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Questions
Throughout this work: vacuum spacetimes with Λ ∈ R

Rµν −
1
2

Rgµν + Λgµν = 0 .

Can you
1 extend vacuum spacetimes?
2 glue together vacuum spacetimes?
3 realise data on lower dimensional submanifolds by

embedding in a vacuum spacetime?
4 ??? data on lower dimensional submanifolds ???
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Data on lower dimensional manifolds?
The Aretakis-Czimek-Rodnianski question

QUESTION (Aretakis, Czimek and Rodnianski (2021))

Can you find vacuum characteristic initial data interpolating
between two sphere data sets?

𝒩 1

�̃� 2

g1

g2

S1

S̃2

Figure: Gluing construction of Aretakis-Czimek-Rodnianski

Answer: “kind of”, with obstructions, for sphere data near
spheres lying on a Minkowskian light cone
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ACR gluings: applications
Optimal asymptotics, control, third law

Theorem (Czimek & Rodnianski, arXiv:2210.09663)
The Corvino-Schoen gluing can be done with controlled mass,
momentum, angular momentum and center of mass.

Theorem (Kehle, Unger, arXiv:2211.15742)
The “third law of black hole dynamics” is wrong.

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02456)
The Carlotto-Schoen gluing can be done with optimal 1/r decay.
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Gluing method
Nonlinear “superpositions”

In linear theories, new initial data can be
obtained by adding old ones

This is not possible in general relativity
because the constraint equations are
nonlinear
Corvino and Schoen (∼ 2000) have invented
a method, where nearby solutions can be
glued together to a new one (“gluing”)

The method exploits in a clever and sophisticated
way the “underdetermined elliptic character” (the
symbol of the linearized operator is surjective) of
the constraint equations and functional spaces
with degenerating weights

Alternative
approach:

gluing
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dimensional
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8 functions, 4
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equations
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Corvino-Schoen gluing

Theorem (Corvino & Schoen, 2010)
An asymptotically flat initial data set can be glued to a Kerr one,
with nearby global charges across a sufficiently distant
coordinate annulus.
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State-of-the-art variations on Corvino-Schoen
Gluing-in small black holes with Λ = 0

; the Hintz black hole sprinkler (compare
Anderson, Corvino, Pasqualotto arXiv:2301.08238)

Theorem (Peter Hintz, arXiv:2210.13960)

Let (Σ,g,K ) be a vacuum initial data set and suppose that
there are no Killing vectors near p ∈ Σ. For every ϵ > 0
sufficiently small there exists a vacuum initial data set which
coincides with (g,K ) outside an ϵ-neighborhood of p and
coincides with a small Kerr black hole inside the neighborhood.

This can be done all over the place
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Asymptotic gluing:
Gluing-in black holes with Λ > 0 (P. Hintz, arXiv:2001.10401)
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Mao-Tao’s simplification of the Corvino-Schoen gluing

the original Corvino & Schoen theorem: to some nearby Kerr

• The linearised prescribed scalar constraint equation at the
Euclidean metric is

δR[h] ≡ ∂i∂j(hij − hk
kδ

ij) = f .

• using the Bogovskii operator, one can construct a solutions
of this equation which vanish outside of the support of f
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Piotr T. Chruściel Gluing variations



Mao-Tao’s simplification of the Corvino-Schoen gluing

the original Corvino & Schoen theorem: to some nearby Kerr

• The linearised prescribed scalar constraint equation at the
Euclidean metric is

δR[h] ≡ ∂i∂j(hij − hk
kδ

ij) = f .

• using the Bogovskii operator, one can construct a solutions
of this equation which vanish outside of the support of f
• this can be used to give a simple and sharper version of the
Corvino-Schoen gluing:

Theorem (Mao, Oh, Tao, arXiv:2308.13031)
An asymptotically flat initial data set can be glued to any Kerr
(possibly Schwarzschild) with longer energy-momentum vector
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Mao-Tao’s simplification of the Corvino-Schoen gluing
the original Corvino & Schoen theorem: to some nearby Kerr

• The linearised prescribed scalar constraint equation at the
Euclidean metric is

δR[h] ≡ ∂i∂j(hij − hk
kδ

ij) = f .

• using the Bogovskii operator, one can construct a solutions
of this equation which vanish outside of the support of f
• and an alternative proof of the Carlotto-Schoen gluing:

Theorem (Mao & Tao, arXiv:2210.09437)
Simple proof of the Carlotto-Schoen theorem, including optimal
decay, using spacelike gluing.
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Screening the gravitational field
Carlotto-Schoen “exotic gluings” (2014)

Remove a solid cone C1 from Euclidean
space; initial data (Rn,g = δ,Kij = 0)

Remove a slightly larger cone C2 from an
asymptotically flat initial data set (M,gij ,Kij)

Theorem (Carlotto and Schoen)
If the tip of C2 is sufficiently far away there exists
an initial data set which coincides with (M,gij ,Kij)
outside of C2 and has Minkowskian data on C1

Mao, Tao, arXiv:2210.09437: can be done with
optimal 1/r decay using a Green function for δR
supported in a cone.
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ACR gluings: applications
“No third law”

CONJECTURE (“third law of black hole dynamics”, Bardeen, Carter
& Hawking (1973))

A black hole with zero surface-gravity cannot be formed in a
dynamical process.

zero surface-gravity ≈ zero temperature

Theorem (Kehle & Unger, arXiv:2211.15742)
The third law is wrong for spherically symmetric solutions of the
Einstein-Maxwell-charged-scalar-field equations.

Proof: use null gluing to an extreme Reissner-Nordström black
hole.
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455 )
Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole

Previous work: Christodoulou (2008), arXiv:0805.3880, 594
pages & Li and Yu (2015) 70 pages
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ACR gluings: applications
Forming vacuum black holes

Theorem (Kehle & Unger (2023), arXiv:2304.08455, 28 pages )
Black holes can be formed in vacuum by focusing of
gravitational waves.

Proof: null gluing of a Minkowskian light-cone to a Kerr black
hole

Previous work: Christodoulou (2008), arXiv:0805.3880, 594
pages & Li and Yu (2015) 70 pages
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The Aretakis-Czimek-Rodnianski gluing

𝒩 1

�̃� 2

g1

g2

S1

S̃2

Figure: Gluing construction of ACR

Piotr T. Chruściel Gluing variations



General topologies, higher dimensions, differentiability

Characteristic gluing: implicit function theorem together with

Theorem (Aretakis, Czimek & Rodnianski, arXiv:2107.02449)

The C2 linearised characteristic gluing at (3 + 1)-Minkowski is
solvable up to a 10-dimensional space of obstructions.

(3 + 1)-Minkowski: cross-section S ≈ S2, Λ = 0 = m

Theorem (Cong, PTC and Gray, arXiv:2401.04442)

The Ck linearised characteristic gluing at (n + 1)-Birmingham -
Kottler with m ̸= 0 is solvable up to a space of obstructions of
dimension ≤ n + 1.

(n + 1)-Birmingham - Kottler: cross-section S compact Einstein
spaces e.g. spheres, torus, higher genus; Λ ∈ R, m ∈ R.
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General topologies, higher dimensions, differentiability
Wan Cong, PTC, and Finnian Gray, arXiv:2401.04442

Obstructions arise from kernels of linear elliptic operators on
the cross-section S of the characteristic hypersurface; affected
by dimension and topology of S, e.g.:

C2-gluing with m = 0, Λ = 0 S2 T2 S4

dim. of obstruction space 10 7 30

Both a non-vanishing mass m and a non-zero cosmological
constant Λ provide additional degrees of freedom to remove
some of the obstructions, e.g.:

Ck -gluing S2, m = 0 S2, m = 0 S2, m ̸= 0 S, m ̸= 0
obstr. k = 3: 20 k = 4: 44 4 1+dim KV of S
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Data on lower dimensional manifolds?
The Aretakis-Czimek-Rodnianski question

QUESTION (Aretakis, Czimek and Rodnianski (2021))
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between two sphere data sets?
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Data on lower dimensional manifolds?
Vacuum jets

Let P be a submanifold of M.
Let k ∈ N ∪ {∞}.

Definition
Let g be any smoothly differentiable metric defined in a
neighborhood of P. The collection

jkg := {∂α1 · · · ∂αℓ
gµν |P , 0 ≤ ℓ ≤ k}

will be called jet of order k of g at P.

Einstein equations

and their derivatives up to order k − 2

provide equations, differential and/or algebraic, for the jet of
order at P.

A jet will be called vacuum if all such equations are satisfied.
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Data on lower dimensional manifolds?
Spacelike/timelike/null vacuum submanifold data

Definition
The collection of all vacuum jets of order k will be called
vacuum submanifold data of order k and will be denoted by
Ψ[P, k ].

A jet of order k of a metric g will be called


spacelike,
timelike,
null ,

if

the metric induced by g on P is.
We similarly define spacelike/timelike/null/characteristic
vacuum submanifold data of order k at P.

QUESTION

Given a submanifold P ⊂ M and a vacuum jet jkg in Ψ[P, k ], is
there a vacuum metric on M which realises jkg?
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We similarly define spacelike/timelike/null/characteristic
vacuum submanifold data of order k at P.

QUESTION

Given a submanifold P ⊂ M and a vacuum jet jkg in Ψ[P, k ], is
there a vacuum metric on M which realises jkg?
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Data on lower dimensional manifolds
Example: Vacuum jets at a point

Let P be a point, P = {p}
jkg = the coefficients of the Taylor series of a metric g at p.
vacuum ≡ algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.
For example, using normal coordinates,

j2g|p ≈ {gµν |p,Wα
βγδ|p} ,

where Wα
βγδ has the symmetries of the Weyl tensor.

Ψ[{p},2] ≈ all such pairs

QUESTION

Is there a vacuum metric which realises Ψ[{p}, ]?
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Data on lower dimensional manifolds
Example: Vacuum jets at a point
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Data on lower dimensional manifolds
Example: Vacuum jets at a point (cf. Friedrich’s proof of Geroch multipole expansions)

Let P be a point, P = {p}
jkg = the coefficients of the Taylor series of a metric g at p.
vacuum ≡ algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.
For example, using normal coordinates,

j2g|p ≈ {gµν |p,Wα
βγδ|p} ,

where Wα
βγδ has the symmetries of the Weyl tensor.

Ψ[{p},2] ≈ all such pairs

QUESTION

Is there a vacuum metric which realises Ψ[{p},2]?
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Data on lower dimensional manifolds
Example: Vacuum jets at a point (cf. Friedrich’s proof of Geroch multipole expansions)

Let P be a point, P = {p}
jkg = the coefficients of the Taylor series of a metric g at p.
vacuum ≡ algebraic conditions on the Taylor coefficients
Now: in normal coordinates the Taylor coefficients can be
expressed in terms of the Riemann tensor and its covariant
derivatives.
For example, using normal coordinates,

j2g|p ≈ {gµν |p,Wα
βγδ|p} ,

where Wα
βγδ has the symmetries of the Weyl tensor.

Ψ[{p},2] ≈ all such pairs

QUESTION

Is there a vacuum metric which realises Ψ[{p},∞]?
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Codimension 1 vacuum spacelike hypersurface data
Vacuum spacelike constraint equations

Initial data surface Σ, Riemannian metric gij , i , j = 1, . . .n,
symmetric tensor Kij (“initial time derivative of the metric”)

the scalar constraint equation (Λ is the cosmological constant):

R(gij) = 2Λ + |K |2 − (trK )2 ,

and the vector constraint equation:

DjK j
k − DkK j

j = 0 .

Fact
Spacelike vacuum hypersurface data

Ψ[Σ,∞] ≈ Ψ[Σ, k ] ≈ Ψ[Σ,2] ≈ {all vacuum (g,K )}.

Proof: The Cauchy problem is well posed in, e.g., harmonic
coordinates.
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Extension theorem
Can one extend vacuum spacelike initial data on a manifold with boundary beyond its
boundary? (while, of course, satisfying the vacuum constraint equations)

Theorem
Let (Σ,g,K ) be spacelike vacuum initial data on a manifold with
boundary ∂Σ.
There exists a manifold without boundary Σ̌ and vacuum initial
data (ǧ, Ǩ ) on Σ̌ such that Σ ⊂ Σ̌, with

(ǧ, Ǩ )|Σ = (g,K ) .

Proof: I will give a sketch; for this we will need characteristic
vacuum hypersurface data Ψ[N ,∞].
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Characteristic Cauchy problem

S

{r = 0} {u = 0}

r = constant

Transversally intersecting null hypersurfaces,

or a light cone.
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Characteristic Cauchy problem
Isenberg-Moncrief coordinates

The hypersurfaces N = {u = 0} and N = {r = 0} are
characteristic for the metric

gµνdxµdxν = 2
(
−du + uαdr + uβAdxA

)
dr + gABdxAdxB .

S

{r = 0} {u = 0}

r = constant
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Characteristic Cauchy problem
Isenberg-Moncrief coordinates

The hypersurfaces N = {u = 0} and N = {r = 0} are
characteristic for the metric

gµνdxµdxν = 2
(
−du + uαdr + uβAdxA

)
dr + gABdxAdxB .

Theorem (4d: Rendall (1990);

Luk (2012);

)

Given βA on S := N ∩ N and (α,gAB) on N ∪ N ,

subject to the Raychaudhuri equation on N ∪ N ,

0 = −1
2

gAB∂2
r gAB +

1
4

gCAgBD(∂r gAB)∂r gCD +
1
2
α gAB∂r gAB

(0.1)
there exists a vacuum metric in a future neighborhood of
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Piotr T. Chruściel Gluing variations



Characteristic Cauchy problem
Isenberg-Moncrief coordinates

The hypersurfaces N = {u = 0} and N = {r = 0} are
characteristic for the metric

gµνdxµdxν = 2
(
−du + uαdr + uβAdxA

)
dr + gABdxAdxB .

Theorem ( higher dim: Choquet-Bruhat, PTC & Martin Garcia
(2010); Rodnianski & Shlapentokh-Rothman (2018) )

Given βA on S := N ∩ N and (α,gAB) on N ∪ N ,

subject to the Raychaudhuri equation on N ∪ N ,

0 = −1
2

gAB∂2
r gAB +

1
4

gCAgBD(∂r gAB)∂r gCD +
1
2
α gAB∂r gAB

(0.1)
there exists a vacuum metric in a future neighborhood of

N ∪ N .
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Embedding a null hypersurface in a vacuum
spacetime?

S

{r = 0} {u = 0}

r = constant

QUESTION

What about a vacuum metric in a whole neighborhood of
N ∪ N ? What about a single characteristic hypersurface?

Answer: one needs to understand data of order k on N .
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Embedding a null hypersurface in a vacuum
spacetime?

Proposition

In the Isenberg-Moncrief coordinate system the vacuum
characteristic initial data Ψ[N , k ] can be reduced to

ΦIM[N , k ] := {(∂u
jgAB, βA)0≤j≤k on S and (gAB, α) on N } ,

(0.2)
where S is a cross-section of N .

Proof: transverse derivatives of the metric on a characteristic
hypersurface N are determined uniquely by the above data
through ODEs along the null geodesics threading N or through
algebraic equations.
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Embedding a null hypersurface in a vacuum spacetime
The “hand-crank construction”

r = r1

r = r2
𝒩

r2

𝒩

𝒩
r1

J−(𝒩r2 ∪ 𝒩)J+(𝒩 r1 ∪ 𝒩)

Figure: The “hand-crank construction”.
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Corollary: Extending a characteristic future
development
A Fledermaus = two cranks

S1

S

S1

𝒩
[0,1] 𝒩 [0,1

]
�̂� [0,1

]

gT

gL gR

gB

S

S−ε
S−ε

̂𝒩
[0,1]

𝒩[−ε,0] 𝒩[−ε,0]

Figure: The Fledermaus.
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Extension theorem

Theorem
Let (Σ,g,K ) be spacelike codimension-1 vacuum initial data on
a manifold with boundary ∂Σ.
There exists a manifold without boundary Σ̌ and vacuum initial
data (ǧ, Ǩ ) on Σ̌ such that Σ ⊂ Σ̌, with

(ǧ, Ǩ )|Σ = (g,K ) .

Proof:

Use the crank
( g,K  )Σ,

𝒩
∂𝒟 +(Σ)

∂Σ

∂𝒟
− (Σ)

( ǧ Ǩ   )Σ̌, ,
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data (ǧ, Ǩ ) on Σ̌ such that Σ ⊂ Σ̌, with
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Corollary: asymptotically flat extensions

Corollary
Every vacuum initial data set with spherical boundary and θ > 0
can be extended to an asymptotically flat vacuum initial data
set (?)

Proof (?):

use an ACR
gluing to Kerr

( g,K  )Σ,

𝒩
∂𝒟 +(Σ)

∂Σ

∂𝒟
− (Σ)

( ǧ Ǩ   )Σ̌, ,
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Corollary
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set (?)

Proof (?):
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Corollary: Embedding a truncated cone
Use the spacelike data extension

pΣ

𝒞p

𝒞S
p

S = ∂Σ
𝒪Σ̌

Figure: Extending a vacuum metric on a truncated future cone
J+(p) ∩ J−(S ) to a neighborhood thereof.
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Corollary: Embedding data at a point
Use the embedding of a cone

pΣ

𝒞p

𝒞S
p

S = ∂Σ
𝒪Σ̌

Figure: Extending data at a point
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