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What’s the problem?
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Measurement in quantum theory
The traditional presentation of elementary QM asserts:

▶ Observables are hermitian operators

▶ When a hermitian operator is measured, the result is one of its eigenvalues
▶ The state vector collapses instantaneously to the corresponding eigenvector

There are many problems with this description (mathematical, physical & conceptual).
In particular, the collapse rule is incompatible with relativity & quantum field theory.
“A major scandal in the foundations of quantum physics” (Earman & Valente)

▶ The literature on QFT is almost silent about measurement!
▶ The literature on quantum measurement is almost silent about QFT!
▶ Such literature as there is reveals more problems than solutions!
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Impossible measurements Sorkin 1993

A

B

C

Lig
htLight

Future

A and C are not causally connected, though A can influence B and B can influence C .
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Impossible measurements Sorkin 1993

A

B

C

Lig
htLight

Future

Claim: nonselective measurement of a typical observable B allows C to determine
whether A has conducted a measurement – superluminal communication.
Presumably B represents an impossible measurement (spacetime extension is crucial).
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Impossible measurements Sorkin 1993

A

B

C

Lig
htLight

Future

“[I]t becomes a priori unclear, for quantum field theory, which observables can be measured
consistently with causality and which can’t.
This would seem to deprive [QFT] of any definite measurement theory, leaving the issue of
what can actually be measured to (at best) a case-by-case analysis”
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.

What’s the cure?
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Operational approach CJF & Verch, 2018

Instead of constructing rules for QFT de novo, apply a systematic approach by
modelling the measurement process, combining Quantum Measurement Theory with
modern QFT in curved spacetimes

Describes measurement chain in QM
Little attention to QFT
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Operational approach CJF & Verch, 2018

Instead of constructing rules for QFT de novo, apply a systematic approach by
modelling the measurement process, combining Quantum Measurement Theory with
modern QFT in curved spacetimes

Describes measurement chain in QM
Little attention to QFT

Conceptual framework for QFT
Little attention to measurement
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Algebraic QFT – brief reminder (See arXiv:1904.04051 for a pedagogical intro)

Describe a QFT on M in terms of a ∗-algebra A(M) with unit, together with
subalgebras A(M; N) for suitable open regions N ⊂ M. (A(M; M) = A(M))

Typical elements of A(M; N) include smeared fields
Φ(f ) ∈ A(M; N) if f ≡ 0 outside N

Terms and conditions apply
▶ N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2) Isotony
▶ A(M; N) = A(M) if N contains a Cauchy surface of M Timeslice

Self-adjoint elements of A(M; N) are interpreted as observables localisable in N.
An observable may be localisable in many distinct regions.

A state is a linear map ω : A(M) → C so that ω(1) = 1 and ω(A∗A) ≥ 0 ∀A ∈ A(M).
Interpretation: ω(A) is the expectation value for measurements of A in state ω.

NB No specific Lagrangian has been assumed.
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Outline of the idea
Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) = alg. of system observables on M; A(M; N) = subalgebra localisable in N.
Compare:
▶ the uncoupled combination U of A and B

U(M; N) = A(M; N) ⊗ B(M; N)
▶ a coupled combination C with bounded coupling region K in spacetime.

Only assumption: C and U coincide ‘outside’ K .
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Describe the system and probe by QFTs A, B on spacetime M (globally hyperbolic).
A(M) = alg. of system observables on M; A(M; N) = subalgebra localisable in N.
Compare:
▶ the uncoupled combination U of A and B

U(M; N) = A(M; N) ⊗ B(M; N)
▶ a coupled combination C with bounded coupling region K in spacetime.

Only assumption: C and U coincide ‘outside’ K . Combining this assumption with
spacetime geometry & standard AQFT rules, there are isomorphisms

τ± : U(M) → C(M)

reflecting the identifications between the two theories at early (−) and late (+) times.
The scattering map Θ = (τ−)−1 ◦ τ+ is an automorphism of U(M). Details
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Measurement scheme: prepare early, measure late
τ± translate statements in ‘uncoupled language’ to the physical coupled system.

Uncoupled Coupled

Prepare system & probe
independently at early times ω ⊗ σ ω˜σ = (ω ⊗ σ) ◦ (τ−)−1

Probe observable B at late times 1 ⊗ B B̃ = τ+(1 ⊗ B)

Expected measurement outcome ω˜σ(B̃)

Description purely at system level: Seek induced observable A ∈ A(M) so that

ω(A) = ω˜σ(B̃) (matching expectation values).

Notation: A = εσ(B).
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Induced system observables

εσ(B) is the system observable you learn about by measuring B on the probe.

▶ Explicit formula for εσ(B) can be given in terms of Θ, σ and B,

εσ(B) = ησ(Θ(1 ⊗ B)), where ησ(A ⊗ C) = σ(C)A.

Can be computed in specific models.

▶ The induced observables are localisable in any suitable neighbourhood of K
▶ Probe observables localisable spacelike to K induce trivial observables.
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A specific probe model
Two free scalar fields: Φ (system) and Ψ (probe) are coupled via an interaction term

Lint = −ρΦΨ, ρ ∈ C∞
0 (M), K = supp ρ.

As formal power series in h ∈ C∞
0 (M+),

εσ(eiΨ(h)) = σ(eiΨ(h−))eiΦ(f −)

(f − and h− −h vanish outside supp ρ∩J−(supp h)).

h

ρ
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where E− is the retarded Green function for the coupled system.
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0 (M), K = supp ρ.

As formal power series in h ∈ C∞
0 (M+),

εσ(eiΨ(h)) = σ(eiΨ(h−))eiΦ(f −)

(f − and h− −h vanish outside supp ρ∩J−(supp h)).

h

ρ

εσ(1) = 1
εσ(Ψ(h)) = Φ(f −) + σ(Ψ(h−))1,

εσ(Ψ(h)2) = Φ(f −)2 + σ(Ψ(h−))Φ(f −) + σ(Ψ(h−)2)1 etc
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Asymptotic measurement schemes CJF, Jubb & Ruep 2022

Continuing with the coupled fields, replace ρ by λρ and h by h/λ, taking λ → 0.
(Walk softly and carry a big stick.)(

f −

h−

)
=
(

0
h

)
− λ

(
0 ρ
ρ 0

)
E−

λ

(
0

h/λ

)
−→

(
0
h

)
−
(

0 ρ
ρ 0

)
E−

0

(
0
h

)

With a little ingenuity one can now design h and ρ to achieve a desired f − in the limit.
Then use

eiΦ(f −
λ

) = εσ

(
eiΨ(h/λ)

σ(eiΨ(h−
λ

))

)

to obtain an asymptotic measurement scheme for any power of Φ(f −).
Further ingenuity extends this to arbitrary elements of the algebra of observables, both
in ∗-algebra and Weyl algebra formulations.
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Correlations of spacelike separated effects
Consider two probes PA and PB with spacelike separated coupling regions KA and KB.

Consider two effects EA and EB (yes/no observables) of the respective probe theories,
localisable in spacelike separated regions.

The observable recording success in both tests is the effect

EA ⊗ EB ∈ PA(M) ⊗ PB(M)

in the combined probe theory PA ⊗ PB.

Assuming the causal factorisation property ΘAB = Θ̂A ◦ Θ̂B, one may compute

εAB
σA⊗σB (EA ⊗ EB) = εA

σA(EA)εB
σB (EB)

Consequently,
ω(εA

σA(EA)εB
σB (EB))

is the joint success probability for the observables εA
σA(EA) and εB

σB (EB),

CJ Fewster Measurement in QFT 13 / 23
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Remarks on Bell inequalities
In local hidden variable theories joint success probabilities of observations in spacelike
separated regions obey Bell inequalities that are respected by neither QM nor nature.
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Remarks on Bell inequalities
In local hidden variable theories joint success probabilities of observations in spacelike
separated regions obey Bell inequalities that are respected by neither QM nor nature.
Example: CHSH inequality

⟨A1(B1 + B2) + A2(B1 − B2)⟩ ≤ 2

for observables Ai spacelike separated from Bi , and |Ai | ≤ 1, |Bi | ≤ 1.
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Remarks on Bell inequalities
In local hidden variable theories joint success probabilities of observations in spacelike
separated regions obey Bell inequalities that are respected by neither QM nor nature.
However, the notion of locality in nonrelativistic QM is unclear, as the Schrödinger
equation is parabolic with infinite speed of propagation.

Using the QFT measurement framework, these notions become precise and the
measured correlations are related to correlators of spacelike separated observables.
Invoke:
▶ the existence of spacelike separated observables in QFT witnessing arbitrarily

closely to maximal violation of Bell inequalities in the Minkowski vacuum state
Summers & Werner

▶ asymptotic measurement schemes
to conclude that the measurement framework can exhibit close to maximal violation.
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An algebra of observables for de Sitter Chandrasekaran, Longo, Penington & Witten 2023

Aim to find an algebra of observables for QFT ‘gravitationally dressed’ to the worldline
of a observer following a geodesic in a static patch of de Sitter.

▶ The observer is given by a simple QM clock for the worldline proper time
▶ Physical observables are defined as those joint observables of the clock & QFT

that are invariant under the static flow on dS
▶ The resulting vN algebra is of type II1 rather than the usual type III1 of QFT

=⇒ there is a finite trace that can be used to define entropy.

However, the motivation for the particular clock system used is unclear, and there is no
real understanding of how the ‘observer’ actually observes the QFT.

CJ Fewster Measurement in QFT 15 / 23
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Measurement schemes and QRF CJF, Janssen, Loveridge, Rejzner & Waldron, 2024

Our approach: start from the description of measurement theory in QFT

▶ Any individual measurement scheme breaks dS invariance,
but isometries of static patch act on the family of measurement schemes

▶ To determine the measurement scheme used, invoke a quantum reference frame
covariant w.r.t. the isometries

▶ Physical observables are the invariant joint observables of the QRF and QFT
▶ Significant generalisation of CPLW

▶ the clock is one of many systems that could be used
▶ as in CPLW, the physical algebra is a compressed crossed product algebra
▶ there is a semifinite trace that is finite if the QRF has good thermal properties
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What about states?
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State update rules CJF + Verch; CJF + Bostelmann & Ruep

Operational ideology
▶ The role of a state is to compute probabilities for measurement outcomes

Prob(B; ω) = ω(B)

for effect B (yes/no measurement)

▶ The role of a post-measurement state is to compute conditional probabilities for
subsequent outcomes conditioned on the measurement result

Prob(B|A; ω) = ωA(B)

(conditional probability for B, subsequent to a successful measurement of A).
Using our scheme, ωA can be computed when A is an effect of a probe coupled to the
system, as can the updated state ωn.s. when no selection is made on the outcome.
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▶ The role of a post-measurement state is to compute conditional probabilities for

subsequent outcomes conditioned on the measurement result

Prob(B|A; ω) = ωA(B)

(conditional probability for B, subsequent to a successful measurement of A).
Using our scheme, ωA can be computed when A is an effect of a probe coupled to the
system, as can the updated state ωn.s. when no selection is made on the outcome.

It is not necessary to assume that the state actually changes.
The update rule conveniently does the book-keeping needed to compute the
conditional probability, given additional knowledge from the A-measurement.
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Properties of the update rule
Explicit formulae

ωA(C) = (ω ⊗ σA)(ΘA(C ⊗ A))
(ω ⊗ σA)(ΘA(1 ⊗ A)) ωn.s.

A (C) = (ω ⊗ σA)(ΘA(C ⊗ 1))

Theorem (a) For two updates at spacelike separation one has

Consistency (ωA)B = (ωB)A

(b) For all B localisable spacelike to KA one has

The principle of blissful ignorance ωn.s.
A (B) = ω(B)

Unspooky ‘action’ at a distance ωA(B) = ω(B) iff B is uncorrelated with εσ(A) in ω.

NB Correlations include those due to entanglement.
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Impossible measurements resolved
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Impossible measurements? Bostelmann, CJF & Ruep

Model A and B measurements using probes

A

B

C

▶ Alice chooses whether to make a nonselective measurement
▶ Bob certainly makes a nonselective measurement
▶ Can Charlie determine whether Alice performed the measurement?

ωn.s.
AB (C)

?
̸= ωn.s.

B (C)
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Impossible measurements? Bostelmann, CJF & Ruep

Model A and B measurements using probes

A

B

C

N

Detailed investigation of locality properties and the geometric situation gives:

Θ̂BC ⊗ 1 ⊗ 1 ∈ U(M; N) for a region N ⊂ K⊥
A ∩ M−

B

Theorem Charlie cannot determine whether Alice has measured:

ωn.s.
AB (C) = ωn.s.

B (C)

Proof by blissful ignorance.
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Impossible measurements? Bostelmann, CJF & Ruep

Model A and B measurements using probes

A

B

C

N

The analysis shows that the measurement scheme is free of Sorkin-type pathologies.

Key assumption – the probes and couplings are described by physics respecting locality.

Impossible measurements can only be performed using impossible apparatus.
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Impossible measurements – morals of the tale

▶ In our framework there are no impossible measurement pathologies and (at least
in models) all local observables can be measured asymptotically.

▶ The problematic aspect of Sorkin’s example is his update rule, assumed to be
administered by a typical ‘unitary kick’ localisable in Bob’s region.
By contrast, we use state update rules derived from QFT.

▶ The same problem can occur in classical field theories Much & Verch
▶ An operator can be localisable without representing an operation that can be

implemented using local physical interactions.
Classifying those that can be is an interesting open problem.

A better [but less catchy] name might have been impossible updates.
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Summary

▶ QFT has a consistent system of measurement schemes and update rules
▶ Fully consistent with relativity and curved spacetimes
▶ Allows for multiple observers, protects ignorance in all the right places
▶ Excludes ‘impossible measurements’ – all problematic aspects resolved!
▶ Is comprehensive as well as consistent.
▶ Clarifies the interpretation of AQFT: local algebra elements should be interpreted

primarily as observables rather than operations.
▶ Based on QFT itself – derived from minimal, general assumptions.
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Multiple causally orderable probes
Probes with coupling regions K1, . . . , KN are causally ordered if each Kr+1 lies outside
the causal past of Kr . There may be many compatible causal orderings.
Theorem Assume causal factorisation between probes. Then

▶ (a) if effects A1, . . . , AN+1 are measured by causally ordered probes,

Prob(AN+1|A1&A2& · · · &AN ; ω) = Prob(AN+1; ((ωA1)A2)···AN )

▶ (b) if probes are coupled in causally ordered regions

KA1 , . . . , KAM , KB, KC1 , . . . , KCN

and effects A1, . . . , AM , C1, . . . , CN are measured without selection, then

Prob(B; ω) = ((ωn.s.
A1 )n.s.

A2 )···n.s.
···AN )(B)

which depends on the past measurements, but not on the future ones.
(Valid for all compatible causal orderings.)

CJ Fewster Measurement in QFT 24 / 23



Problem Operational approach Measurement schemes Update rules Summary

Multiple causally orderable probes
Probes with coupling regions K1, . . . , KN are causally ordered if each Kr+1 lies outside
the causal past of Kr . There may be many compatible causal orderings.
Theorem Assume causal factorisation between probes. Then
▶ (a) if effects A1, . . . , AN+1 are measured by causally ordered probes,

Prob(AN+1|A1&A2& · · · &AN ; ω) = Prob(AN+1; ((ωA1)A2)···AN )

▶ (b) if probes are coupled in causally ordered regions

KA1 , . . . , KAM , KB, KC1 , . . . , KCN

and effects A1, . . . , AM , C1, . . . , CN are measured without selection, then

Prob(B; ω) = ((ωn.s.
A1 )n.s.

A2 )···n.s.
···AN )(B)

which depends on the past measurements, but not on the future ones.
(Valid for all compatible causal orderings.)

CJ Fewster Measurement in QFT 24 / 23



Problem Operational approach Measurement schemes Update rules Summary

Multiple causally orderable probes
Probes with coupling regions K1, . . . , KN are causally ordered if each Kr+1 lies outside
the causal past of Kr . There may be many compatible causal orderings.
Theorem Assume causal factorisation between probes. Then
▶ (a) if effects A1, . . . , AN+1 are measured by causally ordered probes,

Prob(AN+1|A1&A2& · · · &AN ; ω) = Prob(AN+1; ((ωA1)A2)···AN )

▶ (b) if probes are coupled in causally ordered regions

KA1 , . . . , KAM , KB, KC1 , . . . , KCN

and effects A1, . . . , AM , C1, . . . , CN are measured without selection, then

Prob(B; ω) = ((ωn.s.
A1 )n.s.

A2 )···n.s.
···AN )(B)

which depends on the past measurements, but not on the future ones.
(Valid for all compatible causal orderings.)

CJ Fewster Measurement in QFT 24 / 23



Problem Operational approach Measurement schemes Update rules Summary Outline Induced observables

K
M

K
M

M+

M−

M+

M−

(A ⊗ B)(M) C(M)

(A ⊗ B)(M+)

(A ⊗ B)(M−)

C(M+)

C(M−)

CJ Fewster Measurement in QFT 25 / 23



Problem Operational approach Measurement schemes Update rules Summary Outline Induced observables

K
M

K
M

M+

M−

M+
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(A ⊗ B)(M) C(M)
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(A ⊗ B)(M−)

C(M+)

C(M−)

∼=

∼=

∼=

∼=
Timeslice axiom
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∼=
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No coupling outside K
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Scattering map Θ Return
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