Interplay between Stochastic PDEs and AQFT

Claudio Dappiaggi
Curved spacetimes, field theory and beyond
IHP, Paris 12/04/2024
Dipartimento di Fisica - University of Pavia

Outline of the Talk

(1) Motivations
(2) SPDEs and Renormalization
(3) An algebraic viewpoint: The ϕ_{d}^{4}-model

Based on

- C. D., N. Drago, P. Rinaldi and L. Zambotti, Comm. Cont. Math. 24 (2022) 2150075
- A. Bonicelli, C. D. and P. Rinaldi, Ann. Henri Poinc. 24, (2023) 2443
- A. Bonicelli, C. D. and N. Drago, [arXiv:2302.10579 [math-ph]].
- A. Bonicelli, B. Costeri, C. D. and P. Rinaldi, [arXiv:2309.16376 [math-ph]]

The prototypical problem

Consider two Gaussian random variables $\xi(x, t), \xi_{\mathbb{C}}(x, t)$ on $\mathbb{R}^{n} \times \mathbb{R}$

$$
\mathbb{E}(\xi)=0, \quad \mathbb{E}\left(\xi(x, t) \xi\left(y, t^{\prime}\right)\right)=\delta(x-y) \delta\left(t-t^{\prime}\right) .
$$

Consider a random distribution u (real) or ψ (complex)

$i \partial_{t} \psi=\Delta \psi+\lambda|\psi|^{2} \psi+\xi_{\mathrm{C}}$
with $n \geqslant 2$ and $\lambda \in \mathbb{R}$

> Question: How do you solve such kind of problems?

The prototypical problem

Consider two Gaussian random variables $\xi(x, t), \xi_{\mathbb{C}}(x, t)$ on $\mathbb{R}^{n} \times \mathbb{R}$

$$
\mathbb{E}(\xi)=0, \quad \mathbb{E}\left(\xi(x, t) \xi\left(y, t^{\prime}\right)\right)=\delta(x-y) \delta\left(t-t^{\prime}\right)
$$

Consider a random distribution u (real) or ψ (complex)

$$
\begin{array}{r}
\partial_{t} u-\Delta u-\lambda u^{n}=\xi \\
\Delta u+\lambda u^{n}=\xi \\
i \partial_{t} \psi=\Delta \psi+\lambda|\psi|^{2} \psi+\xi_{\mathbb{C}}
\end{array}
$$

with $n \geq 2$ and $\lambda \in \mathbb{R}$.
Question: How do you solve such kind of problems?

Motivations

A perturbative viewpoint

A first attempt to construct solutions:

- We look for a perturbative solution $u \equiv u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$

$$
u_{0} \equiv \varphi \doteq G \star_{s} \xi, \quad u_{1}=-G \star_{s} \varphi^{3}, \quad u_{j}=-G \star_{s} \quad \sum \quad u_{j_{1}} u_{j_{2}} u_{j_{3}}
$$

- There are divergences in defining φ^{3} (need to renormalize)

Which kind of divergences?

A perturbative viewpoint

A first attempt to construct solutions:

- We call G the fundamental solution of $\partial_{t}-\Delta$
- We look for a perturbative solution $u \equiv u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$

- There are divergences in defining φ^{3} (need to renormalize)

Which kind of divergences?

A perturbative viewpoint

A first attempt to construct solutions:

- We call G the fundamental solution of $\partial_{t}-\Delta$
- We look for a perturbative solution $u \equiv u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$

$$
u_{0} \equiv \varphi \doteq G \star_{s} \xi, \quad u_{1}=-G \star_{s} \varphi^{3}, \quad u_{j}=-G \star_{s} \sum_{j_{1}+j_{2}+j_{3}=j-1} u_{j_{1}} u_{j_{2}} u_{j_{3}}
$$

- There are divergences in defining φ^{3} (need to renormalize)

A perturbative viewpoint

A first attempt to construct solutions:

- We call G the fundamental solution of $\partial_{t}-\Delta$
- We look for a perturbative solution $u \equiv u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$

$$
u_{0} \equiv \varphi \doteq G \star_{s} \xi, \quad u_{1}=-G \star_{s} \varphi^{3}, \quad u_{j}=-G \star_{s} \sum_{j_{1}+j_{2}+j_{3}=j-1} u_{j_{1}} u_{j_{2}} u_{j_{3}}
$$

- There are divergences in defining φ^{3} (need to renormalize)

Which kind of divergences?

$$
\mathbb{E}(\varphi)=0, \quad \mathbb{E}(\varphi(x) \varphi(y))=\left(G \circ G^{*}\right)(x, y) \Longrightarrow \mathbb{E}\left(\varphi^{2}(f)\right)=\left(G \circ G^{*}\right)\left(f \delta_{2}\right)
$$

Renormalization in AQFT

The problem of divergences in SPDEs is structurally the same as in QFT

Which ingredients do we need?

- Epstein-Glaser renormalization
- R. Brunetti, K. Fredenhangen, Comm. Math. Phys. 208 (2000), 623
- Pertrubative AQFT
- R. Brunetti, M. Duetsch and K. Fredenhagen, Adv. Theor. Math. Phys. 13 (2009) no.5, 1541 - K. Rejzner, Math. Phys. Stud. (2016)
- Scaling Degree and Extension of distributions
- Hörmander, Steinmann (1971), Brunetti \& Fredenhangen (2000), Bahns \& Wrochna (2014),...

The Algebraic Approach to SPDEs

Basic Ingredients: Data

We assign the following data:

- A smooth Riemannian manifold M and a top-density μ_{M},
- E is a microhypoelliptic operator, for definiteness
(2) E is a second order elliptic PDE on M
(2) $E=-\partial_{t}+K$ on $\mathbb{R} \times M$ with K, 2nd order elliptic on M
- $P\left(\right.$ resp. $\left.P^{*}\right)$ is parametrix for $E\left(\right.$ resp. $\left.E^{*}\right)$,

The Algebraic Approach to SPDEs

Basic Ingredients: Data

We assign the following data:

- A smooth Riemannian manifold M and a top-density μ_{M},
- E is a microhypoelliptic operator, for definiteness
(1) E is a second order elliptic PDE on M,
(2) $E=-\partial_{t}+K$ on $\mathbb{R} \times M$ with K, 2nd order elliptic on M.
- $P\left(\right.$ resp. $\left.P^{*}\right)$ is parametrix for $E\left(\right.$ resp. $\left.E^{*}\right)$,

The Algebraic Approach to SPDEs

Basic Ingredients: Data

We assign the following data:

- A smooth Riemannian manifold M and a top-density μ_{M},
- E is a microhypoelliptic operator, for definiteness
(1) E is a second order elliptic PDE on M,
(2) $E=-\partial_{t}+K$ on $\mathbb{R} \times M$ with K, 2nd order elliptic on M.
- $P\left(\right.$ resp. $\left.P^{*}\right)$ is parametrix for $E\left(\right.$ resp. $\left.E^{*}\right)$,

The Algebraic Approach to SPDEs

Basic Ingredients: Data

We assign the following data:

- A smooth Riemannian manifold M and a top-density μ_{M},
- E is a microhypoelliptic operator, for definiteness
(1) E is a second order elliptic PDE on M,
(2) $E=-\partial_{t}+K$ on $\mathbb{R} \times M$ with K, 2nd order elliptic on M.
- $P\left(\right.$ resp. $\left.P^{*}\right)$ is parametrix for $E\left(\right.$ resp. $\left.E^{*}\right)$,
- ξ is a Gaussian white noise on M (or on $\mathbb{R} \times M$).

The Algebraic Approach to SPDEs

Basic Ingredients: Functionals

We call functional-valued distribution $\tau \in \mathcal{D}^{\prime}(M$; Fun $)$

$$
\tau: \mathcal{D}(M) \times \mathcal{E}(M) \rightarrow \mathbb{C}, \quad(f, \varphi) \mapsto \tau(f ; \varphi)
$$

which is linear in $\mathcal{D}(M)$ and continuous. We say

- $\tau^{(k)} \in \mathcal{D}^{\prime}\left(M \times M^{k} ;\right.$ Fun $)$ is the k-th derivative of τ if $\forall f \in \mathcal{D}(M), \psi_{i} \in \mathcal{E}(M)$,
- τ is polynomial, $\tau \in \mathcal{D}^{\prime}(M$; Pol $)$ if $\exists \bar{k}$ such that $\tau^{(k)}=0$ for all $k>\bar{k}$

$$
\phi^{k}(f ; \varphi)=\int_{M} \varphi^{k}(x) f_{\mu}(x), \quad f_{\mu} \doteq f \mu_{M}
$$

Basic Ingredients: Functionals

We call functional-valued distribution $\tau \in \mathcal{D}^{\prime}(M$; Fun $)$

$$
\tau: \mathcal{D}(M) \times \mathcal{E}(M) \rightarrow \mathbb{C}, \quad(f, \varphi) \mapsto \tau(f ; \varphi)
$$

which is linear in $\mathcal{D}(M)$ and continuous. We say

- $\tau^{(k)} \in \mathcal{D}^{\prime}\left(M \times M^{k}\right.$; Fun $)$ is the k-th derivative of τ if $\forall f \in \mathcal{D}(M), \psi_{i} \in \mathcal{E}(M)$,
$\left.\tau^{(k)}\left(f \otimes \psi_{1} \otimes \ldots \otimes \psi_{k} ; \varphi\right) \doteq \frac{\partial^{k}}{\partial s_{1} \cdots \partial s_{k}} \tau\left(f ; s_{1} \psi_{1}+\ldots+s_{k} \psi_{k}+\varphi\right)\right|_{s_{1}=\ldots=s_{k}=0}$,
- τ is polynomial, $\tau \in \mathcal{D}^{\prime}(M$; Pol $)$ if $\exists \bar{k}$ such that $\tau^{(k)}=0$ for all $k>\bar{k}$.

$$
\phi^{k}(f ; \varphi)=\int_{M} \varphi^{k}(x) f_{\mu}(x), \quad f_{\mu} \doteq f \mu_{M}
$$

Basic Ingredients: Functionals

We call functional-valued distribution $\tau \in \mathcal{D}^{\prime}(M$; Fun $)$

$$
\tau: \mathcal{D}(M) \times \mathcal{E}(M) \rightarrow \mathbb{C}, \quad(f, \varphi) \mapsto \tau(f ; \varphi)
$$

which is linear in $\mathcal{D}(M)$ and continuous. We say

- $\tau^{(k)} \in \mathcal{D}^{\prime}\left(M \times M^{k}\right.$; Fun $)$ is the k-th derivative of τ if

$$
\forall f \in \mathcal{D}(M), \psi_{i} \in \mathcal{E}(M)
$$

$$
\left.\tau^{(k)}\left(f \otimes \psi_{1} \otimes \ldots \otimes \psi_{k} ; \varphi\right) \doteq \frac{\partial^{k}}{\partial s_{1} \cdots \partial s_{k}} \tau\left(f ; s_{1} \psi_{1}+\ldots+s_{k} \psi_{k}+\varphi\right)\right|_{s_{1}=\ldots=s_{k}=0}
$$

- τ is polynomial, $\tau \in \mathcal{D}^{\prime}(M$; Pol$)$ if $\exists \bar{k}$ such that $\tau^{(k)}=0$ for all $k>\bar{k}$.

$$
\phi^{k}(f ; \varphi)=\int_{M} \varphi^{k}(x) f_{\mu}(x), \quad f_{\mu} \doteq f \mu_{M}
$$

Basic Ingredients: Functionals

We call functional-valued distribution $\tau \in \mathcal{D}^{\prime}(M$; Fun $)$

$$
\tau: \mathcal{D}(M) \times \mathcal{E}(M) \rightarrow \mathbb{C}, \quad(f, \varphi) \mapsto \tau(f ; \varphi)
$$

which is linear in $\mathcal{D}(M)$ and continuous. We say

- $\tau^{(k)} \in \mathcal{D}^{\prime}\left(M \times M^{k}\right.$; Fun $)$ is the k-th derivative of τ if

$$
\forall f \in \mathcal{D}(M), \psi_{i} \in \mathcal{E}(M)
$$

$$
\left.\tau^{(k)}\left(f \otimes \psi_{1} \otimes \ldots \otimes \psi_{k} ; \varphi\right) \doteq \frac{\partial^{k}}{\partial s_{1} \cdots \partial s_{k}} \tau\left(f ; s_{1} \psi_{1}+\ldots+s_{k} \psi_{k}+\varphi\right)\right|_{s_{1}=\ldots=s_{k}=0}
$$

- τ is polynomial, $\tau \in \mathcal{D}^{\prime}(M$; Pol $)$ if $\exists \bar{k}$ such that $\tau^{(k)}=0$ for all $k>\bar{k}$.

Example: for all $k \geq 1$, we call $\Phi^{k} \in \mathcal{D}^{\prime}(M ; \mathrm{Pol})$

$$
\phi^{k}(f ; \varphi)=\int_{M} \varphi^{k}(x) f_{\mu}(x), \quad f_{\mu} \doteq f \mu_{M}
$$

The Algebraic Approach to SPDEs

Basic Ingredients: WF constraints

Long Term Goal: codify the correlations of ξ in the functionals

$$
\begin{gathered}
C_{1} \doteq \emptyset, \quad C_{2}=W F\left(\delta_{2}\right), \ldots \\
C_{k}:=\left\{\left(\widehat{x}_{k}, \widehat{\xi}_{k}\right) \in T^{*} M^{k} \backslash\{0\} \mid\right. \\
\exists \ell \in\{1, \ldots, k-1\},\{1 \ldots, k\}=I_{1} \uplus \ldots \uplus I_{\ell}, \text { such that } \\
\forall i \neq j, \forall(a, b) \in I_{i} \times I_{j}, \text { then } x_{a} \neq x_{b}, \\
\text { and } \left.\forall j \in\{1, \ldots, \ell\},\left(\widehat{x}_{l_{j}}, \widehat{\xi}_{l_{j}}\right) \in \operatorname{WF}\left(\delta_{\text {Diag }_{l_{j}} \mid}\right)\right\}
\end{gathered}
$$

Definition
We call $\mathcal{D}_{C}^{\prime}(M ;$ Pol $) \doteq\left\{\tau \in \mathcal{D}^{\prime}(M ;\right.$ Pol $\left.) \mid W F\left(\tau^{(k)}\right) \subseteq C_{k+1}, \forall k \geq 0\right\}$

Basic Ingredients: WF constraints

Long Term Goal: codify the correlations of ξ in the functionals

Let us introduce $\widehat{x}_{k}=\left(x_{1}, \ldots, x_{k}\right)$

$$
\begin{gathered}
C_{1} \doteq \emptyset, \quad C_{2}=W F\left(\delta_{2}\right), \ldots \\
C_{k}:=\left\{\left(\widehat{x}_{k}, \widehat{\xi}_{k}\right) \in T^{*} M^{k} \backslash\{0\} \mid\right. \\
\exists \ell \in\{1, \ldots, k-1\},\{1 \ldots, k\}=I_{1} \uplus \ldots \uplus I_{\ell}, \text { such that } \\
\forall i \neq j, \forall(a, b) \in I_{i} \times I_{j}, \text { then } x_{a} \neq x_{b}, \\
\text { and } \left.\forall j \in\{1, \ldots, \ell\},\left(\widehat{x}_{l_{j}}, \widehat{\xi}_{l_{j}}\right) \in \mathrm{WF}\left(\delta_{\mathrm{Diag}_{\left|l_{j}\right|}}\right)\right\},
\end{gathered}
$$

Definition

We call $\mathcal{D}_{C}^{\prime}(M ; \mathrm{Pol}) \doteq\left\{\tau \in \mathcal{D}^{\prime}(M ; \mathrm{Pol}) \mid W F\left(\tau^{(k)}\right) \subseteq C_{k+1}, \forall k \geq 0\right\}$.

The Algebraic Approach to SPDEs

Basic Ingredients: Algebra Structure

Goal: endow the functionals with an algebra structure Let $T \in D^{\prime}(M$ Pol). We call

Definition
Let $1 . \Phi \in \mathcal{D}^{\prime}(\mathbf{M}$; Pol) be
$\Phi(f ; \varphi):=\int_{M} f_{\mu}(x) \varphi(x), \quad 1(f ; \varphi)=\int_{M} f_{\mu}(x)$
We set recursively the $\mathcal{E}(M)$-modules

$$
\left.\mathcal{A}_{0}:=\mathcal{E}^{[1}, \phi^{\top}, \quad \mathcal{A}_{j}:=\mathcal{E}^{r} A_{j-1} \cup P \star_{s} A_{j-1}\right], \quad \forall j \in \mathbb{N}
$$

where $P \star_{s} \mathcal{A}_{j-1}:=\left\{P \star_{\star_{s}} \tau \mid \tau \in \mathcal{A}_{j-1}\right\}$. Since $\mathcal{A}_{j_{1}} \subseteq \mathcal{A}_{j_{2}}$ if $j_{1} \leq j_{2}$, let
$\mathcal{A}=\lim \mathcal{A}_{j}, \quad\left[\tau_{1} \tau_{2}\right](f ; \varphi):=\left(\tau_{1} \otimes \tau_{2}\right)\left(f \delta_{\left.\text {Diag }_{2} ; \varphi\right)}, \quad \forall \tau_{1}, \tau_{2} \in \mathcal{A}\right.$

The Algebraic Approach to SPDEs

Basic Ingredients: Algebra Structure

Goal: endow the functionals with an algebra structure
Let $\tau \in \mathcal{D}^{\prime}(M ; \mathrm{Pol})$. We call

$$
\left[P \star_{s} \tau\right](f ; \varphi):=\tau\left(P \star_{s} f ; \varphi\right), \quad \forall f \in \mathcal{D}(M), \forall \varphi \in \mathcal{E}(M)
$$

Definition
Let $1, \Phi \in \mathcal{D}^{\prime}(M$; Pol) be

We set recursively the $\mathcal{E}(M)$-modules

Basic Ingredients: Algebra Structure
Goal: endow the functionals with an algebra structure
Let $\tau \in \mathcal{D}^{\prime}(M ; \mathrm{Pol})$. We call

$$
\left[P \star_{s} \tau\right](f ; \varphi):=\tau\left(P \star_{s} f ; \varphi\right), \quad \forall f \in \mathcal{D}(M), \forall \varphi \in \mathcal{E}(M)
$$

Definition
Let $1, \Phi \in \mathcal{D}^{\prime}(M$; Pol $)$ be

$$
\Phi(f ; \varphi):=\int_{M} f_{\mu}(x) \varphi(x), \quad \mathbf{1}(f ; \varphi)=\int_{M} f_{\mu}(x)
$$

We set recursively the $\mathcal{E}(M)$-modules

$$
\mathcal{A}_{0}:=\mathcal{E}[\mathbf{1}, \Phi], \quad \mathcal{A}_{j}:=\mathcal{E}\left[\mathcal{A}_{j-1} \cup P \star_{s} \mathcal{A}_{j-1}\right], \quad \forall j \in \mathbb{N}
$$

where $P \star_{s} \mathcal{A}_{j-1}:=\left\{P \star_{s} \tau \mid \tau \in \mathcal{A}_{j-1}\right\}$. Since $\mathcal{A}_{j_{1}} \subseteq \mathcal{A}_{j_{2}}$ if $j_{1} \leq j_{2}$, let

$$
\mathcal{A}=\underset{\longrightarrow}{\lim } \mathcal{A}_{j}, \quad\left[\tau_{1} \tau_{2}\right](f ; \varphi):=\left(\tau_{1} \otimes \tau_{2}\right)\left(f \delta_{\mathrm{Diag}_{2}} ; \varphi\right), \quad \forall \tau_{1}, \tau_{2} \in \mathcal{A}
$$

The Strategy

Our plan is the following:
(1) We wish to encode in $\mathcal{D}_{C}^{\prime}(M ;$ Pol $)$ that actually φ should be read as

$$
\varphi=P \star s \xi, \quad \mathbb{E}(\varphi)=0, \quad \mathbb{E}(\varphi(x) \varphi(y))=Q(x, y)=\left(P \circ P^{*}\right)(x, y) .
$$

(2) This can be obtained deforming the algebra product,
(3) Computing expectation values is like evaluating at $\varphi=0$,
(4) Warning: divergences occur if one wishes to compute
which is ill-defined. Renormalization is needed.

The Strategy

Our plan is the following:
(1) We wish to encode in $\mathcal{D}_{C}^{\prime}(M ;$ Pol $)$ that actually φ should be read as

$$
\varphi=P \star s \xi, \quad \mathbb{E}(\varphi)=0, \quad \mathbb{E}(\varphi(x) \varphi(y))=Q(x, y)=\left(P \circ P^{*}\right)(x, y)
$$

(2) This can be obtained deforming the algebra product,
(3) Computing expectation values is like evaluating at $\varphi=0$
(4) Warning: divergences occur if one wishes to compute
which is ill-defined. Renormalization is needed.

The Algebraic Approach to SPDEs

The Strategy

Our plan is the following:
(1) We wish to encode in $\mathcal{D}_{C}^{\prime}(M ;$ Pol $)$ that actually φ should be read as

$$
\varphi=P \star s \xi, \quad \mathbb{E}(\varphi)=0, \quad \mathbb{E}(\varphi(x) \varphi(y))=Q(x, y)=\left(P \circ P^{*}\right)(x, y)
$$

(2) This can be obtained deforming the algebra product,
(3) Computing expectation values is like evaluating at $\varphi=0$,
(4) Warning: divergences occur if one wishes to compute
which is ill-defined. Renormalization is needed.

The Algebraic Approach to SPDEs

The Strategy

Our plan is the following:
(1) We wish to encode in $\mathcal{D}_{C}^{\prime}(M ;$ Pol $)$ that actually φ should be read as

$$
\varphi=P \star s \xi, \quad \mathbb{E}(\varphi)=0, \quad \mathbb{E}(\varphi(x) \varphi(y))=Q(x, y)=\left(P \circ P^{*}\right)(x, y)
$$

(2) This can be obtained deforming the algebra product,
(3) Computing expectation values is like evaluating at $\varphi=0$,
(4) Warning: divergences occur if one wishes to compute

$$
\mathbb{E}\left(\varphi^{2}(x)\right)=Q(x, x)
$$

which is ill-defined. Renormalization is needed.

The Algebraic Approach to SPDEs

Encoding the correlations of $\xi-1$

We proceed in steps:
Step 1: Observe that

$$
\mathcal{A}=\lim _{\longrightarrow} \mathcal{M}_{j},
$$

where \mathcal{M}_{j} is the elements of \mathcal{A} with at most j fields Φ
Step 2: Let $P_{\epsilon} \in \mathcal{E}\left(M^{2}\right)$ be such that $w-\lim _{\epsilon \rightarrow 0^{+}} P_{\epsilon}=P$ and $Q_{\epsilon}=P_{\epsilon} \circ P_{\epsilon}$
Proposition
We call \mathcal{A}.o the unital, commutative and associative algebra such that, for all $f \in \mathcal{D}(M)$ and for all $\varphi \in \mathcal{E}(M)$

Encoding the correlations of $\xi-1$

We proceed in steps:
Step 1: Observe that

$$
\mathcal{A}=\lim _{\longrightarrow} \mathcal{M}_{j}
$$

where \mathcal{M}_{j} is the elements of \mathcal{A} with at most j fields Φ
Step 2: Let $P_{\epsilon} \in \mathcal{E}\left(M^{2}\right)$ be such that $w-\lim _{\epsilon \rightarrow 0^{+}} P_{\epsilon}=P$ and $Q_{\epsilon}=P_{\epsilon} \circ P_{\epsilon}$.

Proposition

We call $\mathcal{A} \cdot Q_{\epsilon}$ the unital, commutative and associative algebra such that, for all $f \in \mathcal{D}(M)$ and for all $\varphi \in \mathcal{E}(M)$,

$$
\left[\tau \cdot Q_{\epsilon} \tau^{\prime}\right](f ; \varphi)=\sum_{k \geq 0} \frac{1}{k!}\left[\left(\delta_{2} \circ Q_{\epsilon}^{\otimes k}\right) \cdot\left(\tau_{1}^{(k)} \widetilde{\otimes} \tau_{2}^{(k)}\right)\right]\left(f \otimes 1_{1+2 k} ; \varphi\right)
$$

Encoding the correlations of ξ - II

Notice (I mean it!)
Obs. 1: The product is well defined because we control

- $W F\left(\tau^{(k)}\right) \subseteq C_{k+1}$,
- $W F\left(\delta_{2} \otimes Q_{\epsilon}^{\otimes k}\right)$.

Obs. 2: If we compute
$\left[\phi \cdot Q_{e} \phi\right](f ; \varphi)=\int_{M} f_{\mu}(x)\left[\varphi^{2}(x)+Q_{e}(x, x)\right]=\phi^{2}(f ; \varphi)+Q_{e}\left(f \delta_{2}\right)$,
hence

Can we get rid of ϵ ? Can we compute also correlations?

Encoding the correlations of ξ - II

Notice (I mean it!)
Obs. 1: The product is well defined because we control

- $W F\left(\tau^{(k)}\right) \subseteq C_{k+1}$,
- $W F\left(\delta_{2} \otimes Q_{\epsilon}^{\otimes k}\right)$.

Obs. 2: If we compute

$$
\left[\Phi \cdot Q_{\epsilon} \Phi\right](f ; \varphi)=\int_{M} f_{\mu}(x)\left[\varphi^{2}(x)+Q_{\epsilon}(x, x)\right]=\Phi^{2}(f ; \varphi)+Q_{\epsilon}\left(f \delta_{2}\right)
$$

hence

$$
\left[\Phi \cdot Q_{\epsilon} \Phi\right](f ; 0)=Q_{\epsilon}\left(f \delta_{2}\right)
$$

Can we get rid of ϵ ? Can we compute also correlations?

The Algebraic Approach to SPDEs

Encoding the correlations of $\xi-$ III

Theorem (First Key Result)

There exists a linear map $\Gamma_{\cdot}: \mathcal{A} \rightarrow \mathcal{D}_{\mathrm{C}}^{\prime}(M$; Pol) such that
(1) for all $\tau \in \mathcal{M}_{1}, \Gamma_{\cdot Q}(\tau)=\tau$.
(2) for all $\tau \in \mathcal{A}$ it holds $\Gamma_{\cdot}(P \star s \tau)=P \star{ }_{\star} \Gamma_{\cdot}(\tau)$.
(3) for all $\psi \in \mathcal{E}(M)$ it holds

$$
\Gamma_{\cdot Q} \circ \delta_{\psi}=\delta_{\psi} \circ \Gamma_{\cdot Q}, \quad \Gamma_{\cdot Q}(\psi \tau)=\psi \Gamma_{\cdot Q}(\tau)
$$

(4) For all $\tau \in \mathcal{M}_{k}$

$$
\sigma_{p}\left(\Gamma_{\cdot}(\tau)\right) \leq p d+\frac{k-p}{2} \max \{0, d-4\}
$$

where $\sigma_{p}(\tau)=\operatorname{sd}_{\operatorname{Diag}_{p+1}}\left(\tau^{(p)}\right)$ and $\operatorname{Diag}_{p+1} \subset M^{p+1}$ is the total diagonal of M^{p+1}.

The Algebraic Approach to SPDEs

Key aspects of the proof - I

The proof is inductive and divided in several cases. Observe

- Main idea: If $\tau=\tau_{1} \ldots \tau_{n} \in \mathcal{A}$, we set

$$
\Gamma_{\cdot Q}(\tau)=\Gamma_{\cdot Q}\left(\tau_{1}\right) \cdot{ }_{Q} \cdots \cdots_{Q} \Gamma_{\cdot Q}\left(\tau_{n}\right)
$$

- We focus on E elliptic, self-adjoint for simplicity
- with $\operatorname{dim} M=d=2,3$ the product is well defined
- If we construct $\Gamma_{\cdot Q}(\tau), \tau \in \mathcal{A}$, then $\Gamma_{\cdot Q}\left(P \star_{S} \tau\right)$ is completely determined

All conditions 1.-4. are met by direct inspection

The Algebraic Approach to SPDEs

Key aspects of the proof - I

The proof is inductive and divided in several cases. Observe

- Main idea: If $\tau=\tau_{1} \ldots \tau_{n} \in \mathcal{A}$, we set

$$
\Gamma_{\cdot Q}(\tau)=\Gamma_{\cdot Q}\left(\tau_{1}\right) \cdot{ }_{Q} \cdots{ }_{Q} \Gamma_{\cdot Q}\left(\tau_{n}\right)
$$

- We focus on E elliptic, self-adjoint for simplicity
- with $\operatorname{dim} M=d=2,3$ the product is well defined
- If we construct $\Gamma_{\cdot Q}(\tau), \tau \in \mathcal{A}$, then $\Gamma_{\cdot}\left(P \star_{S} \tau\right)$ is completely determined

All conditions 1.-4. are met by direct inspection

The Algebraic Approach to SPDEs

Key aspects of the proof - I

The proof is inductive and divided in several cases. Observe

- Main idea: If $\tau=\tau_{1} \ldots \tau_{n} \in \mathcal{A}$, we set

$$
\Gamma_{\cdot Q}(\tau)=\Gamma_{\cdot Q}\left(\tau_{1}\right) \cdot \cdot_{Q} \cdots{ }_{Q} \Gamma_{\cdot Q}\left(\tau_{n}\right)
$$

- We focus on E elliptic, self-adjoint for simplicity
- with $\operatorname{dim} M=d=2,3$ the product is well defined.
- If we construct $\Gamma_{\cdot Q}(\tau), \tau \in \mathcal{A}$, then $\Gamma_{\cdot Q}\left(P \star_{s} \tau\right)$ is completely determined

All conditions 1.-4. are met by direct inspection

Key aspects of the proof - I

The proof is inductive and divided in several cases. Observe

- Main idea: If $\tau=\tau_{1} \ldots \tau_{n} \in \mathcal{A}$, we set

$$
\Gamma_{\cdot Q}(\tau)=\Gamma_{\cdot Q}\left(\tau_{1}\right) \cdot \cdot_{Q} \cdots{ }_{Q} \Gamma_{\cdot Q}\left(\tau_{n}\right)
$$

- We focus on E elliptic, self-adjoint for simplicity
- with $\operatorname{dim} M=d=2,3$ the product is well defined.
- If we construct $\Gamma_{\cdot Q}(\tau), \tau \in \mathcal{A}$, then $\Gamma_{{ }_{Q}}(P \star s \tau)$ is completely determined

$$
\Gamma_{Q}\left(P \star_{s} \tau\right)=P \star_{S} \Gamma_{\cdot Q}(\tau)
$$

All conditions 1.-4. are met by direct inspection

The Algebraic Approach to SPDEs

Key aspects of the proof - II

$$
\text { Recall } \mathcal{A}=\underset{\longrightarrow}{\lim } \mathcal{M}_{j}
$$

Step 0: If $j=0,1$, there is nothing to do
Step 1: If $j=2$, it suffices to consider $\mathcal{M}_{2}^{0}=\operatorname{span}_{\varepsilon(M)}\left(1, \Phi, \Phi^{2}\right)$
Only unknown $\Gamma_{\cdot Q}\left(\Phi^{2}\right)(f ; \varphi)=\left[\Gamma_{\cdot Q}(\Phi) \cdot{ }_{Q} \Gamma_{\cdot Q}\right](f ; \varphi)=\Phi^{2}(f ; \varphi)+P^{2}(f \otimes 1)$

- Here $Q=P \circ P^{*}=P^{2}$ since $E=E^{*}$
- $P^{2} \in \mathcal{D}^{\prime}\left(M^{2} \backslash \operatorname{Diag}_{2}\right)$ and $\operatorname{sd}\left(P^{2}\right) \leq 2(d-2)$

Define

$$
\Gamma_{\cdot}\left(\phi^{2}\right)(f ; \varphi)=\phi^{2}(f ; \varphi)+\widehat{P}_{2}(f \otimes 1) .
$$

Key aspects of the proof - II

$$
\text { Recall } \mathcal{A}=\underset{\longrightarrow}{\lim } \mathcal{M}_{j}
$$

Step 0: If $j=0,1$, there is nothing to do
Step 1: If $j=2$, it suffices to consider $\mathcal{M}_{2}^{0}=\operatorname{span}_{\mathcal{E}(M)}\left(1, \Phi, \Phi^{2}\right)$
Only unknown $\Gamma_{\cdot Q}\left(\Phi^{2}\right)(f ; \varphi)=\left[\Gamma_{\cdot}(\Phi) \cdot{ }_{Q} \Gamma_{\cdot Q}\right](f ; \varphi)=\Phi^{2}(f ; \varphi)+P^{2}(f \otimes 1)$

- Here $Q=P \circ P^{*}=P^{2}$ since $E=E^{*}$
- $P^{2} \in \mathcal{D}^{\prime}\left(M^{2} \backslash \operatorname{Diag}_{2}\right)$ and $\operatorname{sd}\left(P^{2}\right) \leq 2(d-2)$

$$
\exists \widehat{P}_{2} \in \mathcal{D}^{\prime}\left(M^{2}\right) \text {, s.t. }\left.\widehat{P}_{2}\right|_{M \times M \backslash \operatorname{Diag}_{2}}=P^{2} \text { and } \operatorname{sd}\left(\widehat{P}_{2}\right)=\operatorname{sd}\left(P^{2}\right)
$$

Define

$$
\Gamma_{\cdot}\left(\phi^{2}\right)(f ; \varphi)=\phi^{2}(f ; \varphi)+\widehat{P}_{2}(f \otimes 1) .
$$

Key aspects of the proof - II

$$
\text { Recall } \mathcal{A}=\underset{\longrightarrow}{\lim } \mathcal{M}_{j}
$$

Step 0: If $j=0,1$, there is nothing to do
Step 1: If $j=2$, it suffices to consider $\mathcal{M}_{2}^{0}=\operatorname{span}_{\mathcal{E}(M)}\left(1, \Phi, \Phi^{2}\right)$
Only unknown $\Gamma_{\cdot Q}\left(\Phi^{2}\right)(f ; \varphi)=\left[\Gamma_{\cdot}(\Phi) \cdot{ }_{Q} \Gamma_{\cdot Q}\right](f ; \varphi)=\Phi^{2}(f ; \varphi)+P^{2}(f \otimes 1)$

- Here $Q=P \circ P^{*}=P^{2}$ since $E=E^{*}$
- $P^{2} \in \mathcal{D}^{\prime}\left(M^{2} \backslash \operatorname{Diag}_{2}\right)$ and $\operatorname{sd}\left(P^{2}\right) \leq 2(d-2)$

$$
\exists \widehat{P}_{2} \in \mathcal{D}^{\prime}\left(M^{2}\right) \text {, s.t. }\left.\widehat{P}_{2}\right|_{M \times M \backslash \operatorname{Diag}_{2}}=P^{2} \text { and } \operatorname{sd}\left(\widehat{P}_{2}\right)=\operatorname{sd}\left(P^{2}\right)
$$

Define

$$
\Gamma_{Q}\left(\Phi^{2}\right)(f ; \varphi)=\Phi^{2}(f ; \varphi)+\widehat{P}_{2}(f \otimes 1)
$$

The Algebraic Approach to SPDEs

Key aspects of the proof - III

Step 1b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$

where $Q_{2 \ell}(f)=\left(P^{2}\right)^{\otimes \ell} \cdot\left(\delta_{\text {Diag }_{\ell}} \otimes 1_{\ell}\right)\left(f \otimes 1_{2 \ell-1}\right)$.

Step 2b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$

Key aspects of the proof - III

Step 1b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$
Step 2: Proceed inductively to $\mathcal{M}_{k+1}^{0}=\operatorname{span}_{\mathcal{E}(M)}\left(1, \Phi, \ldots \Phi^{k+1}\right)$

$$
\begin{aligned}
& \Gamma_{\cdot}\left(\Phi^{k+1}\right)=\underbrace{\Gamma_{\cdot}(\Phi) \cdot Q \cdots \cdot{ }_{Q} \Gamma_{Q}(\Phi)}_{k+1}(f ; \varphi)= \\
& =\sum_{\ell=0}^{\left\lfloor\frac{k+1}{2}\right\rfloor}\binom{k+1}{2 \ell}\left(Q_{2 \ell} \cdot \Gamma_{\cdot Q}(\Phi)^{k+1-2 \ell}\right)(f ; \varphi)
\end{aligned}
$$

where $Q_{2 \ell}(f)=\left(P^{2}\right)^{\otimes \ell} \cdot\left(\delta_{\text {Diag }_{\ell}} \otimes 1_{\ell}\right)\left(f \otimes 1_{2 \ell-1}\right)$.

$$
Q_{2 l}(f) \mapsto \widehat{Q}_{2 l}(f) \doteq \widehat{P}_{2}^{\otimes \ell} \cdot\left(\delta_{\mathrm{Diag}_{\ell}} \otimes 1_{\ell}\right)\left(f \otimes 1_{2 \ell-1}\right)
$$

Step 2b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$

Key aspects of the proof - III

Step 1b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$
Step 2: Proceed inductively to $\mathcal{M}_{k+1}^{0}=\operatorname{span}_{\mathcal{E}(M)}\left(1, \Phi, \ldots \Phi^{k+1}\right)$

$$
\begin{aligned}
& \Gamma_{\cdot}\left(\Phi^{k+1}\right)=\underbrace{\Gamma_{\cdot}(\Phi) \cdot Q \cdots \cdot{ }_{Q} \Gamma_{Q}(\Phi)}_{k+1}(f ; \varphi)= \\
& =\sum_{\ell=0}^{\left\lfloor\frac{k+1}{2}\right\rfloor}\binom{k+1}{2 \ell}\left(Q_{2 \ell} \cdot \Gamma_{\cdot Q}(\Phi)^{k+1-2 \ell}\right)(f ; \varphi)
\end{aligned}
$$

where $Q_{2 \ell}(f)=\left(P^{2}\right)^{\otimes \ell} \cdot\left(\delta_{\text {Diag }_{\ell}} \otimes 1_{\ell}\right)\left(f \otimes 1_{2 \ell-1}\right)$.

$$
Q_{2 l}(f) \mapsto \widehat{Q}_{2 l}(f) \doteq \widehat{P}_{2}^{\otimes \ell} \cdot\left(\delta_{\mathrm{Diag}_{\ell}} \otimes 1_{\ell}\right)\left(f \otimes 1_{2 \ell-1}\right)
$$

Step 2b: Check that all hypothesis are met $\left(W F\left(P^{2}\right)=W F\left(\delta_{2}\right)\right)$

Consequences

Observe that

- $\mathcal{A}_{\cdot Q}$ is a unital, commutative and associative algebra

$$
\tau \cdot Q \tau^{\prime}=\Gamma_{\cdot Q}\left[\Gamma_{\cdot Q}^{-1}(\tau) \Gamma_{\cdot Q}^{-1}\left(\tau^{\prime}\right)\right], \quad \forall \tau, \tau^{\prime} \in \mathcal{A} \cdot Q
$$

- We are still not able to compute correlations such as

$$
\mathbb{E}\left[\phi^{2}(x) \phi^{2}(y)\right]
$$

More precisely, formally we have to deal with

$$
\left[\Phi^{2} \bullet \Phi^{2}\right]\left(f_{1} \otimes f_{2} \cdot \varphi\right)=
$$

It is like having Wick polynomials but not their product!

Consequences

Observe that

- $\mathcal{A}_{\cdot Q}$ is a unital, commutative and associative algebra

$$
\tau \cdot{ }_{Q} \tau^{\prime}=\Gamma_{\cdot Q}\left[\Gamma_{\cdot Q}^{-1}(\tau) \Gamma_{\cdot Q}^{-1}\left(\tau^{\prime}\right)\right], \quad \forall \tau, \tau^{\prime} \in \mathcal{A} \cdot Q .
$$

- We are still not able to compute correlations such as

$$
\mathbb{E}\left[\Phi^{2}(x) \Phi^{2}(y)\right]
$$

More precisely, formally we have to deal with

$$
\begin{gathered}
{\left[\Phi^{2} \bullet Q \Phi^{2}\right]\left(f_{1} \otimes f_{2} ; \varphi\right)=} \\
\int_{M \times M} f_{1, \mu}\left(x_{1}\right) f_{2, \mu}\left(x_{2}\right)\left[\varphi\left(x_{1}\right)^{2} \varphi\left(x_{2}\right)^{2}+4 \varphi\left(x_{1}\right) Q\left(x_{1}, x_{2}\right) \varphi\left(x_{2}\right)+2 Q\left(x_{1}, x_{2}\right)^{2}\right]
\end{gathered}
$$

It is like having Wick polynomials but not their product!

Consequences

Observe that

- $\mathcal{A}_{\cdot Q}$ is a unital, commutative and associative algebra

$$
\tau \cdot{ }_{Q} \tau^{\prime}=\Gamma_{\cdot Q}\left[\Gamma_{\cdot Q}^{-1}(\tau) \Gamma_{\cdot Q}^{-1}\left(\tau^{\prime}\right)\right], \quad \forall \tau, \tau^{\prime} \in \mathcal{A} \cdot Q .
$$

- We are still not able to compute correlations such as

$$
\mathbb{E}\left[\Phi^{2}(x) \Phi^{2}(y)\right]
$$

More precisely, formally we have to deal with

$$
\begin{gathered}
{\left[\Phi^{2} \bullet Q \Phi^{2}\right]\left(f_{1} \otimes f_{2} ; \varphi\right)=} \\
\int_{M \times M} f_{1, \mu}\left(x_{1}\right) f_{2, \mu}\left(x_{2}\right)\left[\varphi\left(x_{1}\right)^{2} \varphi\left(x_{2}\right)^{2}+4 \varphi\left(x_{1}\right) Q\left(x_{1}, x_{2}\right) \varphi\left(x_{2}\right)+2 Q\left(x_{1}, x_{2}\right)^{2}\right]
\end{gathered}
$$

It is like having Wick polynomials but not their product!

Correlations and the \bullet_{Q}-product

Consider $\mathcal{A} \cdot Q=\Gamma \cdot{ }_{Q}[\mathcal{A}]$ and

$$
\mathcal{T}[\mathcal{A} \cdot Q] \doteq \mathcal{E}(M) \oplus \bigoplus_{I>0} \mathcal{A}_{\cdot Q}^{\otimes I} \quad \text { Universal Tensor Module }
$$

together with

$$
\mathcal{T}_{C}^{\prime}(M ; \mathrm{Pol})=\mathbb{C} \oplus \bigoplus_{n>0} \mathcal{D}_{C}^{\prime}(M ; \mathrm{Pol})^{\otimes n}
$$

endowed with the product

$$
\left(\tau_{1} \bullet Q \tau_{2}\right)\left(f_{1} \otimes f_{2} ; \varphi\right)=\sum_{k \geq 0} \frac{1}{k!}\left[\left(1_{n_{1}+n_{2}} \otimes Q^{\otimes k}\right) \cdot\left(\tau_{1}^{(k)} \widetilde{\otimes} \tau_{2}^{(k)}\right)\right]\left(f_{1} \otimes f_{2} \otimes 1_{2 k} ; \varphi\right)
$$

with $\tau_{j} \in \mathcal{D}_{C}^{\prime}\left(M^{n_{j}}\right)$ and $f_{j} \in \mathcal{D}\left(M^{n_{j}}\right)$.

The Algebraic Approach to SPDEs

Correlations and the \bullet_{Q}-product - I

Theorem (Second Key Result)

There exists a linear map $\Gamma_{\bullet_{Q}}: \mathcal{T}\left(\mathcal{A}_{\cdot Q}\right) \rightarrow \mathcal{T}_{\mathrm{C}}^{\prime}(M ; \mathrm{Pol})$ such that
(i) for all $\tau_{1}, \ldots, \tau_{\ell} \in \mathcal{A}_{\cdot Q}$ with $\tau_{1} \in \Gamma_{\cdot}\left(\mathcal{M}_{1}\right)$ it holds

$$
\Gamma_{\bullet}\left(\tau_{1} \otimes \ldots \otimes \tau_{\ell}\right):=\tau_{1} \bullet{ }_{Q} \Gamma_{\bullet}\left(\tau_{2} \otimes \ldots \otimes \tau_{\ell}\right),
$$

(ii) Let $\tau_{1}, \ldots, \tau_{\ell} \in \mathcal{A}_{\cdot Q}$ and $f_{1}, \ldots, f_{\ell} \in \mathcal{D}(M)$. If $\exists I \subsetneq\{1, \ldots, \ell\}$

$$
\bigcup_{i \in I} \operatorname{spt}\left(f_{i}\right) \cap \bigcup_{j \notin I} \operatorname{spt}\left(f_{j}\right)=\emptyset
$$

then

$$
\begin{gathered}
\Gamma_{\bullet Q}\left(\tau_{1} \otimes \ldots \otimes \tau_{\ell}\right)\left(f_{1} \otimes \ldots \otimes f_{\ell}\right)= \\
=\left[\Gamma_{\bullet Q}\left(\bigotimes_{i \in I} \tau_{i}\right) \bullet_{Q} \Gamma_{\bullet Q}\left(\bigotimes_{j \neq \prime} \tau_{j}\right)\right]\left(f_{1} \otimes \ldots \otimes f_{\ell}\right) .
\end{gathered}
$$

The Algebraic Approach to SPDEs

Correlations and the \bullet_{Q}-product - II

In addition it holds

- for all $\ell \geq 0, \Gamma_{\bullet Q}: \mathcal{A}_{Q}^{\otimes \ell} \rightarrow \mathcal{T}_{\mathrm{C}}^{\prime}(M ;$ Pol $)$ is a symmetric map,

Proposition

Given any map Γ_{\bullet} let

$$
\mathcal{A}_{\bullet Q}:=\Gamma_{\bullet Q}\left(\mathcal{A}_{\cdot_{Q}}\right) \subseteq \mathcal{T}_{\mathrm{C}}^{\prime}(M ; \mathrm{Pol})
$$

Then the bilinear map $\bullet_{\bullet_{\bullet}}: \mathcal{A}_{\bullet Q} \times \mathcal{A}_{\bullet Q} \rightarrow \mathcal{A}_{\bullet Q}$ defined by

$$
\tau \bullet \Gamma_{\bullet Q} \bar{\tau}:=\Gamma_{\bullet Q}\left(\Gamma_{\bullet Q}^{-1}(\tau) \otimes \Gamma_{\bullet Q}^{-1}(\bar{\tau})\right), \quad \forall \tau, \bar{\tau} \in \mathcal{A}_{\bullet Q}
$$

defines a unital, commutative and associative product on $\mathcal{A}_{\bullet} Q$

The Algebraic Approach to SPDEs

Correlations and the \bullet_{Q}-product - II

In addition it holds

- for all $\ell \geq 0, \Gamma_{\bullet Q}: \mathcal{A}_{Q}^{\otimes \ell} \rightarrow \mathcal{T}_{\mathrm{C}}^{\prime}(M ;$ Pol $)$ is a symmetric map,
- $\Gamma_{\bullet Q}$ satisfies a set of identities, e.g.

$$
\begin{aligned}
& \Gamma_{\bullet}(\tau)=\tau, \quad \forall \tau \in \mathcal{A} \cdot{ }_{Q}, \\
& \Gamma_{\bullet_{Q}} \circ \delta_{\psi}=\delta_{\psi} \circ \Gamma_{\bullet_{Q}}, \quad \forall \psi \in \mathcal{E}(M) .
\end{aligned}
$$

Proposition

Given any map Γ_{\bullet} let

$$
\mathcal{A}_{\bullet Q}:=\Gamma_{\bullet Q}\left(\mathcal{A}_{Q_{Q}}\right) \subseteq \mathcal{T}_{\mathrm{C}}^{\prime}(M ; \mathrm{Pol})
$$

Then the bilinear map $\bullet_{\bullet_{\bullet}}: \mathcal{A}_{\bullet Q} \times \mathcal{A}_{\bullet Q} \rightarrow \mathcal{A}_{\bullet Q}$ defined by $\tau \bullet \Gamma_{\bullet Q} \overline{\bar{\tau}}:=\Gamma_{\bullet Q}\left(\Gamma_{\bullet Q}^{-1}(\tau) \otimes \Gamma_{\bullet Q}^{-1}(\bar{\tau})\right)$
defines a unital, commutative and associative product on $\mathcal{A}_{\bullet Q}$

Correlations and the \bullet_{Q}-product - II

In addition it holds

- for all $\ell \geq 0, \Gamma_{\bullet Q}: \mathcal{A}_{\cdot}^{\otimes \ell} \rightarrow \mathcal{T}_{\mathrm{C}}^{\prime}(M ;$ Pol $)$ is a symmetric map,
- $\Gamma_{\bullet Q}$ satisfies a set of identities, e.g.

$$
\begin{aligned}
& \Gamma_{\bullet}(\tau)=\tau, \quad \forall \tau \in \mathcal{A}_{\bullet_{Q}}, \\
& \Gamma_{\bullet Q} \circ \delta_{\psi}=\delta_{\psi} \circ \Gamma_{\bullet Q}, \quad \forall \psi \in \mathcal{E}(M) .
\end{aligned}
$$

Proposition

Given any map $\Gamma_{\bullet Q}$ let

$$
\mathcal{A}_{\bullet Q}:=\Gamma_{\bullet}\left(\mathcal{A}_{\cdot Q}\right) \subseteq \mathcal{T}_{\mathrm{C}}^{\prime}(M ; \mathrm{Pol})
$$

Then the bilinear map $\bullet_{\Gamma_{Q}}: \mathcal{A}_{\bullet Q} \times \mathcal{A}_{\bullet Q} \rightarrow \mathcal{A}_{\bullet_{Q}}$ defined by

$$
\tau \bullet \Gamma_{\bullet} \bar{\tau}:=\Gamma_{\bullet Q}\left(\Gamma_{\bullet Q}^{-1}(\tau) \otimes \Gamma_{\bullet Q}^{-1}(\bar{\tau})\right), \quad \forall \tau, \bar{\tau} \in \mathcal{A}_{\bullet Q},
$$

defines a unital, commutative and associative product on $\mathcal{A}_{\bullet Q}$.

The Algebraic Approach to SPDEs

(Non-)Uniqueness Results

Question: Are the maps $\Gamma_{\cdot Q}$ and $\Gamma_{\bullet_{Q}}$ unique?

Proposition

Let $\widetilde{\Gamma}_{\cdot Q}, \Gamma_{\cdot Q}: \mathcal{A} \rightarrow \mathcal{D}^{\prime}(M ;$ Pol $)$ be two linear maps compatible with the existence theorem. Then the algebras $\mathcal{A} \cdot{ }_{Q}=\Gamma_{\cdot Q}(\mathcal{A})$ and $\mathcal{A} \cdot{ }_{Q}=\Gamma_{\cdot Q}(\mathcal{A})$ coincide and in particular there exists $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}} \subset \mathcal{E}(M)$ a family of smooth functions, such that for all $k \in \mathbb{N}$

$$
\tilde{\Gamma}_{\cdot Q}\left(\Phi^{k}\right)=\Gamma_{\cdot Q}\left(\Phi^{k}+\sum_{\ell=0}^{k-2}\binom{k}{\ell} c_{k-\ell} \Phi^{\ell}\right)
$$

Observe that
n. A similare

- We do not have local covariance to further constraint $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}}$
- We can repeat the procedure to construct $\Gamma_{\bullet Q_{L}}$ to compute correlation between elements lying in $\mathcal{A}^{\mathbb{C}} Q_{L}$.

The Algebraic Approach to SPDEs

(Non-)Uniqueness Results

Question: Are the maps $\Gamma_{\cdot Q}$ and $\Gamma_{\bullet_{Q}}$ unique?

Proposition

Let $\tilde{\Gamma}_{\cdot}, \Gamma_{\cdot}: \mathcal{A} \rightarrow \mathcal{D}^{\prime}(M ;$ Pol) be two linear maps compatible with the existence theorem. Then the algebras $\mathcal{A}_{\cdot}=\Gamma_{\cdot}(\mathcal{A})$ and $\widetilde{\mathcal{A}}_{\cdot Q}=\tilde{\Gamma}_{\cdot}(\mathcal{A})$ coincide and in particular there exists $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}} \subset \mathcal{E}(M)$ a family of smooth functions, such that for all $k \in \mathbb{N}$

$$
\tilde{\Gamma}_{\cdot Q}\left(\Phi^{k}\right)=\Gamma_{\cdot Q}\left(\Phi^{k}+\sum_{\ell=0}^{k-2}\binom{k}{\ell} c_{k-\ell} \Phi^{\ell}\right) .
$$

- We do not have local covariance to further constraint $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}}$
- We can repeat the procedure to construct $\Gamma_{Q_{Q}}$ to compute correlation between elements lying in $\mathcal{A}^{\mathbb{C}} Q_{L}$.

(Non-)Uniqueness Results

Question: Are the maps $\Gamma_{\cdot Q}$ and $\Gamma_{\bullet Q}$ unique?

Proposition

Let $\widetilde{\Gamma}_{\cdot}, \Gamma_{\cdot}: \mathcal{A} \rightarrow \mathcal{D}^{\prime}(M$ Pol) be two linear maps compatible with the existence theorem. Then the algebras $\mathcal{A}_{\cdot}=\Gamma_{\cdot}(\mathcal{A})$ and $\widetilde{\mathcal{A}}_{\cdot Q}=\widetilde{\Gamma}_{\cdot}(\mathcal{A})$ coincide and in particular there exists $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}} \subset \mathcal{E}(M)$ a family of smooth functions, such that for all $k \in \mathbb{N}$

$$
\widetilde{\Gamma}_{\cdot Q}\left(\Phi^{k}\right)=\Gamma_{\cdot Q}\left(\Phi^{k}+\sum_{\ell=0}^{k-2}\binom{k}{\ell} c_{k-\ell} \Phi^{\ell}\right) .
$$

Observe that

- A similar theorem holds true for $\Gamma_{\bullet Q}$
- We do not have local covariance to further constraint $\left\{c_{\ell}\right\}_{\ell \in \mathbb{N}_{0}}$
- We can repeat the procedure to construct $\Gamma_{\bullet Q_{L}}$ to compute correlation between elements lying in $\mathcal{A}_{\cdot}^{\mathbb{C}} Q_{L}$.

The Algebraic Approach to SPDEs

$1^{\text {st }}$ Example: The Φ_{d}^{3} Model

Consider on $\mathbb{R} \times \mathbb{R}^{d}$

$$
\partial_{t} u=\Delta u-\lambda u^{3}+\xi
$$

Next we interpret each term in $\mathcal{A} \cdot Q$

$$
u_{[[\lambda]]}^{[r]} \Gamma_{Q}(u[[\lambda]])
$$

which entails that

$$
\mathbb{E}(u[[\lambda]](f))=\sum_{j \geq 0} \lambda \Gamma \cdot Q\left(u_{j}\right)(f ; 0) .
$$

The Algebraic Approach to SPDEs

$1^{\text {st }}$ Example: The ϕ_{d}^{3} Model

Consider on $\mathbb{R} \times \mathbb{R}^{d}$

$$
\partial_{t} u=\Delta u-\lambda u^{3}+\xi
$$

We consider $u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$ where

$$
u_{0}=\Phi, u_{1}=-P_{\chi} \star_{s} \Phi^{3}, \ldots u_{j}=-P_{\chi} \star_{s} \sum_{j_{1}+j_{2}+j_{3}=j-1} u_{j_{1}} u_{j_{2}} u_{j_{3}}
$$

Next we interpret each term in $\mathcal{A} \cdot Q$

$$
u\left[[\lambda] \cdots>\Gamma_{\cdot}(u[[\lambda]])\right.
$$

which entails that

The Algebraic Approach to SPDEs

$1^{\text {st }}$ Example: The ϕ_{d}^{3} Model

Consider on $\mathbb{R} \times \mathbb{R}^{d}$

$$
\partial_{t} u=\Delta u-\lambda u^{3}+\xi
$$

We consider $u[[\lambda]]=\sum_{j \geq 0} \lambda^{j} u_{j}$ where

$$
u_{0}=\Phi, u_{1}=-P_{\chi} \star_{s} \Phi^{3}, \ldots u_{j}=-P_{\chi} \star \sum_{j_{1}+j_{2}+j_{3}=j-1} u_{j_{1}} u_{j_{2}} u_{j_{3}}
$$

Next we interpret each term in $\mathcal{A} \cdot Q$

$$
u[[\lambda]] \mapsto \Gamma_{\cdot Q}(u[[\lambda]])
$$

which entails that

$$
\mathbb{E}(u[[\lambda]](f))=\sum_{j \geq 0} \lambda^{j} \Gamma \cdot Q\left(u_{j}\right)(f ; 0) .
$$

The Algebraic Approach to SPDEs

First order of ϕ_{d}^{3} Model

At first order in perturbation theory

$$
u[[\lambda]]=\Phi-\lambda P_{\chi} \star_{s} \Phi^{3}+O\left(\lambda^{2}\right)
$$

from which it descends

$$
\Gamma_{\cdot Q}(u[[\lambda]])(f ; \varphi)=\Phi(f ; \varphi)-\lambda P_{\chi} \star s\left(\Phi^{3}+3 C \Phi\right)(f ; \varphi)+O\left(\lambda^{2}\right),
$$

where $C \in \mathcal{E}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Hence evaluating at $\varphi=0$

$$
\mathbb{E}(u[[\lambda]])=O^{\prime}\left(\lambda^{2}\right)
$$

What about the two-point correlation function?

The Algebraic Approach to SPDEs

First order of ϕ_{d}^{3} Model

At first order in perturbation theory

$$
u[[\lambda]]=\Phi-\lambda P_{\chi} \star s \Phi^{3}+O\left(\lambda^{2}\right)
$$

from which it descends

$$
\Gamma_{\cdot}(u[[\lambda]])(f ; \varphi)=\Phi(f ; \varphi)-\lambda P_{\chi} \star s\left(\Phi^{3}+3 C \Phi\right)(f ; \varphi)+O\left(\lambda^{2}\right)
$$

where $C \in \mathcal{E}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Hence evaluating at $\varphi=0$

$$
\mathbb{E}(u[[\lambda]])=O\left(\lambda^{2}\right)
$$

What about the two-point correlation function?

The Algebraic Approach to SPDEs

First order of ϕ_{d}^{3} Model

At first order in perturbation theory

$$
u[[\lambda]]=\Phi-\lambda P_{\chi} \star s \Phi^{3}+O\left(\lambda^{2}\right)
$$

from which it descends

$$
\Gamma_{\cdot}(u[[\lambda]])(f ; \varphi)=\Phi(f ; \varphi)-\lambda P_{\chi} \star s\left(\Phi^{3}+3 C \Phi\right)(f ; \varphi)+O\left(\lambda^{2}\right)
$$

where $C \in \mathcal{E}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Hence evaluating at $\varphi=0$

$$
\mathbb{E}(u[[\lambda]])=O\left(\lambda^{2}\right)
$$

What about the two-point correlation function?

Correlation function at first order

Our approach tells that

$$
\omega_{2}\left(f_{1} \otimes f_{2} ; \varphi\right)=\left(\Gamma_{\cdot Q}(u[[\lambda]]) \bullet \Gamma_{\bullet} \Gamma_{\cdot Q}(u[[\lambda]])\right)\left(f_{1} \otimes f_{2} ; \varphi\right) .
$$

At first order in perturbation theory
$\Gamma_{\bullet Q}\left(\Gamma_{\cdot Q}(\Phi) \otimes \Gamma_{\cdot Q}\left(P_{\chi} \star_{s} \phi^{3}\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)=$
$=\left(\Phi \otimes\left(P_{\chi} \star_{s}\left(\Phi^{3}+3 C \Phi\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)+Q \cdot\left(1 \otimes 3 P_{\chi} \star_{s}\left(\Phi^{2}+C 1\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)\right.$
Evaluating once more at $\varphi=0$

$$
\mathbb{E}(\widehat{u}[[\lambda]] \otimes \widehat{u}[[\lambda]])\left(f_{1} \otimes f_{2}\right)=\omega_{2}\left(f_{1} \otimes f_{2} ; 0\right)=
$$

- We can also construct the renormalized equation obeyed by $\Gamma_{\cdot Q}(u)$.

Correlation function at first order

Our approach tells that

$$
\omega_{2}\left(f_{1} \otimes f_{2} ; \varphi\right)=\left(\Gamma_{\cdot Q}(u[[\lambda]]) \bullet \Gamma_{\bullet} \Gamma_{\cdot Q}(u[[\lambda]])\right)\left(f_{1} \otimes f_{2} ; \varphi\right) .
$$

At first order in perturbation theory

$$
\begin{gathered}
\Gamma_{\bullet Q}\left(\Gamma_{\cdot Q}(\Phi) \otimes \Gamma_{\cdot Q}\left(P_{\chi} \star_{s} \Phi^{3}\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)= \\
=\left(\Phi \otimes\left(P_{\chi} \star_{s}\left(\Phi^{3}+3 C \Phi\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)+Q \cdot\left(1 \otimes 3 P_{\chi} \star_{s}\left(\Phi^{2}+C 1\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)\right.
\end{gathered}
$$

Evaluating once more at $\varphi=0$

$$
\mathbb{E}(\widehat{u}[[\lambda]] \otimes \widehat{u}[[\lambda]])\left(f_{1} \otimes f_{2}\right)=\omega_{2}\left(f_{1} \otimes f_{2} ; 0\right)=
$$

- We can also construct the renormalized equation obeyed by $\Gamma_{\cdot Q}(u)$.

Correlation function at first order

Our approach tells that

$$
\omega_{2}\left(f_{1} \otimes f_{2} ; \varphi\right)=\left(\Gamma_{\cdot Q}(u[[\lambda]]) \bullet \Gamma_{\bullet} \Gamma_{\cdot Q}(u[[\lambda]])\right)\left(f_{1} \otimes f_{2} ; \varphi\right) .
$$

At first order in perturbation theory

$$
\begin{gathered}
\Gamma_{\bullet Q}\left(\Gamma_{\cdot Q}(\Phi) \otimes \Gamma_{\cdot Q}\left(P_{\chi} \star_{s} \Phi^{3}\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)= \\
=\left(\Phi \otimes\left(P_{\chi} \star_{s}\left(\Phi^{3}+3 C \Phi\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)+Q \cdot\left(1 \otimes 3 P_{\chi} \star_{s}\left(\Phi^{2}+C 1\right)\right)\left(f_{1} \otimes f_{2} ; \varphi\right)\right.
\end{gathered}
$$

Evaluating once more at $\varphi=0$

$$
\begin{gathered}
\mathbb{E}(\widehat{u}[[\lambda]] \otimes \widehat{u}[[\lambda]])\left(f_{1} \otimes f_{2}\right)=\omega_{2}\left(f_{1} \otimes f_{2} ; 0\right)= \\
Q\left(f_{1} \otimes f_{2}\right)+3 \lambda Q \cdot\left(1 \otimes\left(P_{\chi} \star_{s} C\right)\right)\left(f_{1} \otimes f_{2}\right)+O\left(\lambda^{2}\right)
\end{gathered}
$$

- We can also construct the renormalized equation obeyed by $\Gamma_{\cdot}(u)$.

The Stochastic Sine-Gordon model ${ }^{1}$

On $\left(\mathbb{R}^{2}, \eta\right)$

$$
\left(\square_{\eta}+m^{2}\right) u+\lambda g a \sin (a u)=\xi, \quad a^{2}<\frac{4 \pi}{\hbar}, \text { and } g \in \mathcal{D}\left(\mathbb{R}^{2}\right)
$$

Main Data:

$$
\begin{aligned}
& u \equiv u[[\lambda]]=\sum_{n=0}^{\infty} \lambda^{n} u_{n} \Longrightarrow u_{0}=G_{r e t} \star s \xi \\
& \quad Q=G_{r e t} \circ_{\chi} G_{a d v} \in C^{0}\left(\mathbb{R}^{2} ;[0, \infty)\right) \Longrightarrow Q(x, x) \in C^{\infty}(\mathbb{R} ;[0, \infty))
\end{aligned}
$$

- for $\xi=0$ we have the sine-Gordon model (see Bahns, \& Rejzner $2018+$ Pinamonti 2023)
${ }^{1}$ A. Bonicelli, C.D. and P. Rinaldi, arXiv:2311.01558 [math-ph]

The Sine-Gordon model in AQFT

For any $G \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2} ;\right.$ Fun $\left._{\text {loc }}\right)$ the quantum counterpart is

$$
R_{V}(G)=\left[S(\lambda V)^{\star \hbar \omega}\right]^{-1} \star_{\hbar \omega}\left(S(\lambda V) \star_{\hbar \Delta_{F}} G\right)
$$

where

- $V=\cos (a u)$,
- ω is a Hadamard two-point correlation function,
- $\Delta_{F}=\omega+i G_{\text {ret }}$ and $S(\lambda V)=\exp _{\star_{\hbar \Delta_{F}}}\left(\frac{i}{\hbar} \lambda V\right)$.

In particular if we set $G=u_{f}, f \in \mathcal{D}\left(\mathbb{R}^{2}\right)$ we have the interacting field
The series $R_{V}\left[u_{f}\right]$ is convergent - [Bahns \& Rejzner 2018]

The stochastic Sine-Gordon model from AQFT

We prove the following two key results:

Theorem

The series $\Gamma_{Q}\left[R_{\lambda V}[u](f, \varphi)\right]$ is absolutely convergent for all $(f, \varphi) \in \mathcal{D}\left(\mathbb{R}^{2}\right) \times$ $C^{\infty}\left(\mathbb{R}^{2}\right)$.

Theorem

The limit

$$
\lim _{\hbar \rightarrow 0^{+}} \Gamma_{Q}\left[R_{\lambda V}[u](f, \varphi)\right]
$$

exists and it converges to a solution of the stochastic sine-Gordon equation.

The Algebraic Approach to SPDEs

Outlook

We have

- Constructed a new framework to analyze perturbatively SPDEs
- extended it to cover the stochastic nonlinear Schrödinger equation
- connected the microlocal world and the germs of distributions

[^0]
The Algebraic Approach to SPDEs

Outlook

We have

- Constructed a new framework to analyze perturbatively SPDEs
- extended it to cover the stochastic nonlinear Schrödinger equation
- connected the microlocal world and the germs of distributions

[^1]
Outlook

We have

- Constructed a new framework to analyze perturbatively SPDEs
- extended it to cover the stochastic nonlinear Schrödinger equation
- connected the microlocal world and the germs of distributions ${ }^{2}$
${ }^{2}$ F. Caravenna and L. Zambotti - EMS Surv. Math. Sci. 7 (2020), 207
P. Rinaldi and F. Sclavi - J. Math. Anal. \& Appl. 501 (2021), 125215 C.D., P. Rinaldi \& F. Sclavi - ArXiv:2104.12423v3, Manus. Math. (2023) C.D., P. Rinaldi \& F. Sclavi - Anal. Math. Phys. 13, (2023), 95

The Algebraic Approach to SPDEs

What's Next

- Connect our framework to Hairer's regularity structures and to Gubinelli's paracontrolled calculus,
- Extend our framework to cover the stochastic wave equation,
- Explore Coleman's correspondence between the stochastic GN and the Sine-Gordon models,
- Tackle the problem of convergence of the perturbative series,

The Algebraic Approach to SPDEs

Trivia on random distributions - I

NOTATION: Given $z=(t, x) \in \mathbb{R}^{1+d}, \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$

$$
\varphi_{z}^{\lambda}(s, y)=\lambda^{-d-2} \varphi\left(\lambda^{-2}(s-t), \lambda^{-1}(y-x)\right), \quad \lambda \in(0,1) .
$$

Definition (Negative Hölder Spaces)
Let $\eta \in \mathcal{S}^{\prime}\left(\mathbb{R}^{1+d}\right)$ and let $\alpha<0$. We say $\eta \in \mathcal{C}^{\alpha}$ if

$$
\left|\eta\left(\varphi_{z}^{\lambda}\right)\right| \lesssim \lambda^{\alpha}, \quad \text { for } \quad \lambda \in(0,1], \quad \varphi \in \mathcal{B}_{\alpha}
$$

locally uniformly for $z \in \mathbb{R}^{1+d}$, with

$$
B_{a} \doteq\left\{\varphi \in C_{c}^{\infty}\left(B^{\prime}(0,1)\right) \mid\|\varphi\|_{c-\lfloor a\rfloor} \leq 1\right\}
$$

Trivia on random distributions - I

NOTATION: Given $z=(t, x) \in \mathbb{R}^{1+d}, \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$

$$
\varphi_{z}^{\lambda}(s, y)=\lambda^{-d-2} \varphi\left(\lambda^{-2}(s-t), \lambda^{-1}(y-x)\right), \quad \lambda \in(0,1) .
$$

Definition (Negative Hölder Spaces)

Let $\eta \in \mathcal{S}^{\prime}\left(\mathbb{R}^{1+d}\right)$ and let $\alpha<0$. We say $\eta \in \mathcal{C}^{\alpha}$ if

$$
\left|\eta\left(\varphi_{z}^{\lambda}\right)\right| \lesssim \lambda^{\alpha}, \quad \text { for } \quad \lambda \in(0,1], \quad \varphi \in \mathcal{B}_{\alpha}
$$

locally uniformly for $z \in \mathbb{R}^{1+d}$, with

$$
\mathcal{B}_{\alpha} \doteq\left\{\varphi \in C_{\mathrm{c}}^{\infty}(B(0,1)) \mid\|\varphi\|_{C-\lfloor\alpha\rfloor} \leq 1\right\}
$$

Trivia on random distributions - II

Definition (Random Distribution)

Let (Ω, \mathbf{P}) be a probability space. A random distribution η is linear a map $\varphi \mapsto \eta(\varphi)$ from $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$ to $L^{2}(\Omega, \mathbf{P})$.
Given a distribution $C \in \mathcal{D}^{\prime}$, we say that η has covariance C if

```
Definition (White Noise)
Space-Time White Noise is the Gaussian random distribution on \mathbb{R}}\mp@subsup{}{1+d}{\mathrm{ with}
covariance given by the delta distribution \delta, i.e., }\xi(\varphi)\mathrm{ is centred Gaussian
for every
```


Trivia on random distributions - II

Definition (Random Distribution)

Let (Ω, \mathbf{P}) be a probability space. A random distribution η is linear a map $\varphi \mapsto \eta(\varphi)$ from $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$ to $L^{2}(\Omega, \mathbf{P})$.
Given a distribution $C \in \mathcal{D}^{\prime}$, we say that η has covariance C if

$$
\mathbb{E}[\eta(\varphi) \eta(\psi)]=(C * \varphi, \psi)_{L^{2}}
$$

```
Definition (White Noise)
Snace-Time White Noise is the Gaussian random distribution on \mp@subsup{\mathbb{R}}{}{1+d}\mathrm{ with}
covariance given by the delta distribution }\delta,\mathrm{ i.e., }\xi(\varphi)\mathrm{ is centred Gaussian
for every }\varphi\in\mp@subsup{C}{\textrm{c}}{\infty}(\mp@subsup{\mathbb{R}}{}{1+d})\mathrm{ and }\mathbb{E}[\xi(\varphi)\xi(\psi)]=(\varphi,\psi)\mp@subsup{)}{\mp@subsup{L}{}{2}}{
```


Trivia on random distributions - II

Definition (Random Distribution)

Let (Ω, \mathbf{P}) be a probability space. A random distribution η is linear a map $\varphi \mapsto \eta(\varphi)$ from $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$ to $L^{2}(\Omega, \mathbf{P})$.
Given a distribution $C \in \mathcal{D}^{\prime}$, we say that η has covariance C if

$$
\mathbb{E}[\eta(\varphi) \eta(\psi)]=(C * \varphi, \psi)_{L^{2}}
$$

Definition (White Noise)

Space-Time White Noise is the Gaussian random distribution on \mathbb{R}^{1+d} with covariance given by the delta distribution δ, i.e., $\xi(\varphi)$ is centred Gaussian for every $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$ and $\mathbb{E}[\xi(\varphi) \xi(\psi)]=(\varphi, \psi)_{L^{2}}$.

The Algebraic Approach to SPDEs

Trivia on random distributions - III

Theorem

Let η be a random distribution. If, for $\alpha<0$

$$
\mathbb{E}\left|\eta\left(\varphi_{z}^{\lambda}\right)\right|^{2} \lesssim \lambda^{2 \alpha},
$$

holds uniformly over $\lambda \in(0,1)$ and $\varphi \in \mathcal{B}_{\alpha}$, then, for any $\kappa>0$, there exists a $\mathcal{C}^{\alpha-\kappa}$-valued random variable $\tilde{\eta}$ which is a version of η.
$\tilde{\eta}$ is a version of η if $\forall \varphi \in C_{\mathrm{c}}^{\infty}, \tilde{\eta}(\varphi)=\eta(\varphi)$ almost surely.

The Algebraic Approach to SPDEs

Trivia on random distributions - III

Theorem

Let η be a random distribution. If, for $\alpha<0$

$$
\mathbb{E}\left|\eta\left(\varphi_{z}^{\lambda}\right)\right|^{2} \lesssim \lambda^{2 \alpha},
$$

holds uniformly over $\lambda \in(0,1)$ and $\varphi \in \mathcal{B}_{\alpha}$, then, for any $\kappa>0$, there exists a $\mathcal{C}^{\alpha-\kappa}$-valued random variable $\tilde{\eta}$ which is a version of η.
$\tilde{\eta}$ is a version of η if $\forall \varphi \in C_{\mathrm{c}}^{\infty}, \tilde{\eta}(\varphi)=\eta(\varphi)$ almost surely.

WHITE NOISE on \mathbb{R}^{1+d} is a random variable in $\mathcal{C}^{-\frac{d}{2}-1-\kappa}$ for any $\kappa>0$.

The Algebraic Approach to SPDEs

Trivia on random distributions - I

NOTATION: Given $z=(t, x) \in \mathbb{R}^{1+d}, \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$

$$
\varphi_{z}^{\lambda}(s, y)=\lambda^{-d-2} \varphi\left(\lambda^{-2}(s-t), \lambda^{-1}(y-x)\right), \quad \lambda \in(0,1) .
$$

Definition (Negative Hölder Spaces)
Let $\eta \in \mathcal{S}^{\prime}\left(\mathbb{R}^{1+d}\right)$ and let $\alpha<0$. We say $\eta \in \mathcal{C}^{\alpha}$ if

$$
\left|\eta\left(\varphi_{z}^{\lambda}\right)\right| \lesssim \lambda^{\alpha}, \quad \text { for } \quad \lambda \in(0,1], \quad \varphi \in \mathcal{B}_{\alpha}
$$

locally uniformly for $z \in \mathbb{R}^{1+d}$, with

$$
B_{a} \doteq\left\{\varphi \in C_{c}^{\infty}\left(B^{\prime}(0,1)\right) \mid\|\varphi\|_{c-\lfloor a\rfloor} \leq 1\right\}
$$

Trivia on random distributions - I

NOTATION: Given $z=(t, x) \in \mathbb{R}^{1+d}, \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{1+d}\right)$

$$
\varphi_{z}^{\lambda}(s, y)=\lambda^{-d-2} \varphi\left(\lambda^{-2}(s-t), \lambda^{-1}(y-x)\right), \quad \lambda \in(0,1) .
$$

Definition (Negative Hölder Spaces)

Let $\eta \in \mathcal{S}^{\prime}\left(\mathbb{R}^{1+d}\right)$ and let $\alpha<0$. We say $\eta \in \mathcal{C}^{\alpha}$ if

$$
\left|\eta\left(\varphi_{z}^{\lambda}\right)\right| \lesssim \lambda^{\alpha}, \quad \text { for } \quad \lambda \in(0,1], \quad \varphi \in \mathcal{B}_{\alpha}
$$

locally uniformly for $z \in \mathbb{R}^{1+d}$, with

$$
\mathcal{B}_{\alpha} \doteq\left\{\varphi \in C_{\mathrm{c}}^{\infty}(B(0,1)) \mid\|\varphi\|_{C-\lfloor\alpha\rfloor} \leq 1\right\}
$$

[^0]: F. Caravenna and L. Zambotti - EMS Surv. Math. Sci. 7 (2020), 207 P. Rinaldi and F. Sclavi - J. Math. Anal. \& Appl. 501 (2021), 125215
 C.D., P. Rinaldi \& F. Sclavi - ArXiv:2104.12423v3, Manus. Math. (2023)
 C.D., P. Rinaldi \& F. Sclavi - Anal. Math. Phys. 13, (2023), 95

[^1]: 2F. Caravenna and L. Zambotit - EMS Surv. Math. Sci. 7 (2020), 207 P. Rinaldi and F. Sclavi - J. Math. Anal. \& Appl. 501 (2021), 125215
 C.D., P. Rinaldi \& F. Sclavi - ArXiv:2104.12423v3, Manus. Math. (2023)
 C.D., P. Rinaldi \& F. Sclavi - Anal. Math. Phys. 13, (2023), 95

