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Black hole mechanics

The laws of black hole mechanics hold for General Relativity
coupled to matter obeying suitable energy conditions.

First law: dM = TdS + ΩHdJ where T = κ/(2π) and S = A/(4G )

Second law: S is non-decreasing function of time.

Wald (1993) showed that a first law can be proved in any theory of
gravity arising from a diffeomorphism invariant Lagrangian.
(Typically contains terms with more than two derivatives.)

This gives a definition of black hole entropy that applies to any
stationary (time-independent) black hole: the Wald entropy.

Can the second law also be extended to this class of theories?
Does there exist a definition of S , depending only on the geometry
of a horizon cross-section, that satisfies a second law, and reduces
to the Wald entropy in equilibrium?



Second law beyond GR

Iyer and Wald (1994) proposed a definition of entropy of a
dynamical black hole in any theory arising from a diffeo invariant
Lagrangian.

Example: Einstein-Gauss-Bonnet

16πGL = −2Λ +R + kLGB LGB ∝ RabcdR
abcd − 4RabR

ab +R2

Iyer-Wald entropy of horizon cross-section C is 1
4G

∫
C (1 + kR[C ])

Various nice properties (free of ambiguities, agrees with Wald
entropy for a stationary black hole, satisfies first law) but: unclear
whether it satisfies a second law, not invariant under field
redefinitions

Jacobson, Kang and Myers (1995) proved a second law for f (R)
theories. Their entropy differs from the Iyer-Wald entropy.



Perturbative approach

Consider perturbations of a stationary black hole:

gµν = ḡµν + εh(1)µν + ε2h(2)µν + . . .

This could describe a black hole “relaxing to equilibrium”.

Wall (2015) presented an algorithm for defining an entropy that
satisfies a second law to linear order in perturbations around a
stationary black hole, for any diffeo-invariant theory of vacuum
gravity.



Wall entropy

Wall’s entropy is the Iyer-Wald entropy plus new “Wall terms”.

The simplest Wall terms are of the (schematic) form KK̄ where
KAB and K̄AB are matrices describing the expansion+shear of the
outgoing and ingoing null geodesics orthogonal to a horizon cut.

To linear order, the second law says δṠ = 0 (if δṠ > 0 then
multiply perturbation by −1 to reach δṠ < 0)

To see an entropy increase we need to go beyond linear
perturbations of a stationary black hole.

(Wall also considers coupling gravity to “matter” described by Tµν
satisfying null energy condition, this gives Ṡ ≥ 0.)



Our approach

The main idea: work within the framework of effective field theory
(EFT). This provides the most convincing motivation for
considering theories with higher derivatives.

Starting from a “UV” theory, “integrate out” massive degrees of
freedom to obtain an EFT for the light degrees of freedom, valid at
energy below a scale associated with UV physics.

An EFT Lagrangian is ordered by terms with increasing numbers of
derivatives. If only light field is the metric then the Lagrangian is

16πGL = −2Λ + R + a1`
2R2 + a2`

2RabR
ab + a3`

2LGB + . . .

Assume coefficients of k-derivative terms (k > 2) are proportional
to `k−2 where ` is the “UV length scale” e.g. string scale or
Planck scale.

Einstein-Maxwell EFT: integrate out electron from QED in curved
spacetime: ` is Compton wavelength of electron.



Validity of EFT

Many solutions of higher derivative theories exhibit pathological
behaviour. (cf radiation reaction problem)

Example: for d = 4 consider the EFT of vacuum gravity truncated
to retain the leading corrections to GR:

16πGL = R + a1`
2R2 + a2`

2RabR
ab

Linearize around flat spacetime: in addition to the usual graviton,
this theory describes heavy fields with (mass)2 ∝ `2. Hence there
exist solutions that exhibit oscillations or exponential growth on
the UV time scale `. To describe phenomena with time variation
on this scale requires a UV theory, i.e., these solutions lie outside
the regime of validity of the EFT.

EFT eqs of motion admit solutions exhibiting length/time variation
on the UV scale `. These solutions are unphysical so there is no
reason why they should satisfy a second law.



Validity of EFT criterion

Consider an EFT with UV length scale `

We should consider only those black hole solutions lying within the
regime of validity of EFT: Let L be “smallest length/time scale
over which solution varies”. We require that `/L� 1.

More precisely: consider a 1-parameter family of solutions, with
parameter L, for which there exists coordinates such that
∂kgµν = O(L−k). Terms with more derivatives are less important

We do not assume that solution is an expansion in `/L because
this would be too restrictive e.g. it would exclude quasinormal
modes ∝ e−iωt with ω = L−1 + `2L−3 + . . .



Second law in EFT

We never know the Lagrangian of an EFT exactly, but only the
terms with up to N derivatives. The EFT equation of motion is

Eµν = O(`N)

where Eµν = Λgµν + Rµν − 1
2Rgµν + . . . includes the known terms

with up to N derivatives. The RHS is really O(`N/LN+2) but I will
suppress L.

We should not aim to prove a second law that holds exactly,
instead the second law should hold only to the same order of
accuracy as the theory itself, i.e., modulo terms of order `N .

From Eµν we want to construct an entropy S that satifies
Ṡ ≥ −O(`N). By increasing N we increase the accuracy to which
the EFT is known and the accuracy to which the second law is
satisfied.



Our assumptions

1. The event horizon is smooth: expect this to be valid after
gravitational collapse or black hole merger. We use Gaussian
null coordinates (GNCs) adapted to the horizon.

2. The black hole settles down to equilibrium at late time.
Quantities that vanish on a stationary black hole horizon
decay at large affine time in our GNCs.

3. The validity of EFT assumption holds in our GNCs.



Our results

We show how to define an entropy S that satisfies a
non-perturbative second law, i.e., Ṡ ≥ −O(`N) holds for arbitrary
(smooth) perturbations of a stationary black hole.

In equilibrium our entropy reduces to the Wald entropy. To linear
order in perturbations around a stationary BH it agrees with Wall’s
entropy (hence satisfies first law).

Our entropy is constructed by adding extra terms to Wall’s
entropy. For Eµν containing up to N derivatives, our entropy S will
contain up to N − 2 derivatives. Our new terms involve at least 4
derivatives so they appear only for N ≥ 6.

A theory containing only the leading O(`2) higher derivative
corrections to Einstein gravity has N = 4. For such a theory, our
result implies that the Wall entropy satisfies a non-perturbative
second law in the sense of EFT: Ṡ ≥ −O(`4)



Example: Einstein-Gauss-Bonnet theory

16πGL = −2Λ + R + k`2LGB

View as an EFT for which coefficients of all higher derivative terms
are zero. Consider horizon cross-section C . Entropy density s/4G .

If we trust this theory up to N derivatives then:

N = 2: s = 1
satisfies 2nd law modulo O(`2)

N = 4: s = 1 + k`2R[C ]
satisfies 2nd law modulo O(`4) (Wall terms vanish for this theory)

N = 6: (d is spacetime dimension)

s =1 + k`2R[C ] +
1

2
k2
[

(6− d)KKK̄K̄ − KKK̄AB K̄AB + 4KKAB K̄A
C K̄BC+

(−14 + 2d)KKAB K̄ K̄AB − 2KABKA
C K̄B

E K̄CE − 2KABKCE K̄AC K̄BE+

(6− d)KABKCE K̄AB K̄CE + 4KABKA
C K̄ K̄BC − KABKAB K̄ K̄

]
satisfies 2nd law modulo O(`6) (KAB , K̄AB : describe expansion and shear of

outgoing/ingoing null geodesics orthogonal to C , K = KA
A , K̄ = K̄A

A )



Example: d = 4 Riemann cubed

For d = 4 vacuum gravity field redefinitions can be used to
eliminate 4-derivative terms and simplify 6-derivative terms to:

16πGL = −2Λ + R + `4(k1Leven + k2Lodd)

Leven =RµνκλR
κλχηRχη

µν

Lodd =RµνκλR
κλχηRχηρσε

µνρσ

Here N = 6 and our entropy density is (schematically)

s = 1+k1`
4
(
Riemann2 + RiemannKK̄ + KKK̄K̄

)
+k2`

4ε2(similar)

Bekenstein-Hawking+(Iyer-Wald + Wall + Hollands-Kovacs-HSR)

Satisfies second law modulo O(`6)



Gauge invariance

Our definition, and also Wall’s, is formulated using GNCs.

Does the definition depend on the choice of GNCs? If so then it is
not fully geometrical.

We proved that Wall’s definition does not depend on this choice.

Our definition does not depend on this choice for N ≤ 6: for such
theories we have a fully geometrical definition of black hole entropy
that satisfies a non-perturbative second law in the sense of EFT.

For N ≥ 8, our definition does depend on the choice of GNCs.
Disappointing, but why would we ever need 8 derivatives?



Gaussian null coordinates

We assume: black hole
spacetime with smooth horizon
that “settles down to
equilibrium” at late time.

Gaussian null coordinates
(v , r , xA) so horizon is at r = 0
and generators have constant
xA and affine parameter v .



ds2 = −r2αdv2 + 2rβAdvdx
A + 2drdv + µABdx

AdxB

Define boost as v → av , r → r/a for constant a.

A quantity has boost weight b if it scales as ab under a boost.

α, βA and µAB have boost weight 0.

Expansion/shear of horizon generators described by b = +1
quantity KAB ≡ (1/2)∂vµAB

Expansion/shear of ingoing null geodesics described by b = −1
quantity K̄AB ≡ (1/2)∂rµAB

All positive b quantities vanish on event horizon of a stationary
black hole (assuming zeroth law).



Why area law doesn’t hold

Rate of increase of horizon area: Ȧ =
∫
dd−2x

√
µKA

A

Raychauduri eq: ∂vK
A
A = −KABK

AB − Rvv

Usual proof: assume null convergence condition Rvv ≥ 0 so
∂vK

A
A ≤ 0. “Late time equilibrium” implies KA

A → 0 as v →∞.
Hence KA

A ≥ 0 hence Ȧ ≥ 0.

With higher derivatives, Rvv = O(`2) need not have a good sign.

When EFT is valid, higher derivative terms are small so usually
expect KABK

AB to dominate. However, in some situations, e.g.
black hole settling down to equilibrium, KAB will also be small.
Higher derivative terms like `2K̄AB∂vKAB (linear in KAB) might
then dominate, giving possible area decrease.

Wall’s approach fixes this problem for linear perturbations of a
stationary black hole.



Entropy current

An entropy current is a vector field (sv , sA) defined on the horizon.
Standard GR has (sv , sA) = (1, 0).

Entropy of horizon cross-section C (v) is S(v) = 1
4G

∫
C(v)

√
µsv .

Divergence of entropy current is

∇ · s ≡ 1
√
µ
∂v (
√
µsv ) + DAs

A

(Standard GR: ∇ · s = KA
A .) Then

Ṡ =
1

4G

∫
C(v)

∂v (
√
µsv ) =

1

4G

∫
C(v)

√
µ∇ · s

Copying usual GR strategy would aim to show ∂v∇ · s ≤ 0 then,
assuming late time equilbrium, we have ∇ · s → 0 as v →∞ so
∇ · s ≥ 0 hence Ṡ ≥ 0. Unfortunately this doesn’t work.



Wall’s approach can be formulated in terms of entropy current
(Bhattacharyya et al (2019)): if eq of motion is Eµν = 0 then

∂v∇ · s = −Evv − F

holds off-shell where F is quadratic (or higher) order in positive b
quantities (so vanishes to linear order in perturbation theory).

This is a “generalized Raychaudhuri” equation. 2-derivative part of
F contains usual KABK

AB term.

We showed that F can be rearranged “nicely”, at the expense of
going on-shell and invoking EFT. (Hollands, Kovacs & HSR 22)



Assume EFT equations of motion known up to N derivatives

Eµν = O(`N)

Working order by order in derivatives, and using equations of
motion we show that new terms can be added to sv to define an
“improved” entropy density Sv and entropy current (Sv ,SA)
satisfying on-shell equation

∂v∇ · S = −(KAB + XAB)(KAB + XAB)− DAY
A +O(`N)

where XAB and Y A arise from the higher derivative terms. The
new terms in Sv are quadratic in positive boost weight quantities.
Similarly for Y A.

To do this we show that equations of motion can be used to write
everything in terms of “allowed quantities” of the form ∂pvDkK ,
∂pr Dk K̄ or Dkβ e.g ∂vβA can be eliminated using RvA = ∂vβA + . . .



∂v∇ · S = −(KAB + XAB)(KAB + XAB)− DAY
A +O(`N)

Assuming late time equilibrium, ∇ · S → 0 as v →∞:

(∇ · S)(v0) =

∫ ∞
v0

dv ′
[
(KAB + XAB)(KAB + XAB) + DAY

A −O(`N)
]

Integrate over horizon cross-section (Hollands, Kovacs & HSR 22)

Ṡ(v0) =
1

4G

∫
dd−2x

√
µ(v0)

∫ ∞
v0

dv ′
[
(KAB + XAB)(KAB + XAB) + DAY

A −O(`N)
]

Davies & HSR 23: Integrate final terms by parts: generates bilocal
terms, depending on both v0 and v ′. But these can be rearranged
into a nice form, generating further “improvement” terms in S :

Ṡnew(v0) =
1

4G

∫
dd−2x

√
µ(v0)

∫ ∞
v0

dv ′
[
(KAB + ZAB)(KAB + ZAB)−O(`N)

]
where ZAB is bilocal. Hence Ṡnew ≥ −O(`N): non-perturbative

second law, in sense of EFT.



Matter fields

With matter fields, assume 2-derivative terms satisfy NEC then try
to use them to help control higher derivative terms via completing
the square as above.

This has been worked out in detail for the EFT of gravity coupled
to a Maxwell field and a scalar field (Davies 2024).



Field redefinitions and uniqueness

Our definition of dynamical entropy appears not to be invariant
under EFT field redefinitions.

For example take vacuum gravity Rµν = 0 and perform field
redefinition gµν → gµν + c1`

2Rµν + c2`
2Rgµν (trivial on-shell!):

generates R2 and RµνR
µν terms in action and new terms in

entropy that don’t vanish on-shell.

Is this a problem? Thermodynamic entropy is not unique away
from equilibrium. Example of fluid dynamics: for relativistic
viscous fluid, there are multi-parameter families of entropy currents
satisfying second law. Bhattacharyya et al 2008,2013, Romatschke 2009

Maybe field redefinitions just map between different possible
definitions of the entropy, all of which satisfy a second law.



Related recent work

Hollands, Wald and Zhang 24: new definition of black hole entropy
for diffeomorphism invariant theories, including GR.

Second law holds to linear order in perturbations around a
stationary black hole (second order for GR). Simple relation to Wall
entropy. In GR, entropy coincides with area of apparent horizon.

“Physical process” version of first law: increase in entropy between
two horizon cuts determined by energy and angular momentum of
matter crossing horizon between these cuts.

“Background structure” of stationary black hole is essential so a
non-perturbative generalization seems unlikely.



Summary

We have introduced a procedure for defining black hole entropy in
EFT such that a second law is satisfied non-perturbatively, in the
sense of EFT, i.e., it holds for solutions that remain within the
regime of validity of EFT, and it holds modulo terms of same size
as the unknown higher order terms in the EFT equation of motion.

Open questions:

I Different types of matter fields

I Field redefinitions, non-uniqueness

I Event horizon as a characteristic surface in
Einstein-Gauss-Bonnet (HSR 20)

I Defining entropy for non-smooth horizons (Gadioux & HSR 23)


