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Abstract

We construct solutions with prescribed radiation fields for wave
equations with polynomially decaying sources close to the lightcone. In
this setting, which is motivated by semi-linear wave equations satisfying
the weak null condition, solutions to the forward problem have a
logarithmic leading order term on the lightcone and non-trivial
homogeneous asymptotics in the interior of the lightcone. The
backward scattering solutions we construct from knowledge of the
source and the radiation field at null infinity alone are given to second
order by explicit asymptotic solutions which satisfy novel matching
conditions close to the light cone. This requires a delicate analysis
close to the light cone of the forward solution with sources on the light
cone. We also relate the asymptotics of the radiation field towards
space-like infinity to explicit homogeneous solutions in the exterior of
the light cone for slowly polynomially decaying data corresponding to
mass, charge and angular momentum in the applications. The
somewhat surprising discovery is that these data can cause the same
logarithmic radiation field as the source term. This requires a delicate
analysis of the forward homogeneous solution close to the light cone
using the invertibility of the Funk transform.
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We consider scattering for the wave equation in three space dimensions

−�φ = F ,

We would like to give data at infinity and solve the problem backwards.
However, first we must understand asymptotics for the forward problem.
For fast decaying initial data and F , φ has a Friedlander radiation field

φ(t, x) ∼ F0(r−t,ω)

r
, where |∂k

qF0(q,ω)|.〈q〉−k−ε, x = rω, ω∈S2

The same is true if data |φ(0, x)|.〈r〉−1−ε (and |∂φ(0, x)|.〈r〉−2−ε) and

|�φ|+ r−2|4ωφ| . r−1〈t+r〉−1−ε〈t−r〉−1−ε, ε > 0.

This is seen by expressing the wave operator in spherical coordinates:

−�φ = ∂2t −4x = r−1(∂t +∂r )(∂t−∂r )(rφ)− r−24ωφ,

and integrating, in the t+ r direction and in the t−r direction.

In the spherically symmetric case 4ωφ = 0 but in general this has to be
combined with an L2 estimate for tangential vector fields applied to φ.

However, general quadratic terms do not decay enough for this to hold:

Hans Lindblad () Princeton Spring 2023 3 / 21



Blow up �φ = (∂tφ)2.
Global existence �ψ = (∂tψ)2 − |∇xψ|2.
Null condition

�φ = (∂tψ)2 − |∇xψ|2, �ψ = 0.

ψt(t, x)2 − |∇xψ|2 ∼
F ′0(r−t, ω)2

r2
− F

′
0(r−t, ω)2

r2
∼ m(r−t, ω)

r3
.

Here F ′0(q, ω) = ∂qF0(q, ω).

Weak null condition
�φ = (∂tψ)2, �ψ = 0.

ψt(t, x)2 ∼ F
′
0(r−t, ω)2

r2
=

n(r−t, ω)

r2
.

This is model for Einstein’s equations in wave coordinates,
for which also initial data only decays like M/r , where M is the mass.

�φ = ϕ∂tψ, �ψ = 0, �ϕ = 0.

ϕ(t, x)ψt(t, x) ∼ G0(r−t, ω)F ′0(r−t, ω)

r2
=

n(r−t, ω)

r2
.

This is model for Maxwell-Klein-Gordon system in Lorentz gauge,
for which also initial data only decays like q/r , where q is the charge.
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Null asymptotics for the wave equation with sources along light cones

−�φ =
n(r−t, ω)

r2
, |n(q, ω)| . 〈q〉−k−ε, ε > 0, k = 1, 2.

The solution to the forward problem has a log correction in the asymptotics

φrad ,1(t, rω) = ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F01(r−t, ω)

r
+
F0(r−t, ω)

r
, as t→∞, r∼ t,

In fact, using the expression for the wave operator in spherical coordinates

−�φrad ,1 = r−1(∂t +∂r )(∂t−∂r )(rφrad ,1)− r−24ωφrad ,1

= −2
F ′01(r−t, ω)

r2
−F01(r−t, ω)

r3
−ln

∣∣∣ 2r

〈t−r〉

∣∣∣ 4ωF01(r−t, ω)

r3
−4ωF0(r−t, ω)

r3
which is ∼ n(r−t, ω)/r2, if

−2F ′01(q, ω) = n(q, ω).

For compactly supported data limq→+∞F01(q, ω) = 0 so

2F01(q, ω) =

∫ +∞

q
n(q,ω) dq,

Hence

2 lim
q→−∞

F01(q, ω) = N(ω) :=

∫ +∞

−∞
n(q,ω) dq,

Moreover limq→+∞F0(q, ω) = 0 and limq→−∞F0(q, ω) has to match
interior asymptotics determined from N(ω) as we shall see next:
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Interior asymptotics for the wave equation with sources on light cones

−�φ = n(r−t, ω)/r2, |n(q, ω)| . 〈q〉−k−ε, ε > 0, k = 1, 2.

The forward problem with vanishing data has homogeneous asymptotics

φ(t, x) ∼ φint,1(t, x) = Ψ1(x/t)/t, as t →∞, while r/t < 1.

In fact, φa(t, x) = aφ(at, ax) satisfies

−�φa = na(r−t, ω)/r2, na(q, ω) = a n(aq, ω).

As a→∞, in the sense of distribution theory

na(q, ω) = a n(aq, ω)→ δ(q)N(ω), where N(ω) =

∫ +∞

−∞
n(q, ω) dq,

and δ(q) is the delta function. Hence φa → φint,1, where

−�φint,1 = N(ω) δ(r−t)/r2.

Since this is homogeneous of degree−3, φint,1 is homogeneous of degree−1.

We claim that φint,1 has the asymptotics towards the light cone:

φint,1(t, rω) ∼ ln
∣∣∣ 2r

t−r

∣∣∣N01(ω)

r
+

N0(ω)

r
, r→ t, r < t.

In fact convolving with the fundamental solution of � gives a formula:

φint,1(t, rω) =
1

4π

∫
S2

N(σ)dS(σ)

t−〈σ, rω〉
∼ 1

4π

∫
S2

N(ω)dS(σ)

t−〈σ, rω〉
+

1

4π

∫
S2

N(σ)−N(ω)

t−〈σ, rω〉
dS(σ)
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Matching of null asymptotics to interior asymptotics to first order

Asymptotics in the wave zone r ∼ t:

φrad ,1(t, rω) = ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F01(r−t, ω)

r
+
F0(r−t, ω)

r
, as t→∞, r∼ t,

Interior asymptotics towards the light cone:

φint,1(t, rω) ∼ ln
∣∣∣ 2r

t−r

∣∣∣N01(ω)

r
+

N0(ω)

r
, r→ t, r < t.

It follows that

lim
q→−∞

F01(q, ω) = N(ω)/2 = N01(ω)

We must have that

lim
q→−∞

F0(q, ω) = N0(ω) =
1

4π

∫
S2

N(σ)−N(ω)

1−〈σ, ω〉
dS(σ)
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Second order Null asymptotics with sources along light cones

�φrad ,1 +
n(r−t, ω)

r2
= ln

∣∣∣ 2r

〈t−r〉

∣∣∣ R01(r−t, ω)

r3
+
R0(r−t, ω)

r3
= Rrad ,1.

We seek to pick up the error with

φrad ,2(t, rω) = ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F11(r−t, ω)

r2
+
F1(r−t, ω)

r2
,

In fact, using the expression for the wave operator in spherical coordinates

−�φrad ,2 = r−1(∂t +∂r )(∂t−∂r )(rφrad ,2)− r−24ωφrad ,2

= 4 ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F ′11(r−t, ω)

r3
+ 4
F ′1(r−t, ω)

r3
+ · · · = Rrad ,1 + O(r−4)

if
F ′11(q, ω) = ..., F ′1(q, ω) = ...

where the right hand side are known quantities. These can be integrated
with the conditions that limq→+∞F11(q,ω)=0 and limq→+∞F1(q,ω)=0.
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As r → t we have an expansion

φint,1(t,rω)∼N01(ω)
1

r
ln
∣∣∣2 r
t−r

∣∣∣+ N0(ω)
1

r
+ N11(ω)

r−t
r2

ln
∣∣∣2 r
t−r

∣∣∣+ N1(ω)
r−t
r2
.

Plug into �φint,1 = 0 and equating powers of (t−r)/r gives that the
higher order coefficients can be calculated from N01 and N0:

2N11(ω) = 4ωN01(ω), 2N1(ω) = 2∆ωN01(ω) + ∆ωN0 − N01(ω).
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Second order Interior asymptotics Further homogeneous asymptotics

φ2(t,x) = φ(t, x)− φint,1(t,x) ∼ φint,2(t,x)=Ψ2(x/t)/t2, t→∞, r/t<1.

In fact, φ2,a(t, x) = a2φ2(at, ax) satisfies

−�φ2,a = ma(r−t, ω)/r2, where ma(q, ω) = a
(
a n(aq, ω)−δ(q)N(ω)

)
.

As a→∞,
∫
ma(q, ω)ψ(q)dq→ψq(0), i.e. in the sense of distribution theory

ma(q, ω)→ −δ′(q)M(ω), where M(ω)=

∫ +∞

−∞
q n(q, ω) dq.

Hence φ2,a → φint,2, where

−�φint,2 = −M(ω)δ′(r−t)/r2, (t, r) 6= (0, 0).

Since this is homogeneous of degree−4, φint,2 is homogeneous of degree−2.

We claim that φint,2 has the asymptotics towards the light cone:

φint,2(t, rω) ∼M0(ω)

r2
r

r−t
+
M11(ω)

r2
ln
∣∣∣ 2 r

t−r

∣∣∣+
M1(ω)

r2
, r→ t, r < t.

In fact taking the time derivative of the expression for φint,1 gives

φint,2(t, rω) = − 1

4π

∫
S2

M(σ) dS(σ)

(t−〈σ, rω〉)2
, r < t.
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Higher order asymptotics in the wave zone r ∼ t:

φrad (t,r ω)=ln
∣∣∣ 2 r

〈t−r〉

∣∣∣F01(r−t,ω)

r
+
F0(r−t,ω)

r
+ln

∣∣∣ 2 r

〈t−r〉

∣∣∣F11(r−t,ω)

r2
+
F1(r−t,ω)

r2
.

Here F11,F1 are determined from F01,F0 up to integration constants that
are determined by matching to interior and exterior homogeneous solutions.
Higher order asymptotics in the interior r < t:

φint(t,r ω) ∼ ln
∣∣∣2 r
t−r

∣∣∣N01(ω)

r
+

N0(ω)

r
+ ln

∣∣∣2 r
t−r

∣∣∣ r−t
r2

N11(ω) +
r−t
r2

N1(ω)

+
M0(ω)

r

1

r−t
+
M11(ω)

r2
ln
∣∣∣ 2 r

t−r

∣∣∣+
M1(ω)

r2
.

Here N11,N1 are determined from N01,N0, and M11 is determined from M0.
Moreover, for the interior, N0 is determined from N01, and M1 from M0.
Matching conditions For j = 0, 1 (here M01(ω) = 0)

lim
q→−∞

Fj (q, ω)q−j = Nj (ω), lim
q→−∞

Fj1(q, ω)q−j = Nj1(ω),

lim
q→−∞

(
Fj (q, ω)q−j − Nj (ω)

)
q = Mj (ω),

lim
q→−∞

(
Fj1(q, ω)q−j − Nj1(ω)

)
q = Mj1(ω).
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Theorem (L-Schlue)

Suppose that | (〈q〉∂q)k∂αωn(q, ω)| . 〈q〉−3.
F0(q, ω) =

(
N0(ω) + M0(ω)q−1

)
χq<0 +H0(q, ω) ,

|(〈q〉∂q)k∂αωH0(q, ω)| . 〈q〉−2,
∫∞
−∞H0(q, ω) dq = P(ω) .

Here N0, M0, and P are determined from the source function n alone.
Let F01(q,ω)=

∫∞
q n(q̃,ω)dq̃, N(ω)=

∫∞
−∞n(q̃,ω)dq̃, M(ω)=

∫∞
−∞q̃n(q̃,ω)dq̃.

Then the equation
−�φ =

n(r−t, ω)

r2

has a solution with asymptotics in the wave zone

φ(t,r ω) ∼ ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F01(r−t,ω)

r
+
F0(r−t,ω)

r
, as t→∞, while r∼ t,

and interior asymptotics:

φ(t,rω) ∼ 1

4π

∫
S2

N(σ) dS(σ)

t−〈σ, rω〉
, as t→∞, while r/t<1,

and in the exterior φ(t,rω) ∼ 0, as t →∞, while r/t > 1.
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Proof Construct an approximate solution:

φapp = χaφrad + (1−χa)φint , where χa(t, x) = χ
(
(r−t)/ra

)
,

and χ(s) = 1, when s ≥ −1/2 and χ(s) = 0 when s ≤ −1, a = 1/2.

�φrad +
n(r−t, ω)

r2
∼ ln

∣∣∣ 2 r

〈t−r〉

∣∣∣〈t−r〉
r4

, and �φint = 0.

With φdiff = φrad − φint we have with Q(∂f , ∂g) = ∂t f ∂tg −∇x f ·∇xg

�φapp = χa�φrad + (1−χa)�φint +�χa φdiff + 2Q(∂χa, ∂φdiff ).

With Hj1 = Fj1 − Nj1q
j −Mj1q

j−1 and Hj = Fj − Njq
j −Mjq

j−1:

φdif f (t,rω)=ln
∣∣∣2 r
t−r

∣∣∣H01(r−t, ω)

r
+
H0(r−t, ω)

r
+ ln

∣∣∣2 r
t−r

∣∣∣H11(r−t, ω)

r2
+
H1(r−t, ω)

r2
,

which decays more in the matching region due to more decay in q= r−t:

|H0|+|H01|+〈q〉−1
(
|H1|+|H11|

)
+ 〈q〉

(
|H ′0|+|H ′01|

)
+|H ′1|+|H ′11|.〈q〉−2.

We convolve with the backwards fundamental solution to solve from infinity

�(φ−φapp) = O(lnt 〈t−r〉t−4χ|t−r |<ra) + O(〈t+r〉−2〈t−r〉−3χ|t−r |>ra),

which gives |φ−φapp| . 〈t+r〉−2 ln 〈t+r〉.
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Radiation field from initial data for the homogeneous equation

�φ = 0, φ
∣∣
t=0

= f , ∂tφ
∣∣
t=0

= g ,
is given by

F0(q, ω) = R[g ](q, ω)− ∂qR[f ](q, ω),

where R[g ] denotes the Radon transform of the data g :

R[g ](q, ω) =

∫
δ
(
q−〈ω, y〉

)
g(y) dy =

∫
〈ω,y〉=q

g(y) dS(y) .

For this to be well defined we need g and ∇f to decay like 〈y〉−2−ε, ε>0
We also see that F0(q,ω) cannot be arbitrary because its integral is
independent of ω:

∫
F0(q,ω) dq =

∫
g(y) dy .

Hans Lindblad () Princeton Spring 2023 14 / 21



Exterior asymptotics homogeneous of degree −1

�φext,1 = 0, r> t, φext,1

∣∣
t=0

=
M(ω)

r
, ∂tφext,1

∣∣
t=0

=
N(ω)

r2
.

It follows from using the fundamental solution that with z0 =
√

1−(t/r)2,

φext,1(t, rω) = r−1I0[N](ω, z0)− ωi t−1I0[6∇iM](ω, z0) + t−1I1[M](ω, z0),

where 6∇iM(ω) = r−1 6∂ iM(ω), 6∂ i = ∂i − ω∂r , and

I k [N](ω, z0) =
1

2π

∫
〈ω,σ〉>z0

〈ω, σ〉kN(σ) dS(σ)√
〈ω, σ〉2 − z02

=

∫ 1

z0

zkN(ω, z) dz√
z2 − z02

,

where
N(ω, z)=

∫
〈σ,ω〉=z

N(σ) ds(σ)

/∫
〈σ,ω〉=z

ds(σ).

We have

1

r
I0[N](ω,z0)∼

1

2r
ln
∣∣ 2r

r−t
∣∣N(ω,0)+

1

r
Ñ(ω), Ñ(ω)=

∫ 1

0

N(ω,z)−N(ω,0)

z
dz

1

t
I1[M](ω,z0)∼

1

r

∫ 1

0
M(ω,z)dz

Hans Lindblad () Princeton Spring 2023 15 / 21



Hence

φext,1(t, rω)∼ 1

2r
ln
∣∣ 2r

r−t
∣∣(F [N](ω)− G[M](ω)

)
+

1

r

(
. . .
)

where the Funk transform (Funk 1911 thesis with Hilbert)

F [N](ω)=
1

2π

∫
〈σ,ω〉=0

N(σ) ds(σ),

is invertible on even functions and the related (s.c.Gunk) transform

G[M](ω)= ωiF [ 6∇iM](ω)=
1

2π

∫
〈σ,ω〉=0
〈ω,6∇M(σ)〉ds(σ).

is invertible on odd functions. (Bailey, Eastwood, Grover, Mason 2003)
In the lower order term two more transforms show up:

S[N](ω) =
1

2

∫ 1

−1

N(ω, z)− N(ω, 0)

z
dz .

which is the inverse of G on odd functions and

T [M](ω) = −ωiS[Mi ](ω) , where Mi (σ) = −M(σ)σi + 6∇iM(σ)

which is the inverse of F on even functions. On odd functions Ñ = S(N).
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Exterior asymptotics homogeneous of degree −2

�φext,2 = 0, r> t, φext,2

∣∣
t=0

=
K (ω)

r2
, ∂tφext,2

∣∣
t=0

=
L(ω)

r3
.

This is obtained by taking the time derivative ψ = ∂tφext,1 of φext,1

�ψ = 0, r> t, ψ
∣∣
t=0

=
N(ω)

r2
, ∂tψ

∣∣
t=0

=
4ωM(ω)

r3
.

We want to solve
4ωM(ω) = L(ω)

which would require that ∫
S2

L(ω)dS(ω) = 0

One can reduce to this case by subtracting a multiple of the exact solution

ϕ =
1

r(r + t)
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Theorem (L-Schlue)

Let Next
0 (ω), Mext

0 (ω), N01(ω), C0 and H0(q,ω) be given, such that
|(〈q〉∂q)k∂αωH0(q,ω)|.〈q〉−2. Set F01(q,ω) = N01(ω) and

F0(q,ω)=
(
N int
0 (ω)+M int

0 (ω)q−1
)
χq<0+

(
Next
0 (ω)+Mext

0 (ω)q−1
)
χq>0+H0(q,ω),

where
N int
0 (ω)=

1

2π

∫
S2

N01(σ)−N01(ω)

1−〈σ, ω〉
dS(σ), and M int

0 (ω)=Mext
0 (ω)+C0.

Then the equation
−�φ = 0

has a solution with asymptotics in the wave zone r∼ t:

φ(t,r ω) ∼ ln
∣∣∣ 2r

〈t−r〉

∣∣∣ F01(q,ω)

r
+
F0(r−t,ω)

r
, as t→∞,

and corresponding interior and exterior homogeneous asymptotics.
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Remark Previously we had shown that if

|(〈q〉∂q)k∂αωF0(q,ω)| . 〈q〉−γ , 1/2 < γ < 1

then the equation
−�φ = 0

has a solution with asymptotics in the wave zone

φ(t, rω) ∼ F0(r−t, ω)

r
, as t→∞, r∼ t,

This does not cover the case of data decaying only like 1/r , i.e. γ = 0, but
one should be able to prove the same result for γ > 0.
Friedlander proved that if data has finite energy ‖φ‖2HE

=‖∂φ(0, ·)‖L2 then

∂tφ(t, r ω) ∼ G0(r−t,ω)

r
, where

∫
S2

∫ ∞
−∞
G0(q, ω)2dq dS(ω) . ‖φ‖HE

.

This covers the case when φ(0, x) ∼ 1/r and is consistent with

φ(t,r ω) ∼ ln
∣∣∣ 2r

〈t−r〉

∣∣∣ N01(ω)

r
+
F0(r−t,ω)

r
, as t→∞, r∼ t,

since when taking the time derivative the log disappears.
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Wave-Klein-Gordon system (Chen-L)
We obtained scattering results for coupled wave Klein-Gordon systems:

−�u = (∂tφ)2 + φ2, −�φ+ φ = uφ,

in a setting where the interior asymptotics of the Klein-Gordon field affects
the asymptotics for the wave equation in the interior and the asymptotics
of the wave equation cause a logarithmic correction to the phase of the
Klein-Gordon field. With ρ =

√
t2 − |x |2 and y = x/t it was proven that

u(t, x) ∼ U(y)

ρ
, r/t<1, and u(t, x) ∼F0(t−r,ω)

r
, t∼ r , as t→∞,

and
φ(t, x) ∼ ρ−

3
2
(
e iρ− i

2
U(y) ln ρa+(y) + e−iρ+ i

2
U(y) ln ρa−(y)

)
,

where a±(y) decay as |y | → 1, and

−�(
U(y)

ρ
) = 2ρ−3(1 + (1− |y |2)−1)a+(y)a−(y).
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Related problems

Asymptotics for Einstein (L)

Asymptotics for MKG (Candy-L-Kauffman)

Asymptotics for Nonlinear Klein-Gordon (Delort, L-Soffer, L-Luhrman-S)

Scattering for Nonlinear Klein-Gordon in 1D (L-Soffer)

Scattering for Einstein in 4D (Wang)

Scattering for Null condition and weak null condition (L-Schlue)

Scattering for quasilinear models (Yu)

Scattering for MKG (He)

Scattering for WKG (Chen-L)

Scattering for MKG (Wei-Fang)

Scattering for Einstein (work in progress)
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