}$.

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$
Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$. "Lorenzian" $\wedge_{\mathcal{L}}^{T}$.
Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L}.

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$
Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$. "Lorenzian" $\wedge_{\mathcal{L}}^{T}$.
Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L}.
Infinite scattering: Consider asymptotically flat space-times (M, g) with complete null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$. Consider the map S_{g} : $\mathcal{C}_{0}^{\infty}\left(\mathcal{I}^{-}\right) \rightarrow H^{1}\left(\mathcal{I}^{+}\right)$, for suitably small initial data.

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$
Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$. "Lorenzian" $\wedge_{\mathcal{L}}^{T}$.
Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L}.
Infinite scattering: Consider asymptotically flat space-times (M, g) with complete null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$. Consider the map S_{g} : $\mathcal{C}_{0}^{\infty}\left(\mathcal{I}^{-}\right) \rightarrow H^{1}\left(\mathcal{I}^{+}\right)$, for suitably small initial data. Reconstruct the metric g from this map?

Wave inverse problems: scattering maps

First consider $g=-a(x) d t^{2}+\bar{g}(x) d x^{2}$ static. Finite scattering: Say (\bar{M}, \bar{g}) is a compact manifold with boundary.
Assume knowledge of the Lorenzian Dirichlet-to-Neumann map: Solve:
$\mathcal{L}[u]=0$, on $\bar{M} \times[0, T],\left.u\right|_{t=0},\left.\partial_{t} u\right|_{t=0}=0, u(x, t)=f(x, t) x \in \partial \bar{M}$
Measure $\partial_{\nu} u(x, t)$ on $(x, t) \in \partial \bar{M} \times[0, T]$. "Lorenzian" $\wedge_{\mathcal{L}}^{T}$.
Challenge: Knowing $\Lambda_{\mathcal{L}}^{T}$ reconstruct \mathcal{L}.
Infinite scattering: Consider asymptotically flat space-times (M, g) with complete null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$. Consider the map S_{g} : $\mathcal{C}_{0}^{\infty}\left(\mathcal{I}^{-}\right) \rightarrow H^{1}\left(\mathcal{I}^{+}\right)$, for suitably small initial data. Reconstruct the metric g from this map?
Start with non-linear setting.

Brief history of nonlinear wave inverse problems

- Kurylev, Lassas, Uhlmann (2014-2018): Using nonlinearity and higher order linearization to solve inverse problems
- Since then, techniques using nonlinearity as a tool have been extremely popular: T Balehowsky, C Cârstea, X Chen, M de Hoop, A Feizmohammadi, C Guillarmou, P Hintz, Y Kian, H Koch, K Krupchyk, M Lassas, T Liimatainen, Y-H Lin, G Nakamura, L Oksanen, G Paternain, A Rüland, M Salo, P Stefanov, G Uhlmann, Y Wang, J Zhai, and many more

Motivation for the scattering problem

Can one recover the spacetime structure from scattering data?
A couple of examples

- Sá Barreto (2005): if space part of spacetime is asymptotically hyperbolic and setting is time-independent (static), then Carleman estimates and boundary control yield unique determination of metric: $\Phi^{*} g_{1}=g_{2}$
- Sá Barreto, Wang, Uhlmann (2021): nonlinear scattering. Potential recovery for $\left(\partial_{t}^{2}-\Delta\right) u+f(u), f(u) \sim u^{5}$, via Melrose-type compactification (stereographic projection to compactify space)

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider $\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$
Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider
$\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $R^{-}[u]$). Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}.

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$
Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider
$\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $R^{-}[u]$). Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}. Then we can find conformal class of g.

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$ Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider $\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $\left.R^{-}[u]\right)$. Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}. Then we can find conformal class of g. If
$A=$ Const $\neq 0$, we can find g.

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$
Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider
$\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $\left.R^{-}[u]\right)$. Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}. Then we can find conformal class of g. If
$A=$ Const $\neq 0$, we can find g.
Idea: Well-posedness of forward problem

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$
Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider
$\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $R^{-}[u]$). Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}. Then we can find conformal class of g. If
$A=$ Const $\neq 0$, we can find g.
Idea: Well-posedness of forward problem(i. e. well-definedness of scattering map $\left.\left.R^{-}[u]\right|_{\mathcal{I}^{-}} \rightarrow R^{+}[u]_{\mathcal{I}^{+}}\right)$.

Metric recovery from nonlinear scattering.

Theorem (A-Isozaki-Lassas-Tyni, 2024 Rough version)
Consider $\left(M^{3+1}, g\right)$ complete with $g_{a b}=\eta_{a b}+d_{a b}, d_{a b}(t, x)$
Schwarz. (So null infinities $\mathcal{I}^{-}, \mathcal{I}^{+}$exist). Consider
$\mathcal{N}[u]=\square_{g} u+A \cdot u^{k}, k \in \mathbb{N}, k \geq 4$.
Consider incoming scattering data on u at \mathcal{I}^{-}. (Incoming radiation field $\left.R^{-}[u]\right)$. Solve $\mathcal{N}[u]=0$ in M^{3+1} and measure radiation $\mathcal{R}^{+}[u]$ at \mathcal{I}^{+}. Then we can find conformal class of g. If
$A=$ Const $\neq 0$, we can find g.
Idea: Well-posedness of forward problem(i. e. well-definedness of scattering map $\left.\left.\left.R^{-}[u]\right|_{\mathcal{I}^{-}} \rightarrow R^{+}[u]\right|_{\mathcal{I}^{+}}\right)$. Use nonlinearity to "generate" point sources (of tiny amplitude).

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$.

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold (M^{3+1}, g) with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$.

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known.

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g, V}$ for:
$\mathcal{L}[u]=0$ on $M, u=\partial_{t} u=0$ on $\left.\partial M\right|_{\text {bottom }}, u=f(x, t)$.

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g, V}$ for:
$\mathcal{L}[u]=0$ on $M, u=\partial_{t} u=0$ on $\left.\partial M\right|_{\text {bottom }}, u=f(x, t)$.Goal: Reconstruct V ?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)].

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g, V}$ for:
$\mathcal{L}[u]=0$ on $M, u=\partial_{t} u=0$ on $\left.\partial M\right|_{\text {bottom }}, u=f(x, t)$.Goal: Reconstruct V ?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g=\eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand).

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\Lambda_{g, V}$ for:
$\mathcal{L}[u]=0$ on $M, u=\partial_{t} u=0$ on $\left.\partial M\right|_{\text {bottom }}, u=f(x, t)$.Goal: Reconstruct V ?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g=\eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand). Our results first for time-dependent metrics:

"Finite" Linear scattering: Recover the potential V.

Consider a Lorenzian manifold $\left(M^{3+1}, g\right)$ with boundary ∂M^{3+1} containing space-like "bottom" and "top" $\left.\partial M^{3+1}\right|_{\text {bottom }},\left.\partial M^{3+1}\right|_{\text {top }}$ and time-like "side" $\left.\partial M^{3+1}\right|_{\text {side }}$. Consider linear operator $\mathcal{L}[u]=\square_{g} u+V \cdot u$. Here g is known and V is not known. Assume knowledge of the Lorenzian Dirichlet-to-Neumann map $\wedge_{g, V}$ for:
$\mathcal{L}[u]=0$ on $M, u=\partial_{t} u=0$ on $\left.\partial M\right|_{\text {bottom }}, u=f(x, t)$.Goal: Reconstruct V ?

Problem solved in the ultra-static case [Boundary Control Method (Belishev-Kurylev), plus Unique Continuation (Tataru)]. If $g=\eta$ (Minkowski) and V time dependent (Stefanov). (Further: Eskin, Isakov, Sjöstrand). Our results first for time-dependent metrics:

Theorem (A-Feizmohammadi-Oksanen 2021, Rough version) Assume g "tall enough", "spatial exponential map smooth", "no trapping" and "non-positive null sectional curvature". Then V can be reconstructed from $\Lambda_{g, v}$ in a "thick time slab" in M^{3+1}.

Linear scattering: The Lorenzian Calderon problem.

Key to reconstruction of V is an
"optimal" unique continuation result for the metric g :

Proposition

Assume g satisfies the geometric assumptions in theorem: No trapping, no null conjugate points, $R(N, v, N, v) \geq 0, \forall v \perp N, N$ null. Choose any point $P \in M^{3+1}$ and let \mathcal{E}_{P} be the exterior of null cone at P.
Assume $u \in H^{-s}(M)$ solves
$\mathcal{L}[u]=0$; assume $u, \partial_{\nu} u$ vanish on
 $\mathcal{E}_{P} \cap \partial M^{3+1}$. Then u vanishes on \mathcal{E}_{P}.
Optimal from point of view of characterizing the region where one obtains vanishing.

Convexity \rightarrow unique continuation \rightarrow recovery of V.
Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}.

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}.

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g).

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.
Require $u \in H^{s}, s<0$ suitably. Can "identify" solutions to $\mathcal{L} u=0$ with support of $\partial_{t} u$ at the point P only.

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.
Require $u \in H^{s}, s<0$ suitably. Can "identify" solutions to $\mathcal{L} u=0$ with support of $\partial_{t} u$ at the point P only.

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.
Require $u \in H^{s}, s<0$ suitably. Can "identify" solutions to $\mathcal{L} u=0$ with support of $\partial_{t} u$ at the point P only. Integration by parts trick: Find V at P.

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.
Require $u \in H^{s}, s<0$ suitably. Can "identify" solutions to $\mathcal{L} u=0$ with support of $\partial_{t} u$ at the point P only. Integration by parts trick: Find V at P. P can lie in "slab".

Key feature: We obtain reconstruction of lower-order terms for open space of metrics. But with current ideas: We need to know the metric g, and we find the lower-order terms. (Analogous picture in the "classical" Calderón elliptic inverse problem-in all settings where it has been solved the metric is known and we find lower-order terms).

Convexity \rightarrow unique continuation \rightarrow recovery of V.

Idea for Uniqueness Proposition: Micro-local ellipticity (and non-characteristic $\left.\partial M^{3+1}\right) \rightarrow u$ smooth in \mathcal{E}_{P}. To derive uniqueness (using Carleman estimates) need a pseudo-convex foliation of the entire \mathcal{E}_{P}. Foliation constructed from distance function from point P (after conformal change of g). Use $R(N, v, N, v) \leq 0 \forall N$ null $v \perp N$.
Require $u \in H^{s}, s<0$ suitably. Can "identify" solutions to $\mathcal{L} u=0$ with support of $\partial_{t} u$ at the point P only. Integration by parts trick: Find V at $P . P$ can lie in "slab".

Key feature: We obtain reconstruction of lower-order terms for open space of metrics. But with current ideas: We need to know the metric g, and we find the lower-order terms. (Analogous picture in the "classical" Calderón elliptic inverse problem-in all settings where it has been solved the metric is known and we find lower-order terms).

In non-linear wave problems, we find the metric.:

Non-linear scattering: Penrose conformal compactification

Let $\left(\mathbb{R}^{1+3}, \eta\right)$ be the Minkowski space with its standard metric η in polar coordinates (t, r, θ, ϕ) :

$$
\eta=-d t^{2}+\mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2}(\theta) \mathrm{d} \varphi^{2}\right)
$$

We make a conformal change to $\tilde{\eta}:=\Omega^{2} \eta$ with

$$
\Omega=4 \frac{1}{1+(t+r)^{2}} \frac{1}{1+(t-r)^{2}}
$$

Penrose conformal compactification

- Let $\tilde{\eta}=\Omega^{2} \eta$, where

$$
\Omega=4 \frac{1}{1+(t+r)^{2}} \frac{1}{1+(t-r)^{2}}
$$

- $\Phi: \mathbb{R}^{1+3} \rightarrow \mathbb{R} \times \mathbb{S}^{3}$, defined by

$$
\Phi(t, r, \theta, \varphi)=(T, R, \theta, \varphi)
$$

where

$$
\begin{aligned}
T & =\arctan (t+r)+\arctan (t-r) \\
R & =\arctan (t+r)-\arctan (t-r) \\
-\pi<T & +R<\pi, \quad-\pi<T-R<\pi, \quad R \geq 0
\end{aligned}
$$

On \mathbb{S}^{3} we have the standard spherical coordinates (R, θ, φ), and the metric on the cylinder $\mathbb{R} \times \mathbb{S}^{3}$ is of the form

$$
\Phi_{*}\left(\Omega^{2} \eta\right)=g_{\mathbb{R} \times \mathbb{S}^{3}}=-d T^{2}+d R^{2}+\sin ^{2}(R)\left(d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}\right)
$$

Penrose conformal compactification

Thus

$$
\Phi: \mathbb{R}^{1+3} \rightarrow \mathbb{R} \times \mathbb{S}^{3}
$$

is conformal diffeomorphism. We call

$$
\widehat{N}=\Phi\left(\mathbb{R}^{1+3}\right) \subset \mathbb{R} \times \mathbb{S}^{3}
$$

the Penrose diagram of \mathbb{R}^{1+3} and Φ the Penrose map.

Right picture: R. Wald General relativity, 1984

Penrose conformal compactification

Thus
$\Phi: \mathbb{R}^{1+3} \rightarrow \mathbb{R} \times \mathbb{S}^{3}$
is conformal (isometric) diffeomorphism. We call
$\widehat{N}=\Phi\left(\mathbb{R}^{1+3}\right) \subset \mathbb{R} \times \mathbb{S}^{3}$

the Penrose diagram of \mathbb{R}^{1+3}.

Notation for the wave equation

Let $\left(\mathbb{R}^{1+3}, g\right)$ be a globally hyperbolic Lorentzian manifold and consider the nonlinear wave equation

$$
\square_{g} u(t, y)+a(t, y) u(t, y)^{\kappa}=0, \quad(t, y) \in \mathbb{R}^{1+3}
$$

where $\kappa \geq 4$ is an integer and $a(t, y)$ a smooth rapidly decaying function.
Here \square_{g} is the D'Alembertian wave operator

$$
\square_{g} u=-\sum_{a, b=0}^{n} \frac{1}{\sqrt{|\operatorname{det}(g)|}} \frac{\partial}{\partial x^{a}}\left(\sqrt{|\operatorname{det}(g)|} g^{a b} \frac{\partial u}{\partial x^{b}}\right)
$$

Towards a scattering problem

- Let η be the standard Minkowski metric on \mathbb{R}^{n+1}.
- Let g be a globally hyperbolic Lorentzian metric on \mathbb{R}^{n+1}, such that $g_{i j}(x)-\eta_{i j}$ is a Schwartz rapidly decaying function and
- Let $\tilde{g}=\Omega^{2} g$ be a conformal metric to g and let $\widehat{g}=\Phi_{*} \tilde{g}$ be the pushforward metric on the Penrose diagram.
Then u satisfies the nonlinear wave equation

$$
\square_{g} u+a u^{\kappa}=0
$$

iff $\tilde{u}=\left(\Omega^{-1} u\right) \circ \Phi^{-1}$ satisfies

$$
\left(\square_{\widehat{g}}+B\right) \tilde{u}+A \tilde{u}^{\kappa}=0
$$

in \widehat{N}, where

$$
A:=\left(\Phi^{-1}\right)^{*}\left(a \Omega^{\kappa-3}\right), \quad B:=\frac{1}{6}\left(\Phi^{-1}\right)^{*}\left(R_{\Omega^{2} g}-\Omega^{-2} R_{g}\right)
$$

A geometric scattering problem

We say that a function $u \in H_{\text {loc }}^{m}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ is a solution of the scattering problem on $\left(\mathbb{R} \times \mathbb{R}^{3}, g\right)$, with the past radiation field h_{-},

$$
\left\{\begin{array}{l}
\square_{g} u(x)+a(x) \cdot u(x)^{\kappa}=0, \quad \text { in } \mathbb{R} \times \mathbb{R}^{3} \\
u(x) \sim h_{-}(x) \text { as } x \text { goes to } \mathcal{I}^{-}
\end{array}\right.
$$

if the function $\tilde{u}=\left(\Omega^{-1} u\right) \circ \Phi^{-1}$ satisfies $\tilde{u} \in H^{m}(\widehat{N})$ and it is a solution of the Goursat-Cauchy boundary value problem

$$
\left\{\begin{array}{l}
\square_{\widehat{g}} \tilde{u}(x)+B(x) \tilde{u}(x)+A(x) \cdot \tilde{u}(x)^{\kappa}=0, \quad \text { in } \widehat{N}, \\
\left.\tilde{u}\right|_{\mathcal{I}^{-}}=\tilde{h}_{-},
\end{array}\right.
$$

Scattering problem has a solution

Lemma

Let g be a globally hyperbolic Lorentzian metric on \mathbb{R}^{3+1}, where $g-\eta$ is in the Schwartz class. Let $\left(\widehat{N}, \Omega^{2} g\right)$ be the Penrose diagram. Let $-\pi<T_{-}<t_{-}<0<t_{+}<T_{+}<\pi$. There is $0<\varepsilon \ll 1$, m large such that the following holds: Let $h \in H^{m}\left(\mathcal{I}^{-}\right)$be such that $\operatorname{supp}(h) \subset\left\{x \in \mathcal{I}^{-} \mid T_{-}<\mathrm{t}(x)<t_{-}\right\}$ and $\|h\|_{H^{m}\left(\mathcal{I}^{-}\right)}<\varepsilon$ (m large enough).
Then the non-linear scattering problem

$$
\left\{\begin{array}{l}
\left(\square_{g}+B\right) u+A u^{\kappa}=0, \quad \text { in }\left\{x \in \widehat{N}: \mathrm{t}(x)<T_{+}\right\} \tag{1}\\
\left.u\right|_{\mathcal{I}^{-}}=h, \\
u=0 \text { in }\left\{x \in \widehat{N}: \mathrm{t}(x)<T_{-}\right\}
\end{array}\right.
$$

has a unique solution depending continuously on h

Defining the scattering operator

We define the (geometric) scattering operator on \widehat{N} by

$$
\begin{aligned}
& S: C_{c}^{\infty}\left(\mathcal{I}^{-}\right) \supset U \rightarrow C^{\infty}\left(\mathcal{I}^{+}\right), \\
& S\left(\left.u\right|_{\mathcal{I}^{-}}\right)=\left.u\right|_{\mathcal{I}^{+}}, \quad u=h \in U,
\end{aligned}
$$

for a neighbourhood U of the zero function in $C_{c}^{\infty}(\mathcal{I})$. Here u solves the (non-linear) scattering problem

$$
\left\{\begin{array}{l}
\left(\square_{g}+B\right) u+A u^{\kappa}=0, \quad \text { in }\left\{x \in \widehat{N}: \mathrm{t}(x)<T_{+}\right\} \tag{2}\\
\left.u\right|_{\mathcal{I}^{-}}=h, \\
u=0 \text { in }\left\{x \in \widehat{N}: \mathrm{t}(x)<T_{-}\right\}
\end{array}\right.
$$

Metric reconstruction result

Theorem (A, Isozaki, Lassas, Tyni-2024)
If $\operatorname{supp}(a)=\mathbb{R}^{1+3}$, the non-linear scattering operator S, defined in a neighborhood of the zero function in $C_{0}^{\infty}\left(\mathcal{I}^{-}\right)$, determines the conformal class of g.

Idea of proof: Compactification and a non-physical extension

Assume that

- the metric g is globally hyperbolic Lorentzian metric and $g_{i j}-\eta_{i j}$ belong to the Schwartz class
- $\widehat{g}:=\Phi_{*} \widetilde{g}$ is the push-forward metric of $\widetilde{g}:=\Omega^{2} g$ on the Penrose diagram

Then \widehat{g} can be smoothly extended to $\mathbb{R} \times \mathbb{S}^{3}$ by defining $g_{e}=\widehat{g}$ in \widehat{N} and $g_{e}=\eta$, for $x \in \mathbb{R} \times \mathbb{S}^{3} \backslash \widehat{N}$

Measurements beyond infinity

We can do an artificial extension of the Penrose diagram \widehat{N} by gluing it into the cylinder $\mathbb{R} \times \mathbb{S}^{3}$:

Scattering operator determines a source-to-solution map

Given a source f supported in the non-physical past, we solve a linear wave equation

$$
\begin{cases}\left(\square_{g_{e}}+B\right) u=f, & \text { in } N_{\text {ext }}, \\ \operatorname{supp}(u) \subset J^{+}(\operatorname{supp}(f)) . & \end{cases}
$$

up to \mathcal{I}^{-}. Restricting u to \mathcal{I}^{-}, this is equivalent to

$$
\begin{cases}\left(\square_{g_{e}}+B\right) u=f, & \text { in } N_{\mathrm{ext}}, \\ \left.u\right|_{\mathcal{I}^{-}}=h^{-} \\ u\left(T_{-}, x\right)=\partial_{t} u\left(T_{-}, x\right)=0, & \end{cases}
$$

which is a scattering problem in the Penrose diagram. (Here $T_{-} \leq \inf \mathrm{t}(\operatorname{supp}(\mathrm{f}))$).

Then the scattering operator determines $h^{+}:=\left.u\right|_{\mathcal{I}^{+}}=S\left(\left.u\right|_{\mathcal{I}^{+}}\right)$. Finally, solving the linear Cauchy-Goursat problem

$$
\left\{\begin{array}{l}
\left(\square_{g_{e}}+B\right) u=0, \quad \text { in } N_{\mathrm{ext}}, \\
\left.u\right|_{\mathcal{I}^{+}}=h^{+},
\end{array}\right.
$$

shows that we determine u in the nonphysical future.

Rough sketch of the inverse scattering problem

- Scattering operator determines the source-to-solution map
- The source-to-solution map determines the scattering relation: using the nonlinearity
- A. Feizmohammadi, M. Lassas, L. Oksanen: Inverse problems for non-linear hyperbolic equations with disjoint sources and receivers. Forum of Mathematics, Pi 9 (2021), Paper No. e10, 52

Higher order linearization

A k-fold linearization of the nonlinear equation

$$
\begin{equation*}
\left(\square_{g}+B\right) u+A u^{k}=\sum_{j=1}^{k} \varepsilon_{j} f_{j} \tag{3}
\end{equation*}
$$

with respect to ε_{j} yields

$$
\begin{equation*}
\left(\square_{g}+B\right) w+A v_{1} v_{2} \cdots v_{k}=0 \tag{4}
\end{equation*}
$$

where

$$
\left(\square_{g}+B\right) v_{j}=f_{j}, \quad \text { in } \widehat{N}
$$

The products $v_{1} v_{2} \cdots v_{k}$ can be used to produce point sources.

Scattering relation from the \mathcal{I}^{-}-to- \mathcal{I}^{+}map

Rough sketch of the inverse scattering problem

- The scattering relation determines the arrival time functions
- Arrival time functions determine light observation sets (and the differentiable structure of the manifold)

Rough sketch of the inverse scattering problem

- The light observation sets determine parts of lightcones, which themselves determine the full lightcones
- Knowledge of the lightcones determines the metric up to a conformal factor
- If the nonlinear term $A \equiv 1$, then one could also recover the conformal factor of the metric

