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Motivations

The prototypical problem

Consider two Gaussian random variables ξ(x , t), ξC(x , t) on Rn × R

E(ξ) = 0, E(ξ(x , t)ξ(y , t′)) = δ(x − y)δ(t − t′).

Consider a random distribution u (real) or ψ (complex)

∂tu −∆u − λun = ξ

∆u + λun = ξ

i∂tψ = ∆ψ + λ|ψ|2ψ + ξC

with n ≥ 2 and λ ∈ R.

Question: How do you solve such kind of problems?
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Motivations

A perturbative viewpoint

A first attempt to construct solutions:

• We call G the fundamental solution of ∂t −∆

• We look for a perturbative solution u ≡ u[[λ]] =
∑

j≥0 λ
juj

u0 ≡ φ
.
= G ⋆s ξ, u1 = −G ⋆s φ

3, uj = −G ⋆s
∑

j1+j2+j3=j−1

uj1uj2uj3

• There are divergences in defining φ3 (need to renormalize)

Which kind of divergences?

E(φ) = 0, E(φ(x)φ(y)) = (G ◦ G∗)(x , y) =⇒ E(φ2(f )) = (G ◦ G∗)(f δ2)
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Motivations

Renormalization in AQFT

The problem of divergences in SPDEs is structurally the same as in QFT

Which ingredients do we need?

• Epstein-Glaser renormalization

R. Brunetti, K. Fredenhangen, Comm. Math. Phys. 208 (2000), 623

• Pertrubative AQFT

R. Brunetti, M. Duetsch and K. Fredenhagen, Adv. Theor. Math. Phys.
13 (2009) no.5, 1541 – K. Rejzner, Math. Phys. Stud. (2016)

• Scaling Degree and Extension of distributions

Hörmander, Steinmann (1971), Brunetti & Fredenhangen (2000), Bahns
& Wrochna (2014),...
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The Algebraic Approach to SPDEs

Basic Ingredients: Data

We assign the following data:

A smooth Riemannian manifold M and a top-density µM ,

E is a microhypoelliptic operator, for definiteness

1 E is a second order elliptic PDE on M,
2 E = −∂t + K on R×M with K , 2nd order elliptic on M.

P (resp. P∗) is parametrix for E (resp. E∗),

ξ is a Gaussian white noise on M (or on R×M).
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The Algebraic Approach to SPDEs

Basic Ingredients: Functionals
We call functional-valued distribution τ ∈ D′(M;Fun)

τ : D(M)× E(M) → C, (f , φ) 7→ τ(f ;φ)

which is linear in D(M) and continuous. We say

τ (k) ∈ D′(M ×Mk ;Fun) is the k-th derivative of τ if
∀f ∈ D(M), ψi ∈ E(M),

τ (k)(f ⊗ψ1⊗. . .⊗ψk ;φ)
.
=

∂k

∂s1 · · · ∂sk
τ(f ; s1ψ1+. . .+skψk+φ)

∣∣∣∣
s1=...=sk=0

,

τ is polynomial, τ ∈ D′(M;Pol) if ∃k̄ such that τ (k) = 0 for all k > k̄.

Example: for all k ≥ 1, we call Φk ∈ D′(M;Pol)

Φk(f ;φ) =

∫
M

φk(x)fµ(x), fµ
.
= f µM
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The Algebraic Approach to SPDEs

Basic Ingredients: WF constraints

Long Term Goal: codify the correlations of ξ in the functionals

Let us introduce x̂k = (x1, . . . , xk)

C1
.
= ∅, C2 = WF (δ2), . . .

Ck := {(x̂k , ξ̂k) ∈ T ∗Mk \ {0} |
∃ℓ ∈ {1, . . . , k − 1} , {1 . . . , k} = I1 ⊎ . . . ⊎ Iℓ , such that

∀i ̸= j , ∀(a, b) ∈ Ii × Ij , then xa ̸= xb ,

and ∀j ∈ {1, . . . , ℓ} , (x̂Ij , ξ̂Ij ) ∈ WF(δDiag|Ij |
)} ,

Definition
We call D′

C (M;Pol)
.
= {τ ∈ D′(M;Pol) | WF (τ (k)) ⊆ Ck+1, ∀k ≥ 0}.
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The Algebraic Approach to SPDEs

Basic Ingredients: Algebra Structure

Goal: endow the functionals with an algebra structure

Let τ ∈ D′(M;Pol). We call

[P ⋆s τ ](f ;φ) := τ(P ⋆s f ;φ) , ∀ f ∈ D(M) , ∀φ ∈ E(M) .

Definition
Let 1,Φ ∈ D′(M; Pol) be

Φ(f ;φ) :=

∫
M

fµ(x)φ(x) , 1(f ;φ) =

∫
M

fµ(x) .

We set recursively the E(M)-modules

A0 := E[1,Φ] , Aj := E[Aj−1 ∪ P ⋆s Aj−1] , ∀j ∈ N ,

where P ⋆s Aj−1 := {P ⋆s τ | τ ∈ Aj−1}. Since Aj1 ⊆ Aj2 if j1 ≤ j2, let

A = lim−→Aj , [τ1τ2](f ;φ) := (τ1 ⊗ τ2)(f δDiag2 ;φ) , ∀ τ1, τ2 ∈ A .
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The Algebraic Approach to SPDEs

The Strategy

Our plan is the following:

1 We wish to encode in D′
C (M; Pol) that actually φ should be read as

φ = P ⋆S ξ, E(φ) = 0, E(φ(x)φ(y)) = Q(x , y) = (P ◦ P∗)(x , y).

2 This can be obtained deforming the algebra product,

3 Computing expectation values is like evaluating at φ = 0,

4 Warning: divergences occur if one wishes to compute

E(φ2(x)) = Q(x , x),

which is ill-defined. Renormalization is needed.
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The Algebraic Approach to SPDEs

Encoding the correlations of ξ - I

We proceed in steps:

Step 1: Observe that
A = lim−→Mj ,

where Mj is the elements of A with at most j fields Φ

Step 2: Let Pϵ ∈ E(M2) be such that w − lim
ϵ→0+

Pϵ = P and Qϵ = Pϵ ◦ Pϵ.

Proposition
We call A·Qϵ the unital, commutative and associative algebra such that, for
all f ∈ D(M) and for all φ ∈ E(M),

[τ ·Qϵ τ
′](f ;φ) =

∑
k≥0

1

k!
[(δ2 ◦ Q⊗k

ϵ ) · (τ (k)1 ⊗̃τ (k)2 )](f ⊗ 11+2k ;φ).
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The Algebraic Approach to SPDEs

Encoding the correlations of ξ - II

Notice (I mean it!)

Obs. 1: The product is well defined because we control

WF (τ (k)) ⊆ Ck+1,

WF (δ2 ⊗ Q⊗k
ϵ ).

Obs. 2: If we compute

[Φ ·Qϵ Φ](f ;φ) =

∫
M

fµ(x)[φ
2(x) + Qϵ(x , x)] = Φ2(f ;φ) + Qϵ(f δ2),

hence

[Φ ·Qϵ Φ](f ; 0) = Qϵ(f δ2).

Can we get rid of ϵ? Can we compute also correlations?
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The Algebraic Approach to SPDEs

Encoding the correlations of ξ - III

Theorem (First Key Result)

There exists a linear map Γ·Q : A → D′
C(M; Pol) such that

1 for all τ ∈ M1, Γ·Q (τ) = τ .

2 for all τ ∈ A it holds Γ·Q (P ⋆S τ) = P ⋆S Γ·Q (τ) .

3 for all ψ ∈ E(M) it holds

Γ·Q ◦ δψ = δψ ◦ Γ·Q , Γ·Q (ψτ) = ψΓ·Q (τ) .

4 For all τ ∈ Mk

σp(Γ·Q (τ)) ≤ pd +
k − p

2
max{0, d − 4} ,

where σp(τ) = sdDiagp+1
(τ (p)) and Diagp+1 ⊂ Mp+1 is the total

diagonal of Mp+1.
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The Algebraic Approach to SPDEs

Key aspects of the proof - I

The proof is inductive and divided in several cases. Observe

Main idea: If τ = τ1 . . . τn ∈ A, we set

Γ·Q(τ) = Γ·Q (τ1) ·Q · · · ·Q Γ·Q (τn)

We focus on E elliptic, self-adjoint for simplicity

with dimM = d = 2, 3 the product is well defined.

If we construct Γ·Q (τ), τ ∈ A, then Γ·Q (P ⋆S τ) is completely determined

Γ·Q (P ⋆S τ) = P ⋆S Γ·Q (τ) .

All conditions 1.-4. are met by direct inspection
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The Algebraic Approach to SPDEs

Key aspects of the proof - II

Recall A = lim−→Mj

Step 0: If j = 0, 1, there is nothing to do

Step 1: If j = 2, it suffices to consider M0
2 = spanE(M)

(
1,Φ,Φ2

)
Only unknown Γ·Q (Φ

2)(f ;φ) = [Γ·Q (Φ) ·Q Γ·Q ](f ;φ) = Φ2(f ;φ) + P2(f ⊗ 1)

• Here Q = P ◦ P∗ = P2 since E = E∗

• P2 ∈ D′(M2 \Diag2) and sd(P2) ≤ 2(d − 2)

∃P̂2 ∈ D′(M2), s.t. P̂2|M×M\Diag2
= P2 and sd(P̂2) = sd(P2).

Define

Γ·Q (Φ
2)(f ;φ) = Φ2(f ;φ) + P̂2(f ⊗ 1).
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The Algebraic Approach to SPDEs

Key aspects of the proof - III

Step 1b: Check that all hypothesis are met (WF (P2) = WF (δ2))

Step 2: Proceed inductively to M0
k+1 = spanE(M)

(
1,Φ, . . .Φk+1

)
Γ·Q (Φ

k+1) = Γ·Q (Φ) ·Q . . . ·Q Γ·Q (Φ)︸ ︷︷ ︸
k+1

(f ;φ) =

=

⌊ k+1
2

⌋∑
ℓ=0

(
k + 1

2ℓ

)
(Q2ℓ · Γ·Q (Φ)

k+1−2ℓ)(f ;φ)

where Q2ℓ(f ) = (P2)⊗ℓ · (δDiagℓ ⊗ 1ℓ)(f ⊗ 12ℓ−1).

Q2l(f ) 7→ Q̂2l(f )
.
= P̂⊗ℓ

2 · (δDiagℓ ⊗ 1ℓ)(f ⊗ 12ℓ−1)

Step 2b: Check that all hypothesis are met (WF (P2) = WF (δ2))
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The Algebraic Approach to SPDEs

Consequences
Observe that

A·Q is a unital, commutative and associative algebra

τ ·Q τ ′ = Γ·Q [Γ
−1
·Q (τ)Γ−1

·Q (τ ′)], ∀τ, τ ′ ∈ A·Q .

We are still not able to compute correlations such as

E[Φ2(x)Φ2(y)]

More precisely, formally we have to deal with

[Φ2 •Q Φ2](f1 ⊗ f2;φ) =∫
M×M

f1,µ(x1)f2,µ(x2)
[
φ(x1)

2φ(x2)
2 + 4φ(x1)Q(x1, x2)φ(x2) + 2Q(x1, x2)

2],
It is like having Wick polynomials but not their product!
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The Algebraic Approach to SPDEs

Correlations and the •Q-product

Consider A·Q = Γ·Q [A] and

T [A·Q ]
.
= E(M)⊕

⊕
l>0

A⊗l
·Q Universal Tensor Module

together with

T ′
C (M;Pol) = C⊕

⊕
n>0

D′
C (M;Pol)⊗n

endowed with the product

(τ1 •Q τ2)(f1 ⊗ f2;φ) =
∑
k≥0

1

k!
[(1n1+n2 ⊗ Q⊗k) · (τ (k)1 ⊗̃τ (k)2 )](f1 ⊗ f2 ⊗ 12k ;φ) ,

with τj ∈ D′
C (M

nj ) and fj ∈ D(Mnj ).
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The Algebraic Approach to SPDEs

Correlations and the •Q-product - I

Theorem (Second Key Result)

There exists a linear map Γ•Q : T (A·Q ) → T ′
C(M; Pol) such that

(i) for all τ1, . . . , τℓ ∈ A·Q with τ1 ∈ Γ·Q (M1) it holds

Γ•Q (τ1 ⊗ . . .⊗ τℓ) := τ1 •Q Γ•Q (τ2 ⊗ . . .⊗ τℓ) ,

(ii) Let τ1, . . . , τℓ ∈ A·Q and f1, . . . , fℓ ∈ D(M). If ∃I ⊊ {1, . . . , ℓ}⋃
i∈I

spt(fi ) ∩
⋃
j /∈I

spt(fj) = ∅ ,

then

Γ•Q (τ1 ⊗ . . .⊗ τℓ)(f1 ⊗ . . .⊗ fℓ) =

=

[
Γ•Q

(⊗
i∈I

τi

)
•Q Γ•Q

(⊗
j /∈I

τj

)]
(f1 ⊗ . . .⊗ fℓ) .
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The Algebraic Approach to SPDEs

Correlations and the •Q-product - II
In addition it holds

for all ℓ ≥ 0, Γ•Q : A⊗ℓ
·Q → T ′

C(M; Pol) is a symmetric map,

Γ•Q satisfies a set of identities, e.g.

Γ•Q (τ) = τ , ∀τ ∈ A·Q ,

Γ•Q ◦ δψ = δψ ◦ Γ•Q , ∀ψ ∈ E(M) .

Proposition
Given any map Γ•Q let

A•Q := Γ•Q (A·Q ) ⊆ T ′
C(M; Pol) .

Then the bilinear map •Γ•Q : A•Q ×A•Q → A•Q defined by

τ •Γ•Q τ̄ := Γ•Q (Γ
−1
•Q (τ)⊗ Γ−1

•Q (τ̄)) , ∀τ, τ̄ ∈ A•Q ,

defines a unital, commutative and associative product on A•Q .
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The Algebraic Approach to SPDEs

(Non-)Uniqueness Results

Question: Are the maps Γ·Q and Γ•Q unique?

Proposition
Let Γ̃·Q , Γ·Q : A → D′(M; Pol) be two linear maps compatible with the

existence theorem. Then the algebras A·Q = Γ·Q (A) and Ã·Q = Γ̃·Q (A)
coincide and in particular there exists {cℓ}ℓ∈N0 ⊂ E(M) a family of smooth
functions, such that for all k ∈ N

Γ̃·Q (Φ
k) = Γ·Q

(
Φk +

k−2∑
ℓ=0

(
k

ℓ

)
ck−ℓΦ

ℓ

)
.

Observe that

A similar theorem holds true for Γ•Q

We do not have local covariance to further constraint {cℓ}ℓ∈N0

We can repeat the procedure to construct Γ•QL
to compute correlation

between elements lying in AC
·QL

.
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The Algebraic Approach to SPDEs

1st Example: The Φ3
d Model

Consider on R× Rd

∂tu = ∆u − λu3 + ξ

We consider u[[λ]] =
∑
j≥0

λjuj where

u0 = Φ, u1 = −Pχ ⋆S Φ3, . . . uj = −Pχ ⋆S
∑

j1+j2+j3=j−1

uj1uj2uj3

Next we interpret each term in A·Q

u[[λ]] 7→ Γ·Q (u[[λ]]).

which entails that

E(u[[λ]](f )) =
∑
j≥0

λjΓ·Q(uj)(f ; 0).
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The Algebraic Approach to SPDEs

First order of Φ3
d Model

At first order in perturbation theory

u[[λ]] = Φ− λPχ ⋆S Φ3 + O(λ2),

from which it descends

Γ·Q (u[[λ]])(f ;φ) = Φ(f ;φ)− λPχ ⋆S (Φ3 + 3CΦ)(f ;φ) + O(λ2),

where C ∈ E(R× Rd). Hence evaluating at φ = 0

E(u[[λ]]) = O(λ2).

What about the two-point correlation function?
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The Algebraic Approach to SPDEs

Correlation function at first order

Our approach tells that

ω2(f1 ⊗ f2;φ) =
(
Γ·Q (u[[λ]]) •Γ•Q Γ·Q (u[[λ]])

)
(f1 ⊗ f2;φ).

At first order in perturbation theory

Γ•Q (Γ·Q (Φ)⊗ Γ·Q (Pχ ⋆s Φ
3))(f1 ⊗ f2;φ) =

= (Φ⊗ (Pχ ⋆s (Φ
3 + 3CΦ))(f1 ⊗ f2;φ) + Q · (1⊗ 3Pχ ⋆s (Φ

2 + C1))(f1 ⊗ f2;φ).

Evaluating once more at φ = 0

E(û[[λ]]⊗ û[[λ]])(f1 ⊗ f2) = ω2(f1 ⊗ f2; 0) =

Q(f1 ⊗ f2) + 3λQ · (1⊗ (Pχ ⋆s C))(f1 ⊗ f2) + O(λ2).

• We can also construct the renormalized equation obeyed by Γ·Q (u).
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The Algebraic Approach to SPDEs

The Stochastic Sine-Gordon model1

On (R2, η)

(□η +m2)u + λga sin(au) = ξ, a2 <
4π

ℏ
, and g ∈ D(R2).

Main Data:

u ≡ u[[λ]] =
∞∑
n=0

λnun =⇒ u0 = Gret ⋆S ξ

Q = Gret ◦χ Gadv ∈ C 0(R2; [0,∞)) =⇒ Q(x , x) ∈ C∞(R; [0,∞)).

for ξ = 0 we have the sine-Gordon model (see Bahns, & Rejzner 2018 +
Pinamonti 2023)

1A. Bonicelli, C.D. and P. Rinaldi, arXiv:2311.01558 [math-ph]
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The Algebraic Approach to SPDEs

The Sine-Gordon model in AQFT

For any G ∈ D′(R2;Funloc) the quantum counterpart is

RV (G) = [S(λV )⋆ℏω ]−1 ⋆ℏω (S(λV ) ⋆ℏ∆F G),

where

V = cos(au),

ω is a Hadamard two-point correlation function,

∆F = ω + iGret and S(λV ) = exp⋆ℏ∆F

(
i
ℏλV

)
.

In particular if we set G = uf , f ∈ D(R2) we have the interacting field

The series RV [uf ] is convergent – [Bahns & Rejzner 2018]
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The Algebraic Approach to SPDEs

The stochastic Sine-Gordon model from
AQFT

We prove the following two key results:

Theorem
The series ΓQ [RλV [u](f , φ)] is absolutely convergent for all (f , φ) ∈ D(R2)×
C∞(R2).

Theorem
The limit

lim
ℏ→0+

ΓQ [RλV [u](f , φ)]

exists and it converges to a solution of the stochastic sine-Gordon equation.
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The Algebraic Approach to SPDEs

Outlook

We have

Constructed a new framework to analyze perturbatively SPDEs

extended it to cover the stochastic nonlinear Schrödinger equation

connected the microlocal world and the germs of distributions 2

2F. Caravenna and L. Zambotti – EMS Surv. Math. Sci. 7 (2020), 207
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The Algebraic Approach to SPDEs

What’s Next

Connect our framework to Hairer’s regularity structures and to
Gubinelli’s paracontrolled calculus,

Extend our framework to cover the stochastic wave equation,

Explore Coleman’s correspondence between the stochastic GN and the
Sine-Gordon models,

Tackle the problem of convergence of the perturbative series,
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The Algebraic Approach to SPDEs

Trivia on random distributions - I

NOTATION: Given z = (t, x) ∈ R1+d , φ ∈ C∞
c (R1+d)

φλz (s, y) = λ−d−2φ(λ−2(s − t), λ−1(y − x)) , λ ∈ (0, 1).

Definition (Negative Hölder Spaces)
Let η ∈ S ′(R1+d) and let α < 0. We say η ∈ Cα if

|η(φλz )| ≲ λα , for λ ∈ (0, 1] , φ ∈ Bα ,

locally uniformly for z ∈ R1+d , with

Bα
.
= {φ ∈ C∞

c (B(0, 1)) | ∥φ∥C−⌊α⌋ ≤ 1}
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The Algebraic Approach to SPDEs

Trivia on random distributions - II

Definition (Random Distribution)
Let (Ω,P) be a probability space. A random distribution η is linear a map
φ 7→ η(φ) from C∞

c (R1+d) to L2(Ω,P).
Given a distribution C ∈ D′, we say that η has covariance C if

E[η(φ)η(ψ)] = (C ∗ φ,ψ)L2

Definition (White Noise)
Space-Time White Noise is the Gaussian random distribution on R1+d with
covariance given by the delta distribution δ, i.e., ξ(φ) is centred Gaussian
for every φ ∈ C∞

c (R1+d) and E[ξ(φ)ξ(ψ)] = (φ,ψ)L2 .
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The Algebraic Approach to SPDEs

Trivia on random distributions - III

Theorem
Let η be a random distribution. If, for α < 0

E|η(φλz )|2 ≲ λ2α ,

holds uniformly over λ ∈ (0, 1) and φ ∈ Bα, then, for any κ > 0, there exists
a Cα−κ-valued random variable η̃ which is a version of η.

η̃ is a version of η if ∀φ ∈ C∞
c , η̃(φ) = η(φ) almost surely.

WHITE NOISE on R1+d is a random variable in C− d
2
−1−κ for any κ > 0.
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