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GW: Measurements - Beginning of a New Era

LIGO detected gravitational waves from binary black hole mergers
for the first time in September 2015.

Several times since then.

LIGO and VIRGO together observed gravitational waves from a
binary neutron star merger in 2017. At the same time, several
telescopes registered data.

New structures: mathematics ⇔ physical observations.

Photo: Courtesy of R. Hurt/Caltech-JPL.



Einstein Equations and Spacetimes

Einstein Equations

Rµν − 1

2
gµν R = 8π Tµν , (1)

Investigate dynamics of spacetimes (M, g), where M a 4-dimensional
manifold with Lorentzian metric g solving Einstein’s equations (1).

Study the Cauchy problem.

For the main parts of the discussion we concentrate on solutions of the
Einstein-Vacuum equations.

Rµν = 0 . (2)



Evolution Equations, Constraints and Lapse

Give initial data on a spacelike surface H0: (ḡij , kij)

Evolution equations of a maximal foliation:

∂ḡij
∂t

= −2Φkij

∂kij
∂t

= −∇i∇jΦ + (R̄ij − 2kimk
m
j )Φ

Constraint equations of a maximal foliation:

trk = 0

∇i kij = 0

R̄ = | k |2

Lapse equation of a maximal foliation:

△Φ − | k |2 Φ = 0



Vectorfields

Start with an outgoing null vectorfield L, define a conjugate (incoming)
null vectorfield L by requiring that

g(L,L) = −2 .

L and L are orthogonal to St,u.

4.6 The Characteristic Initial Value Problem

In Section 3.3 we discussed about the Cauchy problem for the Einstein equations. In par-
ticular, we saw that the initial data set consists of the triplet (H0, g, k), where H0 is a
three-dimensional Riemannian manifold, g is the metric on H0 and k is a symmetric (0,2)
tensor field on H0 and such that g, k satisfy the constraint equations. Recall that g, k are to
be the first and second fundamental forms of H0 in M, respectively.

In this section, we will discuss in detail the formulation of the characteristic initial value
problem, i.e. the case where the initial Riemannian (spacelike) Cauchy hypesurface H0 is
replaced by two degenerate (null) hypersurfaces C ∪ C intersecting at a two-dimensional
surface S.

Motivation

Let us first motivate the formulation of the characteristic initial value problem. Let us
assume that g/ is a given degenerate metric on C ∪ C and let M be the arising spacetime
manifold and g the Lorentzian metric which satisfies the Einstein equations extending g/ on
C∪C. Let us consider the double null foliation of (M, g) such that Ω = 1 on C∪C. Let L be
the geodesic vector field on C, which coincides with the normalized and equivariant vector
field, and let u be its affine parameter such that u = 0 on S. Then, we obtain a foliation of
C which consists of the (spacelike) surfaces Sτ = {u = τ}. The crucial observation is that
the null second fundamental form χ on C, which recall that is defined to be the following
(0,2) tensor field on C

χ(X,Y ) = g(∇Xe4, Y ),

where X,Y ∈ TpC, is in fact, an tensor field which depends only on the intrinsic geometry of
C (although ∇XL depends on the spacetime metric g). Indeed, the first variational formula
gives us

χ =
1

2
L/4g/ ,

and since the Lie derivative L/L is intrinsic to the hypersurface C, we deduce that g/ com-
pletely determines χ on C. On the other hand, by the Raychaudhuri equation we have

e4(trχ) = −|χ|2 − trα,

and since χ and trχ (and ω = L(log Ω) = 0) are determined from g/ , we deduce that trα is
also determined. However, in view of the Einstein equations (see Section 4.3) we have

trα = Ric(e4, e4) = 0.

This shows that one cannot arbitrarily prescribe a degenerate metric g/ on C ∪ C, since
otherwise trα would in general be non-zero.
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Notation: Denote L by e4 and L by e3.
Complement e4 and e3 with an orthonormal frame e1, e2 on St,u

⇒ We obtain a null frame.

The null decomposition of a tensor relative to a null frame e4, e3, e2, e1
is obtained by taking contractions with the vectorfields e4, e3.



Shears and Expansion Scalars

Viewing S as a hypersurface in C, respectively C:

Denote the second fundamental form of S in C by χ, and the
second fundamental form of S in C by χ.

Their traceless parts are the shears and denoted by χ̂, χ̂ respectively.

The traces trχ and trχ are the expansion scalars.

Null Limits of the Shears:
limCu,t→∞ r2χ̂ = Σ(u) (in (H) spacetimes) and
limCu,t→∞ rχ̂ = Ξ(u).
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Questions for Large Data

In order to investigate gravitational waves, we study the Cauchy problem.

• Stability theorems give precise description of null infinity.

• They are proven for small data. However, important results also hold
for large data.

Large data

Main behavior along null hypersurfaces towards future null infinity

⇒ Largely independent from the smallness.



Global Solutions - Stability of Minkowski Space

The celebrated result by Demetrios Christodoulou and Sergiu Klainerman,
1991, proving the global nonlinear stability of Minkowski spacetime.

Theorem [D. Christodoulou and S. Klainerman for EV (1991)] (simplified
version)

Every asymptotically flat initial data which is globally close to the trivial
data gives rise to a solution which is a complete spacetime tending to the
Minkowski spacetime at infinity along any geodesic.

Generalizations of this Result:

[N. Zipser for EM (2000)] Generalization for Einstein-Maxwell case.

[L. Bieri for EV (2007)] Generalization in the Einstein-vacuum case.

All the above: geometric-analytic proofs.

Long list of other results and partial results. Works by many authors:
Including but not complete: Y. Choquet-Bruhat, H. Friedrich, R. Geroch,
P. Hintz, S. Hawking, H. Lindblad, F. Nicolò, R. Penrose, I. Rodnianski,
A. Vasy, D. Shen, J. Szeftel, and more.



General Spacetimes

A simplified version of the main theorem reads as follows. The original
version of the theorem takes into account the detailed structures of the
geometric components which requires several pages to state.

Theorem [L. Bieri (2007, 2009)]

Every asymptotically flat initial data obeying appropriate smallness
assumptions (controlled via weighted Sobolev norms) gives rise to a
globally asymptotically flat solution of the Einstein vacuum equations
that is causally geodesically complete.

Small data ensures existence.

Large data

Main behavior along null hypersurfaces towards future null infinity

⇒ Largely independent from the smallness.



Asymptotic Flatness

(B) (General asymptotically-flat spacetimes with finite energy.)
Asymptotically flat initial data set in the sense of (B): an asymptotically
flat initial data set (H0, ḡ, k), where ḡ and k are sufficiently smooth and
for which there exists a coordinate system (x1, x2, x3) in a

neighbourhood of infinity such that with r = (
∑3

i=1(x
i)2)

1
2 → ∞, it is:

ḡij = δij + o3 (r−
1
2 ) (3)

kij = o2 (r−
3
2 ) . (4)

(D Christodoulou-Klainerman) Strongly asymptotically flat initial data
set in the sense of (D): an initial data set (H, ḡ, k), where ḡ and k are
sufficiently smooth and there exists a coordinate system (x1, x2, x3)
defined in a neighbourhood of infinity such that, as
r = (

∑3
i=1(x

i)2)
1
2 → ∞, ḡij and kij are:

ḡij = (1 +
2M

r
) δij + o4 (r−

3
2 ) (5)

kij = o3 (r−
5
2 ) , (6)

where M denotes the mass.



Asymptotic Flatness

Asymptotic Flatness

Situation (H). Consider initial data of the asymptotic type

ḡij − δij = lij + O (r−1−ε) (7)

kij = O (r−2−ε) , (8)

with lij being homogeneous of degree −1.

Situation (C). Consider initial data of the asymptotic type

ḡij − δij = O (r−
1
2−ε) (9)

kij = O (r−
3
2−ε) , (10)

with 0 < ε < 1
2 .

Situation (B*). As in (B) but with big O instead of o.



Theorems for Large Data

Stability proofs that established the relevant properties of the spacetimes:

(D) D. Christodoulou and S. Klainerman: 1993

(B) L. Bieri: 2007

Stability Theorems: For data as in definition (B) under a smallness
condition ⇒ established global existence and decay theorem for the
Einstein vacuum equations.

Large data: It follows easily by a corollary that there exists a complete
domain of dependence of the complement of a sufficiently large compact
subset of the initial hypersurface. Thus, we have a solution spacetime
with a portion of future null infinity corresponding to all values of the
retarded time u not greater than a fixed constant.

⇒ This provides the solid foundation to investigate the asymptotic
behavior at future null infinity for large data for (B) spacetimes, and to
prove theorems on the nature of gravitational radiation.

Naturally, our investigations will extend to these spacetimes coupled to
neutrinos via a null fluid.



Data of type (B): total energy finite, total angular momentum diverges.

Data of type (B*): total energy no longer finite.

Null components of the Weyl curvature W with the capital indices taking
the values 1, 2:

WA3B3 = αAB (11)

WA334 = 2 β
A

(12)

W3434 = 4 ρ (13)
∗W3434 = 4 σ (14)

WA434 = 2 βA (15)

WA4B4 = αAB (16)

Notation: Hodge duals ∗W and W∗ defined as

∗
Wαβγδ =

1

2
εαβµνW

µν
γδ

W
∗
αβγδ =

1

2
W

µν
αβ

εµνγδ



Let τ2− = 1 + u2 and r(t, u) is the area radius of the surface St,u.

Weyl curvature components

(D)
α(W ) = O (r−1 τ

− 5
2

− )

β(W ) = O (r−2 τ
− 3

2
− )

ρ(W ) = O (r−3)

σ(W ) = O (r−3 τ
− 1

2
− )

α(W ), β(W ) = o (r−
7
2 )

(B)
α = O (r−1 τ

− 3
2

− )

β = O (r−2 τ
− 1

2
− )

ρ, σ, α, β = o (r−
5
2 )

Correspondingly, obtain decay rates for cases (B*) and (C).



Structures in (B) Spacetimes

χ̂ = o (r−
3
2 ) (17)

χ̂ = O (r−1τ
− 1

2
− ) (18)

ζ = o (r−
3
2 ) (19)

trχ =
2

r
+ l.o.t. (20)

trχ = −2

r
+ l.o.t. (21)

Further, we have

kAB = ηAB η̂ = O(r−1τ
− 1

2
− )

kAN = εA ε = o(r−
3
2 )

kNN = δ δ = o(r−
3
2 )

Here, ζ is the torsion-one-form. Ricci rotation coefficients of the null frame are:

χAB = g(DAe4, eB) , χ
AB

= g(DAe3, eB) , ξ
A

=
1

2
g(D3e3, eA) , ζA =

1

2
g(D3e4, eA)

ζ
A

=
1

2
g(D4e3, eA) , ν =

1

2
g(D4e4, e3) , ν =

1

2
g(D3e3, e4) , εA =

1

2
g(DAe4, e3)



∂

∂u
χ̂ =

1

4
trχ · χ̂+ l.o.t. (22)

∂

∂u
χ̂ =

1

2
α+ l.o.t. (23)

Let K be the Gauss curvature of St,u. The Gauss equation reads

K +
1

4
trχtrχ− 1

2
χ̂ · χ̂ = −ρ (24)

The shears χ̂ and χ̂ obey the equations

div/ χ̂ = β + χ̂ · ζ + 1

2
(∇/ trχ− trχζ) = β + l.o.t. (25)

div/ χ̂ = −β − χ̂ · ζ + 1

2
(∇/ trχ+ trχζ) (26)

Recall that ζ is the torsion-one-form.



The Bianchi equations for D/ 3ρ as well as D/ 3σ are

D/ 3ρ +
3

2
trχρ = −div/ β − 1

2
χ̂α + (ε− ζ)β + 2ξβ (27)

+
1

4
(D3R34 −D4R33)

D/ 3σ +
3

2
trχσ = −curl/ β − 1

2
χ̂∗α+ ε∗β − 2ζ∗β − 2ξ∗β (28)

+
1

4
(DµR3ν −DνR3µ)ε

µν
34

The signature s is defined to be:

# contractions with e4 - # contractions with e3
Let: ξ any of the null components of an arbitrary Weyl tensor; D/ 3ξ, D/ 4ξ projections to St,u of D3ξ and D4ξ, resp. Define
St,u-tangent tensors:

ξ3 = D/ 3ξ +
3 − s

2
trχξ

ξ4 = D/ 4ξ +
3 + s

2
trχξ .



Limits at null infinity I+

Limits at null infinity I+ Follows from a Theorem by [B, 2020].
More general phenomenon. Several quantities, which are defined locally
on the surface St,u, do not attain corresponding limits on a given null
hypersurface Cu as t→ ∞. However, the difference of their values at
corresponding points on Su and Su0

does tend to a limit.
For instance, consider χ̂ defined locally on St,u. Recall (17). Even
though r2χ̂ does not have a limit as r → ∞ on a given Cu, the
difference at corresponding points on Su in Cu and on Su0 in Cu0 does
have a limit. In particular, these points being joined by an integral curve
of e3, the said difference attains the limit∫ u

u0

D/ 3χ̂ du
′

The part of χ̂ with slow decay of order o(r−
3
2 ) is non-dynamical, that is,

it does not evolve with u. We see that this part does not tend to any
limit at null infinity I+. Similarly, the components of the curvature that
are not peeling have leading order terms that are non-dynamical (and do
not attain corresponding limits at I+). Taking off these pieces gives us
the dynamical parts of these (non-peeling) curvature components.



Theorem [L. Bieri (2007)]

For the spacetimes of types (B), the normalized curvature components
rα (W ), r2β (W ) have limits on Cu as t→ ∞:

lim
Cu,t→∞

rα (W ) = AW (u, ·) , lim
Cu,t→∞

r2β (W ) = BW (u, ·) ,

where the limits are on S2 and depend on u. These limits satisfy

|AW (u, ·)| ⩽ C (1 + |u|)−3/2 |BW (u, ·)| ⩽ C (1 + |u|)−1/2
.

Moreover, the following limit exists

−1

2
lim

Cu,t→∞
rχ̂ = lim

Cu,t→∞
rη̂ = Ξ(u, ·)

Further, it follows that

∂Ξ

∂u
= −1

4
AW (29)

B = −2div/ Ξ (30)



Gravitational Radiation

Fluctuation of curvature of the spacetime

propagating as a wave.

Gravitational waves:

Localized disturbances in the geometry propagate at the speed of light,

along outgoing null hypersurfaces.

source

I
+

I
+

H

observe gravitational waves

Gravitational radiation: gravitational waves traveling from source along outgoing null hypersurfaces.
Photo: Courtesy of R. Hurt/Caltech-JPL.



From Mathematical Theory to Physics and Observation
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Figure 2. Permanent displacement of test masses caused by Christodoulou memory effect. Test
masses m1 and m2 are displaced permanently after the passage of a gravitational wave train.

p 1488: ‘When matter (i.e. electromagnetic or neutrino) radiation is present then if T is the
energy tensor of matter, φ∗

u (r2 1
4 T (l, l)) tends to a limit E as r∗

0 → ∞ and in (7)–(9) | � |2
is replaced by | � |2 +32πE.’ This is a suggestion, in which direction one would have to
search to find other contributions to the nonlinear memory effect. It was not known, what
the limit E would be. This limit E depending on u could behave in such a way that there
were no additive contribution from E to the memory, or that it was negligible. Studying the
adapted formulas (7)–(9) in Christodoulou (1991), one has to keep in mind that formula (9)
governs the nonlinear memory effect. It is an additive effect. How do we know that E is in fact
contributing? What is the structure of this limit? We give the answer in our formulas (15) and
(6) based on Bieri et al (2010) and on (2) from Zipser (2009). Our formula (6) corresponds to
Christodoulou’s formula (9). We find that the limit AF has the same decay behavior in u as the
limit �. Namely they satisfy

| AF (u, ·) | � C1(1+ | u |)− 3
2

| �(u, ·) | � C2(1+ | u |)− 3
2

Knowing these structure, we investigate our formula (6) more closely. Integrating with
respect to u from −∞ to +∞ yields a positive constant for F . This value contains the
corresponding positive constants coming from the electromagnetic field term AF and from
the purely gravitational term �. This proves that the contribution from the electromagnetic
field is of the same order6 as the purely geometric part. Our result being exact, it holds for all
corresponding physical situations. The constants C1 and C2 have to be determined or estimated
from astrophysical data of the many scenarios. This will be the purpose of the following
section, where we give rough estimates. It will be a challenge for the future to work on the
many details.

Summarizing, we have in (6) a general formula that always holds. Thus we can apply it to
all situations. From astrophysical data we can now determine the corresponding contributions
in every scenario.

6 Here, the word ‘order’ refers to decay behavior of the exact solution, not to any approximations. That is, ‘higher
order’ means ‘less decay’. For details, see Bieri et al (2010), Bieri (2009), Zipser (2009).
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Memory Effect of Gravitational Waves

Gravitational waves traveling from their source to our experiment. Three
test masses in a plane as follows. The test masses will experience

1 Instantaneous displacements (while the wave packet is traveling
through)

2 Permanent displacements (cumulative, stays after wave packet
passed). This is called the memory effect of gravitational waves.
Two types of this memory.
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from M. Favata
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Gravitational Wave Memory

• Ordinary (formerly called “linear”) effect
=> was known for a long time in the slow motion limit [Ya.B.
Zel’dovich, A.G. Polnarev 1974]

• Null (formerly called “nonlinear”) effect
=> was found by [D. Christodoulou 1991].

• Early Works on Memory:

L. Blanchet, T. Damour,

V. B. Braginsky, L. P. Grishchuk, C. M. Will , A. G. Wiseman, K. S.
Thorne, J. Frauendiener.



Memory - Continued

• Other Related Early Works: [A. Ashtekar and various co-authors
(1970s and 1980s)] Studies of asymptotic symmetries in GR and
infrared problems in quantum field theory.

• Detection: 2016: A paper by P. Lasky, E. Thrane, Y. Levin, J.
Blackman and Y. Chen suggests a method for detecting
gravitational wave memory with aLIGO by stacking events.



Memory - Continued

Recent results and new memory effects:

• Contribution from electro-magnetic field to null effect
=> was found by [L. Bieri, P. Chen, S.-T. Yau 2010 and 2011].

• Contribution from neutrino radiation to null effect
=> was found by [L. Bieri, D. Garfinkle 2012 and 2013].

• For the first time outside of GR, for pure Maxwell equations:
We find an electromagnetic analog of gravitational wave memory.
[L. Bieri, D. Garfinkle 2013]
⇒ charged test masses observe a residual kick.

• Fast massive particles mimic null memory: [A. Tolish, L. Bieri, D.
Garfinkle, R.M. Wald 2014]

• Other theories: In recent years, A. Strominger relates memory
effect, soft theorem and asymptotic symmetry to each other. Many
papers by many authors.

• Recent works on memory include many authors. See speakers at this
conference.... and many more. A growing field of research....



Memory - Permanent Displacement

Asymptotically Flat Spacetimes

The permanent displacement △x of test masses is related to the
difference (Chi− − Chi+) at I+:

△x = −d0
r

(
Chi− − Chi+

)
, (31)

where d0 denotes the initial distance between the test masses.

Contributions to the permanent displacement △x:

AF systems with O(r−1) decay: The ordinary memory is sourced by the
change in the radial component of the electric part of the Weyl tensor.
The null memory is sourced by F , the energy per unit solid angle radiated
to infinity (including shear and component of energy-momentum tensor).

NEW, (B) spacetimes: In addition, there is magnetic memory. All
memories (electric and magnetic) diverge at rate

√
|u|. Additional

structures.



Parity of Gravitational Waves and Memory

Let (M, g) denote our solution spacetimes.

The Weyl tensor Wαβγδ is decomposed into its electric and magnetic
parts, which are defined by

Eab :=Watbt (32)

Hab :=
1
2ε

ef
aWefbt (33)

Here εabc is the spatial volume element and is related to the spacetime
volume element by εabc = εtabc. The electric part of the Weyl tensor is
the crucial ingredient in the equation governing the distance between two
objects in free fall. In particular, their spatial separation denoted by ∆xa:

d2∆xa

dt2
= −Ea

b∆x
b (34)

In this decomposition, it is

ENN = ρ , HNN = σ .



Electric and Magnetic Memory

Memory effect caused by the electric part of the curvature tensor
⇒ called electric parity memory (i.e. electric memory).

Memory effect caused by the magnetic part of the curvature tensor
⇒ called magnetic parity memory (i.e. magnetic memory).

So far

AF systems with O(r−1) decay towards infinity
⇒ only electric parity memory, no magnetic memory occurs.

New (B, 2020)

AF spacetimes of slower decay like (B) spacetimes
⇒ magnetic memory occurs naturally.

Overall memory is growing and new structures arise.

Shown for the Einstein vacuum equations and Einstein-null-fluid
equations describing neutrino radiation. The new results hold as well for
the Einstein equations coupled to other fields of slow decay towards
infinity and obeying other corresponding properties.



Gravitational Wave Memories

Next, we are going to derive electric and magnetic parity memory for

1) the Einstein vacuum equations and

2) the Einstein-null-fluid equations describing neutrino radiation.



Main Theorem and Proof

Recall from above that (Chi− − Chi+) is related to permanent displacement.

Simplified and first version of the main result:

(Chi− − Chi+) determined by equations at I+

• including terms sourced by “electric part of curvature” (always present)
• including terms sourced by “magnetic part of curvature” (only for slow
fall-off)

On S2 at I+: Let Z := div/ (Chi− − Chi+). Equations for Z involve

div/ Z = {structures involving electric part of curvature}
curl/ Z = {structures involving magnetic part of curvature}

plus further new structures

Next:

• Ideas and main steps of the derivation of the main results.

• Presented as a “flow”, focussing on the main structures.

• Official Version of the Main Theorem.



Derivation of Electric Memory

Einstein vacuum equations:

Consider the Bianchi equation for D/ 3ρ.

Notation ρ3 := D/ 3ρ + 3
2 trχρ.

In the Bianchi equation for D/ 3ρ

D/ 3ρ +
3

2
trχρ = −div/ β − 1

2
χ̂α + (ε− ζ)β + 2ξβ (35)

we focus on the higher order terms,
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+ l.o.t.



A short computation shows that

ρ3 = − div/ β︸ ︷︷ ︸
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Thus it is

ρ3 +
∂

∂u
(χ̂ · χ̂) = −div/ β +

1

4
trχ|χ̂|2 = O(r−3τ

− 1
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− ) (36)

Structures:

For small data, ρ3 as well as ∂
∂u (χ̂ · χ̂) take a well-defined limit at I+

when multiplied with r3.

For large data, that is not the case, but many more terms of order

r−
5
2 τ

− 3
2

− exist in ρ3 as well as in ∂
∂u (χ̂ · χ̂) and potentially terms of order

r−
5
2 τ−1−α

− with α ⩾ 0 in ρ3. However, as a consequence of equation
(36) all these terms on the left hand side of (36) cancel.

Limit at I+ of the left hand side of (36)

⇒ leading order term originates from ρ3 and is of order O(r−3τ
− 1

2
− ).



Future Null Infinity and Electric Memory

Notation for the corresponding limit of the LHS of (36):

P3 := lim
Cu,t→∞

r3
(
ρ3 +

∂

∂u
(χ̂ · χ̂)

)
(37)

P :=

∫
u

P3 du (38)

Note that P is defined on S2 × R up to an additive function CP on S2

(thus the latter is independent of u). Later, when taking the integral∫ +∞
−∞ P3 du, the term CP will cancel.

Taking the limit of
(
r3 (36)

)
on Cu as t→ ∞, each term on the right

hand side takes a well-defined limit. This yields

P3 = −div/ B + 2|Ξ|2 (39)

Moreover, using our previous theorem on the limits at I+ it follows that

P3 = R 1
2
(u, ·) +Rβ(u, ·) + l.o.t.︸︷︷︸

more structures



Next, we define

Chi3 := lim
Cu,t→∞

(
r2

∂

∂u
χ̂
)

(40)

Chi :=

∫
u

Chi3 du (41)

We have (see before)

B = −2div/ Ξ , Chi3 = −Ξ (42)

Using these with the above we obtain

P3 = −2div/ div/ Chi3 + 2|Ξ|2 (43)

Integrating (43) with respect to u gives

(P− − P+)−
∫ +∞

−∞
|Ξ|2 du = div/ div/ (Chi− − Chi+) (44)

In (P− − P+) an abundance of new terms, leading order |u|+ 1
2 .



Derivation of Magnetic Memory

Consider the Bianchi equation for D/ 3σ.

Notation σ3 = D/ 3σ + 3
2 trχσ. In the Bianchi equation for σ3

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ ε ∗β − 2ζ ∗β − 2ξ ∗β

we concentrate on the higher order terms

σ3 = −curl/ β − 1

2
χ̂ · ∗α+ l.o.t. (45)

A short computation yields

σ3 +
∂

∂u
(χ̂ ∧ χ̂) = −curl/ β = O(r−3τ

− 1
2

− ) (46)

For χ̂ ∧ χ̂ the orders of the terms are at the level of χ̂ · χ̂ above.



Multiply the left hand side of (46) by r3 and and take the limit on each
Cu for t→ ∞ denoting this limit by Q3. Then introduce Q as follows:

Q3 := lim
Cu,t→∞

r3
(
σ3 +

∂

∂u
(χ̂ ∧ χ̂)

)
(47)

Q :=

∫
u

Q3 du (48)

Note that Q is defined on S2 × R up to an additive function CQ on S2

(thus the latter is independent of u). Later, when taking the integral∫ +∞
−∞ Q3 du, the term CQ will cancel.

Taking the limit of
(
r3 (46)

)
on Cu as t→ ∞, the term on the right

hand side takes a well-defined limit. This yields

Q3 = −curl/ B (49)

Moreover, using our previous theorem on the limits at I+ it follows that

Q3 = S 1
2
(u, ·) + Sβ(u, ·) + l.o.t.︸︷︷︸

more structures



Continue to compute using equation (49):
Consider (49) and employ the derived relations between χ̂, χ̂ and β as
well as the corresponding limits (30) and (42) to compute

Q3 = −2 curl/ div/ Chi3 (50)

Integrating (50) with respect to u yields

(Q− −Q+) = curl/ div/ (Chi− − Chi+) (51)

In (Q− −Q+) an abundance of new terms, leading order |u|+ 1
2 .



We obtain

(Q−
σ1

−Q+
σ1
) + (Q−

σ2
−Q+

σ2
) − 1

2
(G− −G+) (52)

= curl/ div/ (Chi− − Chi+)

Behavior of (Q− −Q+) as well as curl/ div/ (Chi− − Chi+):
Fix a point on the sphere S2 at fixed u0 and consider Q(u0). Next,
take Q(u) at the corresponding point for some value of u ̸= u0.
Keep u0 fixed and let u tend to +∞, respectively to −∞. Then the
difference Q(u)−Q(u0) is no longer finite, but it grows with |u|+ 1

2 .
A corresponding argument holds for Chi(u)− Chi(u0).

(G− −G+) is finite. Contributions rooted in magnetic Weyl
curvature and shears (shears: sourced by

∫
u

∂
∂u (χ̂ ∧ χ̂) du).

In AF systems with fall-off O(r−1) towards infinity, each term in the
above equation is identically zero.

Q part features terms of diverging order |u|+ 1
2 , |u|+β for 0 < β < 1

2 .
Rooted in magnetic Weyl curvature.



Gravitational Wave Memory: Electric and Magnetic

The above gives the main ingredients in the proof of the following
theorem.

Theorem [L. Bieri]

The following holds for (B) spacetimes.
(Chi− −Chi+) is determined by the following equations on S2 (see next
slide).

Electric and Magnetic Parts

Next, we are going to COMBINE the two parts.



Gravitational Waves: New Structures

There exist functions Φ and Ψ such that

div/ (Chi− − Chi+) = ∇/ Φ+∇/ ⊥
Ψ.

Let Z := div/ (Chi− − Chi+). Note that then the following holds:

div/ Z = △/ Φ , curl/ Z = △/ Ψ .

We obtain the system on S2, solve by Hodge theory,

div/ (Chi− − Chi+) = ∇/ Φ+∇/ ⊥
Ψ (53)

curl/ div/ (Chi− − Chi+) = △/ Ψ

= (Q− Q̄)− − (Q− Q̄)+ (54)

div/ div/ (Chi− − Chi+) = △/ Φ

= (P − P̄)− − (P − P̄)+

−2(F − F̄ ) (55)

New quantities at diverging and finite orders in Q and P parts.



For the more general spacetimes of slow decay (like (B)) we conclude:

1. There is the new magnetic memory effect growing with |u| 12 sourced
by Q and finite contributions from both Q and G.

2. Q has further diverging terms at lower order.

3. There is the electric memory, previously established. This electric
part is growing with |u| 12 sourced by P, further lower-order growing
terms and finite contributions from P and from F (the latter may

be unbounded for systems of decay O(r−
1
2 )).

4. curl/ div/ (Chi− − Chi+) being non-trivial allows for the magnetic
structures to appear in gravitational radiation and to enter the
permanent changes of the spacetime. Thus, these more general
spacetimes generate memory of magnetic type.

Points 1, 2, 4 are NEW.

Point 3, the leading order behavior as well as the null memory were
established in (B, 2018). The finer structures are new.



Adding Neutrinos

(B 2020) Einstein-null-fluid equations describing neutrino radiation:

Rµν = 8π Tµν .

Describe the neutrinos in this equation, represented via the
energy-momentum tensor given by

Tµν = NKµKν (56)

with K being a null vector and N = N (θ1, θ2, r, τ−) a positive scalar
function depending on r, τ−, and the spherical variables θ1, θ2.

When coupled to the Einstein equations in the most general settings, the

energy-momentum tensor Tµν obeys those loose decay laws. No symmetry nor

other restrictions imposed.

In particular, we do not have stationarity outside a compact set, but
instead a distribution of neutrinos decaying very slowly towards infinity.

“Geometric terms”: same growth rate as in EV case.

“T” terms: growing at rate
√
|u|.



“Geometric terms”: same growth rate as in EV case.

“T” terms: growing at rate
√
|u|.

In particular:

For data as in (B) as well as in (B*), there is a contribution from the
neutrinos to the electric memory growing at rate

√
|u|.

For data as in (B*), in addition, we find the following contribution from
the neutrinos to the magnetic memory: Fix u0, then the integral∫ u

u0

(
T
)∗
343

du diverges like
√
|u| as |u| → ∞.

Similarly as before, solve the corresponding Hodge system on S2 to
derive the full changes of the spacetime.



Summary

Summary

• Spacetimes decaying like O(r−1+α) for 0 < α ⩽ 1
2 cause magnetic

memory of the above types diverging at |u|+α. Respectively, this holds
for 0 < α < 1.

• The corresponding electric memories diverge at the same rate.

• Neutrinos contribute to the electric memory growing at rate
√
|u|.

• A non-trivial curl of neutrino stress-energy starts occurring at O(r−
1
2 ).

• The integral
∫
u

∂
∂u (χ̂ · χ̂) du as well as

∫
u

∂
∂u (χ̂∧ χ̂) du generates finite

electric (former), respectively finite magnetic (latter) memory.



Homogeneous of Degree −1, Non-Isotropic Mass

Recall the spacetimes of type (H) above.

The spacetimes where the initial data includes a term that is
homogeneous of degree −1. In particular, this may include a
non-isotropic mass term.

ḡij − δij = lij + O (r−
3
2 )

kij = O (r−
5
2 ) ,

with lij being homogeneous of degree −1.

(B 2022)



Peeling Stops

Solve initial value problem for the EV equations for (H) initial data to
obtain spacetimes of type (H). The Weyl curvature components have
the following behavior towards future null infinity.

α = O (r−1 τ
− 5

2
− ) (57)

β = O (r−2 τ
− 3

2
− ) (58)

ρ = O (r−3) (59)

ρ− ρ̄ = O (r−3) (60)

σ = O (r−3 τ
− 1

2
− ) (61)

σ − σ̄ = O (r−3 τ
− 1

2
− ) (62)

β = o (r−
7
2 ) (63)

α = o (r−
7
2 ) (64)

Here τ− :=
√
1 + u2 for retarded time u.

(63)-(64) hold under smallness assumptions, whereas for large data the
behavior becomes O(r−3).



Limits

Limits at Spacelike and Future Null Infinity for (H) Spacetimes

Consider ρ.

Denote by PH0
(θ, ϕ) the limit of r3ρ at spacelike infinity.

Denote by P (u, θ, ϕ) the following limit at future null infinity:

lim
Cu,t→∞

r3ρ = P (u, θ, ϕ)

Moreover, let
lim

u→+∞
P (u, θ, ϕ) = P+(θ, ϕ)

PH0(θ, ϕ), respectively P+(θ, ϕ), do not have any l = 1 modes, but they
have all the other modes l = 0 and l ⩾ 2.



Limits at Future Null Infinity I+

Limits at Future Null Infinity I+ for (A) Spacetimes

lim
Cu,t→∞

r3ρ = P (u, θ, ϕ)

P̄ = P̄ (u)

(P − P̄ )(u, θ, ϕ) : does not decay in | u | as | u |→ ∞,

leading order term is dynamical, i.e. depends on u,

and also depends on the angles θ, ϕ

lim
u→+∞

P (u, θ, ϕ) = P+(θ, ϕ)

We see that P = P (u, θ, ϕ) is a function on R× S2, and P+ = P+(θ, ϕ)
is a function on S2. Thus, in particular, as u→ +∞, the quantity
P (u, θ, ϕ) tends to a function P+(θ, ϕ) on S2, not a constant.

For (CK) spacetimes it is

P − P̄ = O(| u |− 1
2 )

lim
u→+∞

P = P+ = lim
u→+∞

P̄ = P̄+ = −2M+
ADM = constant



Summary of Results for (H) Spacetimes

For (H) spacetimes the following hold:

• There are natural contributions from (P − P[1]) and F to the
gravitational wave memory effect.

• Peeling of the Weyl curvature components at future null infinity stops
at the order r−3 for large data. For small data, this limit is of the
dynamical order r−

7
2 . These orders are achieved by the curvature

component β for large, respectively small data.

• The limit limCu,t→∞ r3ρ = P (u, θ, ϕ) tends to a function P+(θ, ϕ) on
S2 when the retarded time u→ +∞. In (CK) the corresponding limit is
a constant.

• ρ− ρ̄, respectively P − P̄ , does not decay in retarded time u. (Here, ρ̄
means the mean value of ρ on St,u, and P̄ the mean value of P on S2.)

• Energy and momenta at future null infinity are well-defined. In
particular, angular momentum can be defined and is finite despite the
slow decay for β and its derivatives.



Angular Momentum

Angular Momentum at I+

Classical definition of angular momentum at I+:

Jk :=

∫
S2

εAB∇BX̃
k(NA − 1

4
C D

A ∇BCDB) , k = 1, 2, 3.

Bondi-Sachs coordinates.

X̃k for k = 1, 2, 3: standard coordinate functions in R3 restricted to S2,

NA: angular momentum aspect,

CAB : shear tensor,

εAB : volume form of the standard round metric σAB of S2.

Further, in the Bondi-Sachs notation, NAB is the news tensor and m the
mass aspect.



Christodoulou-Klainerman and Bondi-Sachs

We use (CK) notation.

Relate the Christodoulou-Klainerman notation to the Bondi-Sachs
coordinate system. The left hand side is given in the (CK) notation:

BA = −NA

BA = ∇/ B
NAB

AAB = −2∂uNAB

ΣAB = −1

2
CAB

ΞAB = −1

2
NAB .

In (H) spacetimes the limit BA may not exist. Nevertheless, we can
define angular momentum, because the involved l = 1 modes behave
better.

Derive a conservation of angular momentum for (H) spacetimes.



Velocity-Coded Memory

B and A. Polnarev 2024:
Recent New Results on Velocity-Coded Memory

Scenario: A supermassive black hole surrounded by a large accretion disk.
A less massive black hole moves perpendicular to the plane of the disk
and intersects it.

After crossing the disk ⇒ smaller black hole experiences a jump of
acceleration.
⇒ Acceleration jump is seen as a jump in curvature, which happens in a
very short time interval.

At the detector, this burst arrives and lasts for the short time △u. After
this short time △u, the velocity of the test masses stays constant over a
very long time interval δu. ⇒ Velocity-Coded Memory



Experiment to Measure Electromagnetic Memory

B and D. Garfinkle 2023:
Experiment to Measure Electromagnetic Memory

The electromagnetic memory is a residual velocity (i.e. kick) of test
charges. (Bieri-Garfinkle 2013)

Electromagnetic memory ⇒ requires a source whose charges are not
confined to any bounded spatial region.

Experiment: Apply a short microwave pulse to the center of a long dipole
antenna. ⇒ Create a situation of unbound charges for a short time in
the antenna, until the pulse of charges reach the end of the antenna.

To measure the memory, use another dipole antenna in the far field
region. Before the charges reach the ends of the dipole antenna of the
source, they induce a current in the receiver antenna due to the fact that
the integral of the electric field over time is nonzero.

Measurement has to be done within a short time before the pulse reaches
the end of the antenna.



Electromagnetic (EM) Memory

Motion of a charge in the presence of an electromagnetic wave.

Charged test masses ⇒ Measure residual velocity (= kick).

For a charge q with mass m the equation of motion is

m
d2x⃗

dt2
= qE⃗ (65)

It follows that once the wave has passed the charge has received a kick
given by

∆v⃗ =
q

m

∫ ∞

−∞
E⃗dt (66)



Null Memory Continued

Maxwell’s equations in spherical coordinates.

Spherical coordinate indices: write r for radial direction and capital latin
letters for two-sphere direction.

∂rEr + 2r−1Er + r−2DAE
A = 4πρ (67)

∂rBr + 2r−1Br + r−2DAB
A = 0 (68)

∂tBr + r−2εABDAEB = 0 (69)

∂tEr − r−2εABDABB = −4πjr (70)

∂tBA + εA
B(DBEr − ∂rEB) = 0 (71)

∂tEA − εA
B(DBBr − ∂rBB) = −4πjA (72)

Here DA and εAB are respectively the derivative operator and volume
element of the unit two-sphere, and all indicies are raised and lowered
with the unit two-sphere metric.



Null Memory Continued

Expand all quantities in inverse powers of r with expansion coefficients
that are functions of retarded time u = t− r and the angular coordinates.

For an electromagnetic field that is smooth at null infinity it follows that

EA = XA + . . . (73)

BA = YA + . . . (74)

Er =Wr−2 + . . . (75)

Br = Zr−2 + . . . (76)

ρ = jr = r−2L+ . . . (77)

where . . . means “terms higher order in r−1” and we also assume that at
large r the angular components of ja are negligible compared to the
radial component.



Null Memory Continued

Consider a field that is both charged and massless. This is the analog for
electromagnetism of fields whose stress-energy gets out to null infinity.
Closer look at equation (77):

ρ = jr = r−2L+ . . .

Introduce the current density four-vector Jµ given by J t = ρ and
Ja = ja. We also introduce the advanced time v = t+ r. It then follows
that Ju = − 1

2 (jr + ρ) and Jv = 1
2 (jr − ρ). Thus the behavior given in

(77) is equivalent to

Ju = −r−2L+ . . . (78)

Jv = O(r−3) , JA = O(r−3) (79)

Substitute in the above equations ⇒ Some of the equations yield
identical results and the full set of independent equations becomes

−∂uW +DAX
A = 4πL

∂uZ + εABDAXB = 0



Null Memory Continued

Define the quantity SA by

SA =

∫ ∞

−∞
XAdu (80)

Then it follows that SA satisfies the equations

DAS
A = (W (∞)−W (−∞)) + 4πF (81)

εABDASB = Z(−∞)− Z(∞) (82)

where the quantity F is defined by

F =

∫ ∞

−∞
Ldu (83)

⇒ It follows that the kick points in the direction of SA and has a
magnitude of

∆v =
q

mr
|SA| (84)

EM Memory consists of ordinary kick and null kick .



EM Memory : Analyzed

EM Memory consists of ordinary kick and null kick .

∆v =
q

mr
|SA| (85)

ordinary kick due to difference between the early and late time
values of the radial component of the electric field Er

null kick due to charge radiated to infinity, that is F giving the
amount of charge radiated to infinity per unit solid angle.



Consider systems which at large positive and negative times consist of
widely separated charges each moving at constant velocity.

For a single charge moving at constant velocity
⇒ the r−2 piece of Br vanishes.

By superposition it follows that the same is true for a collection of such
charges.

⇒ It follows that both Z(−∞) and Z(∞) vanish.

⇒ It follows that there is a scalar Φ such that

SA = DAΦ (86)

Then we find

DAD
AΦ = (W (∞)−W (−∞)) + 4πF (87)

Note that it is required for the consistency of this equation that the right
hand side integrated over all solid angle vanishes.

In physical terms: it follows that the integral over all solid angle of W is
4π times the charge enclosed.



It then follows that the

Integral over all solid angle of W (−∞)−W (∞) is 4π times the amount
of charge lost by being radiated to null infinity.

But since F is the charge radiated per unit solid angle

⇒ The integral over all solid angle of 4πF is also 4π times the lost
charge.

From eqn. (87) it follows that Φ consists of
two pieces Φ = Φ1 +Φ2 satisfying the following equations:

DAD
AΦ1 = (W (∞)−W (−∞))− (W (∞)−W (−∞))[0] (88)

DAD
AΦ2 = 4π(F − F[0]) (89)

and that SA = S1A + S2A with S1A = DAΦ1 and correspondingly for
S2A. Subscript [0] means the average value of that quantity on the
2-sphere.



[B, Garfinkle 2013] There are two electromagnetic analogs of
gravitational wave memory.

Namely:

due to fields that do and do not reach null infinity.

What other fields behave like that?
The stress-energy tensor of the fields gets out to null infinity for

a field that is both charged and massless being the analog for
electromagnetism of fields whose stress-energy gets out to null
infinity (Maxwell equations with massless charge, linear),

Maxwell-Klein-Gordon system for a charged, massless scalar field
(nonlinear),

charged null dust (nonlinear, can be derived from [BG] result on
null fluids).



Outlook

Outlook

Measure memory, gravitational, electromagnetic, ....

Gravitational wave sources where an extended neutrino halo is
present: Expect to see the new structures.

Dark matter of certain types may behave as described here.
Investigate dark matter, including dark matter halos of galaxies.

Couple Einstein equations to other types of matter-energy to
investigate similar questions.

Many more fascinating questions....

Thank you!


