

UNIVERSITÄT LEIPZIG

Metric Reconstruction

10 April 2024 Stefan Hollands

Outline

Motivation

Kerr perturbation theory

Other gauges

MOTIVATION

DOF of gravity

Local gauge theories like GR give a **redundant** description of dynamics \implies number of DOF < number of field components!

- $DOF = (10 \text{ components of } g_{ab})$
 - (4 components of lapse/shift)
 - (4 constraints) = 2

(1)

DOF of gravity

Therefore, **in principle**, a field Φ with two real (or one complex) component should suffice to describe the dynamics of GR!

However, **in practice**, I am not aware of a useful formulation involving just one such Φ , i.e., a suitably equivalent and fully general formulation of GR in terms of a partial differential equation for Φ .

Problem: DOF somehow cannot be identified locally.

Metric reconstruction

While not possible in general, finding a formulation of GR in terms of a single complex Φ may still be possible in a more restricted setting e.g., in **perturbation theory** around **specific backgrounds** (Minkowski, (A)dS, Schwarzschild, Kerr,...).

Metric reconstruction

Identify such Φ , its PDE, and its correspondence to the metric. Ideally this should be 1 : 1 **up to gauge**. The formulation in terms of Φ should be **practical**.

In Minkowski space, we can write a mode solution to the linearized EE in the form

Gravitational wave in Minkowski spacetime

$$h_{ab} = h_+ \varepsilon_{ab}^+(p) \sin(px) + h_\times \varepsilon_{ab}^\times(p) \sin(px)$$

-
$$p_a$$
 = wave vector ($p_a p^a = 0$),

-
$$\varepsilon_{ab}^+, \varepsilon_{ab}^{\times} =$$
 polarization tensors (\cong two DOFs)

- $h_+, h_{\times} =$ amplitudes

A specific choice of the polarization tensors is (Re/Im = real/imaginary part)

$$arepsilon_{ab}(p) = \operatorname{Re}/\operatorname{Im} Z_{acbd} p^c p^d, \quad Z_{abcd} = Z_{ab} Z_{cd}$$

where

-
$$p_a$$
 = wave vector ($p_a p^a = 0$),

 $-Z = m \wedge I$

 $- l^a$, n^a , m^a = complex null (NP) tetrad of Minkowski

With this, our gravitational wave can be rewritten as

Metric reconstruction in Minkowski spacetime

$$h_{ab} = \mathsf{Re}(\mathcal{S}^\dagger_{ab} \Phi)$$

where

- $\Phi = A \times$ sinusoidal *px*-dependence = complex "Hertz potential"

$$- \partial^a \partial_a \Phi = 0$$

-
$$S_{ab}^{\dagger} = Z_{acbd} \partial^{c} \partial^{d} =$$
 "reconstruction operator"

The **metric reconstruction procedure** is a far-reaching generalization of this idea and its variants to **Kerr**, aimed at solving

Sourced linearized EE

$$(\mathcal{E}h)_{ab}=T_{ab},$$

where:

$$(\mathcal{E}h)_{ab} = -\frac{1}{2}\nabla^{c}\nabla_{c}h_{ab} + \cdots =$$
 linearized Einstein operator in **Kerr**.

Some references

- Origins: [Chrzanowski; Cohen & Kegeles; Wald; Teukolsky, ...] 70s & 80s: $T_{ab}=0$
- Further developments: [Ori; Friedman, Keidl, Shah, L Price; Merlin, Pound & Barack; L Price & Whiting, Van de Meent,
 ... (many)] 00s & 10s: T_{ab} = 0 partially removed (point sources), better formalism,
 application to gravitational SF, ...

– Recent: [Green, SH & Zimmerman; SH & Toomani; Toomani, Spiers, Green, Hollands, Pound & Zimmerman; Casals, SH, Pound & Toomani; Bourgh, Leather, Casals, Pound & Wardell; Dolan, Kavanagh & Wardell; Dolan, Durkan, Kavanagh & Wardell; Green & Toomani; Aksteiner, L Anderson & Backdahl; ...]: General *T*_{ab}, other gauges, non-linearities,...

 Connections with mathGR: All approaches involve the Teukolsky equation, so mathGR results on this equation are highly relevant [Dafermos, Holzegel, Rodnianski,

Shlapentokh-Rothman; Häffner; L Anderson, Bäckdahl, Blue & Ma; ...]

Nonlinearities & applications

Non-linearities are treated in a naive perturbation theory around Kerr:

$$g_{ab}(\epsilon) = \underbrace{g_{ab}}_{\text{Kerr}} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)} + \dots$$

At each order, we have a linear EE with source,

$$(\mathcal{E}h^{(n)})_{ab} = T^{(n-1)}_{ab} + \text{matter}.$$

Applications mostly to gravitational self-force (EMRI's, LISA physics,...)

Review: [Pound & Wardell, "Black Hole Perturbation Theory and Gravitational Self-Force"]

KERR PERTURBATION THEORY

Metric Reconstruction | Kerr perturbation theory

NP tetrad l^a , n^a , $m^a \implies$ Weyl components & optical scalars:

$$\Psi_0 = -C_{abcd}l^a m^b l^c m^d$$
, etc.

Optical scalars (e.g.,
$$\rho = m^a \bar{m}^b \nabla_b l_a$$
)

scalar	interpretation
$\operatorname{Re} \rho$	expansion
${\sf Im} \ ho$	twist
σ	shear

Kerr:
$$\Psi_0 = \Psi_1 = \Psi_3 = \Psi_4 = \kappa = \kappa' = \sigma = \sigma' = 0$$

Geroch-Held-Penrose (GHP)

NP frame has scaling ambiguity (local boosts + rotations):

$$l^{a} \rightarrow \lambda \bar{\lambda} l^{a}, \quad n^{a} \rightarrow (\lambda \bar{\lambda})^{-1} n^{a}, \quad m^{a} \rightarrow \lambda \bar{\lambda}^{-1} m^{a}$$
 (2)

 \implies Weyl components and optical scalars **transform** by some power $\lambda^{p}\bar{\lambda}^{q}$.

- \implies Like "matter fields" in some representation $\{p, q\}$ of **local gauge group** $\mathbb{C} \setminus 0$.
- \implies Require gauge connection, Θ_a .

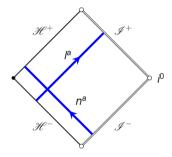
GHP weights

scalar	GHP weights
ρ	{1,1}
ho'	$\{-1, -1\}$
au	$\{-1, 1\}$
au'	$\{1,-1\}$
Ψ_i	{4 – 2 <i>i</i> , 0}

Maths: GHP "scalars" = sections in a complex line bundle $\mathscr{L}_{\{p,q\}}$

Invariant viewpoint: avoids "gauge" singularities

Principal null directions *l*^a and *n*^a



Teukolsky equation

If homogeneous EE $(\mathcal{E}h)_{ab} = 0$ holds, then $\psi_0 = \delta \Psi_0$ satisfies:

Teukolsky equation

$$\mathcal{O}\psi_0\equiv [g^{ab}(\Theta_a+4B_a)(\Theta_b+4B_b)-16\Psi_2]\psi_0=0$$

 $B_a = -\rho n_a + \tau \bar{m}_a$ gravito-magnetic field

Sourced Teukolsky equation

If inhomogeneous EE $(\mathcal{E}h)_{ab} = T_{ab}$ holds, then $\psi_0 = \delta \Psi_0$ satisfies

Sourced TE

$$\mathcal{O}\psi_{\mathbf{0}}=J_{\mathbf{0}},$$

where $J_0 = (2 \text{ derivatives on } T_{ab})$ is **Teukolsky's source**

Metric Reconstruction | Kerr perturbation theory

$$\mathcal{S}T \equiv rac{1}{4} Z^{bcda} \zeta^{-4}
abla_a (\zeta^4
abla_b T_{cd}),$$

 $\mathcal{T}h \equiv -rac{1}{2} Z^{bcda}
abla_a
abla_b h_{cd}$

These tensorial forms of \mathcal{S}, \mathcal{T} : [Araneda]

SEOT [Wald]

 $\mathsf{Teukolsky} \Longrightarrow \mathcal{SE} = \mathcal{OT}$

- \mathcal{T} gives ψ_0 from h_{ab}
- S gives J_0 from T_{ab}
- \mathcal{E} operator in EE

$$\Longrightarrow \mathcal{ES}^{\dagger} = \mathcal{T}^{\dagger} \mathcal{O}^{\dagger}$$
(3)

Metric reconstruction [Chrzanowski, Cohen & Kegeles, Wald]

If $\mathcal{O}^{\dagger}\Phi = 0$ then

$$h_{ab} = \mathsf{Re}(\mathcal{S}^\dagger_{ab} \Phi)$$

solves homogeneous EE!

- "Same" $\mathcal{S}_{ab}^{\dagger}$ as in Minkowski, produces polarization tensors
- Reconstructed metric is in **TIRG** $h_{ab}l^a = 0 = h$
- Only works for homogeneous EE
- Unclear if every solution to homogeneous EE can be represented this way

Can we write a generic perturbation in the form

$$h_{ab} = {\sf Re}({\cal S}^{\dagger}_{ab} \Phi)$$
 ?

- h_{ab} cannot have an ingoing energy-momentum $T_{ab}l^b \neq 0$, no matter what is Φ !
- h_{ab} cannot represent algebraically special perturbation \dot{g}_{ab} !
- h_{ab} cannot represent perturbation not in TIRG!

GHZ metric reconstruction

GHZ theorem [Green, SH & Zimmerman; SH & Toomani]

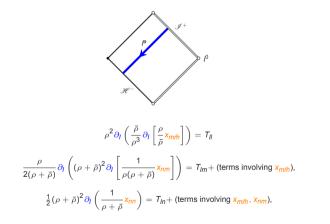
If h_{ab} asymptotically flat at \mathscr{I}^+ , decaying at i^0 , $(\mathcal{E}h)_{ab} = T_{ab}$, $\Longrightarrow \exists X^a, \dot{g}_{ab}, x_{ab}, \Phi$ such that

$$h_{ab} = \underbrace{\operatorname{Re}(\mathcal{S}_{ab}^{\dagger} \Phi)}_{\text{reconstructed}} + \underbrace{(\mathcal{L}_{X} g)_{ab}}_{\text{gauge}} + \underbrace{\dot{g}_{ab}}_{\text{zero mode}} + \underbrace{\mathbf{X}_{ab}}_{\text{corrector}}$$

- x_{ab} uniquely determined from T_{ab} ,

- $-\dot{g}_{ab}$ algebraically special perturbation **uniquely** determined by ADM quantities
- X^a some gauge vector field **unique** up to Killing VF
- Φ **uniquely** determined from ψ_0 and Cauchy data

Transport equations for corrector x_{ab}



Algorithm for finding GHZ decomposition

- 1. Determine δM , δa by standard ADM-type formulas from Cauchy data [Arnowitt, Deser & Misner; Iyer & Wald, ...] $\implies \dot{g}_{ab}$
- 2. Solve $x_{ab} = X_{ab}{}^{a'b'} * T_{a'b'}$ with explicit Green's function [Casals, SH, Pound & Toomani]
- 3. Determine Cauchy data for ψ_0 from those of h_{ab} (algebraic in time-domain [e.g., Campanelli & Lousto])
- 4. Solve Cauchy problem $\mathcal{O}\psi_0$ = Teukolsky source (standard in frequency-domain [e.g., BH perturbation toolkit])
- 5. Reconstruct Φ from ψ₀ via Teukolsky-Starobinski (algebraic in frequency-domain [Ori; SH & Toomani])

$\textbf{GHZ} \Longrightarrow \textbf{metric reconstruction}$

Corollary of GHZ theorem [SH & Toomani]

If h_{ab} asymptotically flat at \mathscr{I}^+ , decaying at i^0 , $(\mathcal{E}h)_{ab} = 0 \Longrightarrow \exists X^a, \dot{g}_{ab}, \Phi$ such that

$$h_{ab} = \underbrace{\operatorname{Re}(\mathcal{S}_{ab}^{\dagger}\Phi)}_{\operatorname{reconstructed}} + (\mathcal{L}_X g)_{ab} + \dot{g}_{ab}$$

- For modes [Ori]

- Reconstructed metrics "dense" [Prabhu & Wald]
- Widely used without proof!

OTHER GAUGES

Disadvantages of IRG

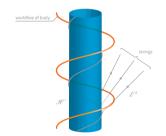
- IRG metric grows near \mathscr{I}^+ [many people]
- IRG may have gauge singularities [Merlin, Pound & Barack]
- IRG has non-standard propagation of singularities in microlocal sense [Casals, SH,

Pound & Toomani]

 \implies practical problems at higher order in perturbation theory!

"Dirac"-string-like gauge singularities

$$\mathcal{T}^{ab}({f x})=m\int {
m d} au\,\dot{\gamma}^{a}\dot{\gamma}^{b}\delta^{4}(\gamma(au)-{f x})/\sqrt{-g}$$



[Figure: Green, Hollands, Zimmerman, Class. Quant. Grav. 37 (2020) 7, 075001]

Resolution: Pass to a better-behaved gauge!

- Lorenz gauge [Dolan, Durkan, Kavanagh, Wardell; Green & Toomani; ...]
- "No-string" gauge [Toomani, Spiers, Green, Hollands & Pound; Bourg, Leather, Casals, Pound & Wardell, ... (many people)]
- To be combined with other ideas such as puncture scheme [Pound et al.] (for singular sources), Detweiler-Whiting Green's function [Detweiler & Whiting], frequency domain techniques, ...
- \implies practical usefulness at higher order in perturbation theory for gravitational self-force problem remains to be understood better

...

Lorenz gauge

- Gauge trafo $h_{ab} o h_{ab} + (\mathcal{L}_{\xi}g)_{ab}$, find ξ^a imposing Lorenz gauge
- Can be reduced to solving a Maxwell equation $\nabla_a F^{ab} = J^b$
- GHZ for spin-1 or different method

Alternative reconstruction (spin-1) [Dolan et al.; Green et al.; see also: Aksteiner et al.]

$$A_a = \operatorname{Re}(\nabla^b H_{ab} + X_a)$$

where $H_{ab} = \zeta (Z_{ab} \Phi_2 + Z'_{ab} \Phi_0)$ with suitable Hertz potentials Φ_0, Φ_2

- Gives a solution **up to** term annihilated by ∂_t ; requires **two** Hertz potentials
- Corrector X_a is **algebraically** constructed from J^a .

Summary

- Reconstruction = parameterize GR by 2 DOF through a local field Φ ,
- Possible for perturbation theory around Kerr if additional structure (corrector) is introduced
- Potentially useful for gravitational SF problems
- Relationship to other formalisms like double copy etc.?