Bounds for the local entropy

Roberto Longo
University of Rome Tor Vergata

Conference on Curved spacetimes, field theory and beyond
April 2024 - IHP, Paris

Tomita-Takesaki modular theory

\mathcal{M} a von Neumann algebra on $\mathcal{H}, \varphi=(\Omega, \cdot \Omega)$ normal faithful state on \mathcal{M}. Embed \mathcal{M} into \mathcal{H}

$$
S_{0}: X \Omega \mapsto X^{*} \Omega, \quad X \in \mathcal{M}
$$

$S_{\mathcal{M}}=\bar{S}_{0}=J_{\mathcal{M}} \Delta_{\mathcal{M}}^{1 / 2}$, polar decomposition, $\Delta_{\mathcal{M}}$ and $J_{\mathcal{M}}$ modular operator and conjugation

$$
\begin{gathered}
t \in \mathbb{R} \mapsto \sigma_{t}^{\varphi} \in \operatorname{Aut}(\mathcal{M}) \\
\sigma_{t}^{\varphi}(X)=\Delta_{\mathcal{M}}^{i t} X \Delta_{\mathcal{M}}^{-i t}, \quad X \in \mathcal{M}
\end{gathered}
$$

modular automorphisms intrinsic evolution associated with φ !

$$
J_{\mathcal{M}} \mathcal{M} J_{\mathcal{M}}=\mathcal{M}^{\prime} \quad \text { on } \mathcal{H}
$$

$\log \Delta_{\mathcal{M}}$ is called the modular Hamiltonian of φ

Araki's relative entropy

An infinite quantum system is described by a von Neumann algebra \mathcal{M} typically not of type I so Tr does not exist; however Araki's relative entropy between two faithful normal states φ and ψ on \mathcal{M} is defined in general by

$$
S(\varphi \| \psi) \equiv-\left(\eta, \log \Delta_{\xi, \eta} \eta\right)
$$

where ξ, η are cyclic vector representatives of φ, ψ and $\Delta_{\xi, \eta}$ is the relative modular operator associated with ξ, η.

$$
S(\varphi \| \psi) \geq 0
$$

positivity of the relative entropy
\mathcal{H} complex Hilbert space and $H \subset \mathcal{H}$ a closed, real linear subspace.
Symplectic complement:

$$
H^{\prime}=\{\xi \in \mathcal{H}: \Im(\xi, \eta)=0 \forall \eta \in H\}
$$

H is a standard subspace if it is \mathcal{H} cyclic if $\overline{H+i H}=\mathcal{H}$ and separating $H \cap i H=\{0\}$
H standard subspace \rightarrow anti-linear operator S_{H}

$$
\begin{gathered}
S_{H}: \xi+i \eta \rightarrow \xi-i \eta, \xi, \eta \in H \\
S_{H}^{2}=\left.1\right|_{D\left(S_{H}\right)}, D\left(S_{H}\right)=H+i H . S_{H} \text { is closed, densely defined, } \\
S_{H}^{*}=S_{H^{\prime}}
\end{gathered}
$$

Modular theory for standard subspaces

Conversely, S densely defined, closed, anti-linear involution on $\mathcal{H} \rightarrow H_{S}=\{\xi \in D(S): S \xi=\xi\}$ is a standard subspace:

$$
H \leftrightarrow S \text { is a bijection }
$$

Set $S_{H}=J_{H} \Delta_{H}^{1 / 2}$, polar decomposition. Then J_{H} is an anti-unitary involution, $\Delta_{H}>0$ is non-singular called the modular conjugation and the modular operator; they satisfy $J_{H} \Delta_{H} J_{H}=\Delta_{H}^{-1}$ and

$$
H \leftrightarrow(J, \Delta) \text { is a bijection. }
$$

Main relations:

$$
\Delta_{H}^{i t} H=H, \quad J_{H} H=H^{\prime}
$$

Every closed, real linear H is

$$
\text { standard } \oplus(0 \subset \mathcal{H}) \oplus(\mathcal{H} \subset \mathcal{H})
$$

Examples

Example 1: \mathcal{M} von Neumann algebra on \mathcal{H}, Ω cyclic separating vector

$$
H=\overline{\mathcal{M}_{\text {s.a. }} \Omega} \text { is a standard subspace of } \mathcal{H}
$$

$$
\Delta_{H}=\Delta_{\mathcal{M}}, \quad J_{H}=J_{\mathcal{M}}
$$

Example 2: \mathcal{H} (one-particle) Hilbert space, $H \subset \mathcal{H}$ real Hilbert space (of vectors localized in a region O)

$$
\Gamma\left(\Delta_{H}\right)=\Delta_{\mathcal{A}(H)} \quad \Gamma\left(J_{H}\right)=J_{\mathcal{A}(H)}
$$

$\mathcal{A}(H)$ von Neumann algebra on the Fock space $e^{\mathcal{H}}$

$$
\mathcal{A}(H)=\{V(\xi): \xi \in H\}^{\prime \prime}
$$

$V(\xi)$ Weyl unitary
$\log \Delta_{H}$ is characterised by complete passivity, following Pusz and Woronowicz in the von Neumann algebra case
\mathcal{H} a complex Hilbert space, $H \subset \mathcal{H}$ a standard subspace and A a selfadjoint linear operator on \mathcal{H} such that $e^{i s A} H=H, s \in \mathbb{R}$.
A is passive with respect to H if

$$
-(\xi, A \xi) \geq 0, \quad \xi \in D(A) \cap H
$$

A is completely passive w.r.t. H if the generator of $e^{i t A} \otimes e^{i t A} \cdots \otimes e^{i t A}$ is passive with respect to the n-fold tensor product $H \otimes H \otimes \cdots \otimes H$, all $n \in \mathbb{N}$.
A is completely passive with respect to H iff $\log \Delta_{H}=\lambda A$ for some $\lambda \geq 0$. positivity of energy $\rightsquigarrow>$ comp. passivity of modular Hamiltonian (equivalence in principle)

Entropy of a vector relative to a real linear subspace

Let \mathcal{H} be a complex Hilbert space and $H \subset \mathcal{H}$ a standard subspace The entropy of a vector $h \in \mathcal{H}$ with respect to $H \subset \mathcal{H}$ is defined by

$$
S(h \| H)=-\Im\left(h, P_{H} i \log \Delta_{H} h\right)=\Re\left(h, i P_{H} i \log \Delta_{H} h\right)
$$

(in a quadratic form sense), where P_{H} is the cutting projection; if H is factorial

$$
P_{H}: H+H^{\prime} \rightarrow H, \quad h+h^{\prime} \mapsto h
$$

We have $P_{H}^{*}=-i P_{H} i$ and the formula

$$
\begin{aligned}
& P_{H}=\left(1+S_{H}\right)\left(1-\Delta_{H}\right)^{-1} \\
&=\left(1-\Delta_{H}\right)^{-1}+J_{H} \Delta_{H}^{1 / 2}\left(1-\Delta_{H}\right)^{-1} ;
\end{aligned}
$$

(P_{H} is the closure of the right-hand side).
In QFT, the cutting projection P_{H} is geometric,

Some of the main properties of the entropy of a vector are:

- $S(h \| H) \geq 0$ or $S(h \| H)=+\infty$ positivity
- If $K \subset H$, then $S(h \| K) \leq S(h \| H)$ monotonicity
- If $h_{n} \rightarrow h$, then $S(h \| H) \leq \liminf _{n} S\left(h_{n} \mid H\right)$ lower semicontinuity
- If $H_{n} \subset H$ is an increasing sequence with $\overline{\bigcup_{n} H_{n}}=H$, then $S\left(h \| H_{n}\right) \nearrow S(h \| H)$ monotone continuity
- If $h \in D\left(\log \Delta_{H}\right)$ then $S(h \| H)<\infty$ finiteness on smooth vectors
- $S(h \| H)=S(k \| H)$ if $k-h \in H^{\prime}$ locality

By locality, we may talk of the entropy of a class of vectors

Entropy of coherent sectors

Given $\xi \in \mathcal{H}$ consider coherent state φ_{ξ} on Weyl von Neumann algebra $\mathcal{A}(H)$ on the Bose Fock space $e^{\mathcal{H}}$:

The vacuum relative entropy of φ_{ξ} on $\mathcal{A}(H)$ is given by

Ω vacuum vector, $\varphi_{\xi}=(V(\xi) \Omega, \cdot V(\xi) \Omega), V(\xi)$ Weyl unitary
Fermi case (Galanda, Much, Verch): Similar formula for $\varphi_{\xi}=(\Phi(\xi) \Omega, \cdot \Phi(\xi) \Omega), \Phi(\xi)$ selfadjoint (unitary) Fermi free field

Entropy operator

The entropy operator \mathcal{E}_{H} is defined by

$$
\mathcal{E}_{H}=A\left(\Delta_{H}\right)+J_{H} B\left(\Delta_{H}\right),
$$

$A(\lambda) \equiv-a(\lambda) \log \lambda, B(\lambda) \equiv b(\lambda) \log \lambda$
In the factorial case

$$
\mathcal{E}_{H}=i P_{H} i \log \Delta_{H}
$$

(closure of the right-hand side). We have

$$
S(h \| H)=\Re\left(h, \mathcal{E}_{H} h\right), \quad k \in \mathcal{H} .
$$

real quadratic form sense.
The entropy operator \mathcal{E}_{H} is real linear, positive, and selfadjoint w.r.t. to the real part of the scalar product.

First quantisation: map

$$
O \subset \mathbb{R}^{d} \mapsto H(O) \text { real linear space of } \mathcal{H}
$$

local, covariant, etc.
Second quantisation: map

$$
O \subset \mathbb{R}^{d} \mapsto \mathcal{A}(O) \text { v.N. algebra on } e^{\mathcal{H}}
$$

$\mathcal{A}(O)=\mathcal{A}(H(O))$
In our case $H(O)$ is generated by the waves with Cauchy data in B
(O double cone with time-zero basis B)

Wave packets

By a Klein-Gordon wave (or wave packet), we mean a real solution of the wave equation

$$
\left(\square+m^{2}\right) \Phi=0,
$$

with compactly supported, smooth Cauchy data $\left.\Phi\right|_{x^{0}=0},\left.\Phi^{\prime}\right|_{x^{0}=0}$.
Classical field theory describes Φ by the stress-energy tensor $T_{\mu \nu}$, that provides the energy-momentum density of Φ at any time.

But, how to define the information, or entropy, carried by Φ in a given region at a given time?

Rindler spacetime (wedge $W=\left\{x_{1}>|t|\right\}$), vacuum modular group

a : uniform acceleration of O
s / a : proper time of O
$\beta=2 \pi / a$: inverse KMS temperature of O
Hawking-Unruh effect!

Let Φ be a real Klein-Gordon wave and $H=H(W)$.
The entropy $S_{\Phi}(\lambda)$ of Φ w.r.t. the wedge region W_{λ} is the entropy of the vector Φ w.r.t. the standard subspace $H\left(W_{\lambda}\right)$.

$$
S_{\Phi}(\lambda)=2 \pi \int_{x^{0}=\lambda, x^{1} \geq \lambda}\left(x^{1}-\lambda\right) T_{00}(x) d x
$$

then

$$
S_{\Phi}^{\prime \prime}(\lambda)=2 \pi \int_{x^{0}=\lambda, x^{1}=\lambda}\langle v, T v\rangle d x \geq 0
$$

where v is the light-like vector $v=(1,1,0 \ldots, 0)$.
Here the energy density is $T_{00}=\frac{1}{2}\left(\Phi^{\prime 2}+|\nabla \Phi|^{2}+m^{2} \Phi^{2}\right)$
The second derivative of $S_{\Phi}^{\prime \prime}(\lambda)$ gives the QNEC inequality for coherent states and constant null translations

$$
S_{\Phi}^{\prime \prime}(\lambda) \geq 0
$$

(F. Ciolli, G. Ruzzi, R. L.)

Borchers' theome one-article analogue

Let $H \subset \mathcal{H}$ be a standard subspace and $T(t)=e^{i A t}$ a one-parameter unitary group on \mathcal{H} such that

- $A \geq 0$
- $T(t) H \subset H, t \geq 0$

Then

$$
\Delta_{H}^{i s} T(t) \Delta_{H}^{-i s}=T\left(e^{-2 \pi s)} t\right), J_{H} T(t) J_{H}=T(-t)
$$

$T(t)$ and $\Delta_{H}^{i s}$ generates a 2-dimensional Lie group!

Abstract result

Let $H \subset \mathcal{H}$ be a standard subspace and $T(t)=e^{i A t}$ a one-parameter unitary group on \mathcal{H} such that

- $A \geq 0$
- $T(t) H \subset H, t \geq 0$

Define $H_{\lambda}=T(\lambda) H, \lambda \in \mathbb{R}$, translated subspaces. Then the entropy function

$$
\lambda \mapsto S(\lambda)=S\left(\psi \| H_{\lambda}\right) \text { is convex for all } \psi
$$

and finite for a dense set of vectors. If $S\left(\lambda_{0}\right)<\infty$, then
(i) $S(\lambda)$ is finite and C^{1} on $\left[\lambda_{0}, \infty\right)$;
(ii) $S^{\prime}(\lambda)$ is absolutely continuous in $\left[\lambda_{0}, \infty\right)$ with almost everywhere non-negative derivative $S^{\prime \prime}(\lambda) \geq 0$.

Entropy of localised states: $U(1)$-current model

One-dimensional case.
$U(1)$-current $j: \ell$ real function in $S(\mathbb{R}), L(x) \equiv \int_{-x}^{\infty} \ell(t) d t$.

$$
S(\lambda) \equiv S(L \| H(\lambda, \infty))=\pi \int_{\lambda}^{+\infty}(x-\lambda) \ell^{2}(x) \mathrm{d} x
$$

$S(\lambda)$ vacuum relative entropy of excited state by $j \mapsto j+\ell$ (BMT sector with charge $q=\int \ell$)

$$
\begin{gathered}
S^{\prime}(\lambda)=-\pi \int_{\lambda}^{+\infty} \ell^{2}(x) \mathrm{d} x \leq 0 \\
S^{\prime \prime}(\lambda)=\pi \ell^{2}(\lambda) \geq 0
\end{gathered}
$$

positivity of $S^{\prime \prime}$
L is not a vector in the Hilbert space, L but gives a class vectors: $\left\{f \in S\left(\mathbb{R}^{d}\right):\left.f\right|_{[\lambda, \infty)}=\left.L\right|_{[\lambda, \infty)}\right\}$

Entropy and Klein-Gordon field on a globally hyperbolic

 spacetime

Figure: Schwarzschild-Kruskal spacetime. The red area is a null translated wedge

The convexity of the entropy w.r.t. to the null translation parameter holds for a Klein-Gordon field on a globally hyperbolic spacetime for coherent states (Ciolli, Ranallo, Ruzzi, L.) (cf. also R.L. and Holland, Ishibashi in untranslated case)

Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space ball B), in the conformal case the modular group is given by the geometric transformation (Hislop, L. '81)

local modular trajectories

$$
(u, v) \mapsto((Z(u, s), Z(v, s))
$$

$Z(z, s)=\frac{(1+z)+e^{-s}(1-z)}{(1+z)-e^{-s}(1-z)}$
$u=x_{0}+r, \quad v=x_{0}-r, \quad r=|\mathbf{x}| \equiv \sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$

The modular Hamiltonian $\log \Delta_{B}$ associated with the unit ball B in the free scalar, massless QFT is (on Cauchy data)

$$
-2 \pi A=\log \Delta_{B}
$$

$$
\log \Delta_{B}=2 \pi \imath_{0}\left[\begin{array}{cc}
0 & \frac{1}{2}\left(1-r^{2}\right) \\
\frac{1}{2}\left(1-r^{2}\right) \nabla^{2}-r \partial_{r}-D & 0
\end{array}\right]
$$

with L_{0} the higher dimensional Legendre operator

$$
L_{D}=\frac{1}{2}\left(1-r^{2}\right) \nabla^{2}-r \partial_{r}-D
$$

(Work with G. Morsella)

Local information in a wave packet

With $S_{\Phi}(R)$ the entropy of Φ in the radius R ball cantered at $\overline{\mathbf{x}}$, we have

$$
\begin{aligned}
S_{\Phi}(R) & =\pi \int_{B_{R}(\overline{\mathbf{x}})} \frac{R^{2}-r^{2}}{R}\left\langle T_{00}(t, \mathbf{x})\right\rangle_{\Phi} d \mathbf{x} & & \text { stress-energy tensor term } \\
& +\pi \frac{d-1}{2 R} \int_{B_{R}(\overline{\mathbf{x}})} \Phi^{2}(t, \mathbf{x}) d \mathbf{x} & & \text { Born type term } \\
\text { with } r & =|\mathbf{x}-\overline{\mathbf{x}}| & &
\end{aligned}
$$

Nets of standard subspaces

\mathcal{H} complex Hilbert space, \mathcal{O} the family of double cones of the Minkowski spacetime \mathbb{R}^{d+1}.
A local Poincaré covariant net of real linear subspaces is a map

$$
O \in \mathcal{O} \mapsto H(O) \subset \mathcal{H}
$$

with $H(O)$ real linear, closed subspace of \mathcal{H}, s.t.

- $O_{1} \subset O_{2} \Longrightarrow H\left(O_{1}\right) \subset H\left(O_{2}\right)$ (isotony);
- $O_{1} \subset O_{2}^{\prime} \Longrightarrow H\left(O_{1}\right) \subset H\left(O_{2}\right)^{\prime}$ (locality);
- \exists a unitary, positive energy representation U of $\mathcal{P}_{+}^{\uparrow}$ on \mathcal{H} s.t. $U(g) H(O)=H(g O)$ (Poincaré covariance);
- $\sum_{x \in \mathbb{R}^{d+1}} H(O+x)=\mathcal{H}$ (non-degeneracy).

Set $H(C) \equiv$ lin.span. $\{H(O): O \subset C\}$ for any region C

Reeh-Schlieder theorem: $H(C)$ is cyclic for every $C \subset \mathbb{R}^{d+1}$ with non-empty interior. Therefore, $H(C)$ is standard if both C and C^{\prime} have a non-empty interior.
Then, we may consider the modular operator and the modular conjugation

$$
\Delta_{C}=\Delta_{H(C)}, \quad J_{C}=J_{H(C)}
$$

The following property plays a crucial role:

- For every wedge region $W \subset \mathbb{R}^{d+1}$,

$$
\Delta_{W}^{-i s}=U\left(\Lambda_{W}(2 \pi s)\right), s \in \mathbb{R}
$$

(Bisognano-Wichmann property).
$\Lambda_{W}=$ boost subgroup of $\mathcal{P}_{+}^{\uparrow}$ leavings W globally invariant.

Consequences (cf. D. Guido, R.L.)

H net with the Bisognano-Wichmann property. Then:
(i) The representation U of $\mathcal{P}_{+}^{\uparrow}$ is unique;
(ii) For every wedge W,

$$
H(W)^{\prime}=H\left(W^{\prime}\right)
$$

(Wedge duality);
(iii) If U does not contain the identity representation, then $H(W)$ is factorial for every wedge W, namely $H(W) \cap H(W)^{\prime}=\{0\}$;
(iv) $\Theta \equiv J_{W} U\left(R_{W}\right)$ is independent of $W,(0 \in \partial W) ; \Theta^{2}=1$ and

$$
\Theta H(O)=H(-O) \quad \Theta U(g) \Theta=U(r g r)
$$

(PCT). Here, R_{W} is the space π-rotation preserving W and r is the spacetime reflection $r: x \mapsto-x$.
$\Longrightarrow U$ of $\mathcal{P}_{+}^{\uparrow}$ extends canonically to an anti-unitary
representation \tilde{U} of \mathcal{P}_{+}acting covariantly on H.
H a local Poincaré covariant net the Bisognano-Wichmann property. The dual net H^{d} is

$$
\begin{gathered}
H^{d}(O)=H\left(O^{\prime}\right)^{\prime}, \quad O \in \mathcal{O} \\
H^{d}(O)=\bigcap_{W \supset O} H(W), \quad W \text { wedge }
\end{gathered}
$$

By locality, $H\left(O^{\prime}\right) \subset H(O)^{\prime}$, therefore

$$
H(O) \subset H^{d}(O), \quad O \in \mathcal{O}, \quad H^{d}(W)=H(W)
$$

H^{d} is local, Poincaré covariant, with BW property and satisfies Haag duality

$$
H^{d}(O)^{\prime}=H^{d}\left(O^{\prime}\right), \quad O \in \mathcal{O}
$$

H^{d} is the maximal extension of H on \mathcal{H} that is relatively local with respect to H

Nets and algebras

\mathcal{H} complex Hilbert space, \exists a one-to-one correspondence between:
(a) Anti-unitary, positive energy, representations of \tilde{U} of \mathcal{P}_{+}on \mathcal{H} such that $U=\left.\tilde{U}\right|_{\mathcal{P}_{+}^{\uparrow}}$ does not contain infinite spin
subrepresentations;
(b) Poincaré covariant, Haag dual nets H of real linear subspaces on \mathcal{H} with the Bisognano-Wichmann property
Therefore the dual net H^{d} depends only on the anti-unitary \tilde{U} of \mathcal{P}_{+}and not on H
\mathcal{A} local, $\mathcal{P}_{+}^{\uparrow}$-cov. net of von Neumann algebras, with Haag duality

$$
\mathcal{A}(O)=\mathcal{A}\left(O^{\prime}\right)^{\prime}, \quad O \in \mathcal{O}
$$

Set

$$
H_{\mathcal{A}}(O)=\overline{\mathcal{A}(O)_{\mathrm{sa}} \Omega}, \quad O \in \mathcal{O}
$$

In general (possibly always), $H_{\mathcal{A}}$ is not a dual net, namely

$$
H_{\mathcal{A}}(O) \subsetneq H_{\mathcal{A}}^{d}(O), \quad O \in \mathcal{O}
$$

Universal bound (V. Morinelli, R. L.)

H a local, Poincaré covariant net of real linear subspaces on the complex Hilbert space \mathcal{H}, with covariance unitary representation U. Given $h \in \mathcal{H}$, we are interested in a bound for the entropy of h with respect the region $C \subset \mathbb{R}^{d+1}$ relative to H defined by

$$
S_{H}(h \| C) \equiv S(h \| H(C))
$$

Given an anti-unitary, positive energy representation V of \mathcal{P}_{+}, we then define the entropy of φ with respect to C associated with V as

$$
S_{V}(\varphi \| C) \equiv S_{K}(\varphi \| C)
$$

where K is the local net of real linear spaces associated with V
With U the covariance unitary representation of $\mathcal{P}_{+}^{\uparrow}$ of H, let \tilde{U} be the canonical extension of U to an anti-unitary rep. of \mathcal{P}_{+}. For every region $C \subset \mathbb{R}^{d+1}$ and vector $\varphi \in \mathcal{H}$, the bound

$$
S_{H}(h \| C) \leq S_{\tilde{U}}(h \| C)
$$

holds and depends only on \tilde{U}, not on H.

Möbius covariant net

Let H be a local, Möbius covariant net of closed real linear subspaces on the complex Hilbert space \mathcal{H} on \mathbb{R}. Let H^{d} be the dual net, and \tilde{U} the covariance unitary representation of Möb associated with H^{d}.
For every interval $I \in \mathcal{I}_{0}$ of the real line, the bound

$$
S_{H}(\varphi \| I) \leq S_{\tilde{U}}(\varphi \| I)
$$

holds and depends only on \tilde{U}, not on H.
\tilde{U} is quasi-equivalent to the positive energy unitary representation of Möb with lowest weight 1 .

Nets associated with the $U(1)$-current and its derivatives

$H_{(1)}$ the (one-particle) $U(1)$ current j net on \mathbb{R}

$$
\left[j\left(x_{1}\right), j\left(x_{2}\right)\right]=i \delta^{\prime}\left(x_{1}-x_{2}\right)
$$

$C_{0}^{\infty}(\mathbb{R})$ densely embeds in the Hilbert space $\mathcal{H}_{(k)}$.
$H_{(k)}$ the net on \mathbb{R} of standard subspaces associated with the k-derivative of j.
$H_{(k)}$ is the restriction to \mathbb{R} of the net on S^{1} associated with the unitary rep. of Möb with lowest weight k.

$$
H_{(k)}(I) \subset H_{(1)}(I)
$$

The dual net of $H_{(k)}$ is $H_{(1)}$

$$
H_{(k)}^{d}(I)=H_{(1)}(I)
$$

Modular hamiltonian and entropy, U(1)-case

$B=(-1,1)$. The modular Hamiltonian associated with $H^{(1)}(B)$ on $\mathcal{H}^{(1)}$ is given by

$$
\iota_{1} \log \Delta_{H^{(1)}(B)} f=\pi\left(1-x^{2}\right) f^{\prime}, f \in C_{0}^{\infty}(\mathbb{R})
$$

$C_{0}^{\infty}(\mathbb{R})$ is a core for $\log \Delta_{H^{(1)}(B)}$.
The entropy of $f \in C_{0}^{\infty}(\mathbb{R})$ w.r.t. $H^{(1)}(B)$ is

$$
S\left(f \| H^{(1)}(B)\right)=\pi \int_{B}\left(1-x^{2}\right) f^{\prime}(x)^{2} d x
$$

Modular hamiltonian and entropy, higher derivative case

Let $f \in C_{0}^{\infty}(\mathbb{R})$. Then f belongs to the domain of the modular Hamiltonian $\log \Delta_{H^{(k)}(B)}$ on $\mathcal{H}^{(k)}$ associated with $H^{(k)}(B)$ and

$$
\left(\iota_{k} \log \Delta_{H^{(k)}(B)} f\right)(x)=2 \pi(k-1) x f(x)+\pi\left(1-x^{2}\right) f^{\prime}(x)
$$

The space $C_{0}^{\infty}(\mathbb{R})$ is core for $\log \Delta_{H^{(k)}(B)}$.
The entropy of f w.r.t. $H_{(k)}(B)$ on $\mathcal{H}^{(1)}$ is given by

$$
\begin{aligned}
& S\left(f \| H_{(k)}(B)\right)=\pi \int_{B}\left(1-x^{2}\right) f^{\prime}(x)^{2} d x-\pi k(k-1) \int_{B} f(x)^{2} d x \\
& \text { if } \int_{B} x^{n} f(x) d x=0, n=0,1, \ldots, k-2
\end{aligned}
$$

Hence, the expression on the right-hand side is non-negative, and

$$
S\left(f \| H_{(k)}(B)\right) \leq S\left(f \| H_{(1)}(B)\right), k=1,2, \ldots
$$

Local entropy of a wave packet (Ciolli, Morsella, Ruzzi, R.L.)

The real linear wave's space $\mathcal{T}=\left\{\Phi:\left(\square+m^{2}\right) \Phi=0\right\}$ is given in Cauchy data

$$
\Phi \leftrightarrow\langle f, g\rangle \in S\left(\mathbb{R}^{d}\right) \times S\left(\mathbb{R}^{d}\right)
$$

- The complex structure on \mathcal{T} is then

$$
\imath_{m}=\left[\begin{array}{cc}
0 & \mu^{-1} \\
-\mu & 0
\end{array}\right], \quad \mu=\sqrt{-\nabla^{2}+m^{2}}
$$

- The scalar product on \mathcal{T} is the unique Poincaré covariant one
- Local structure: Waves with Cauchy data supported in region O (causal envelop of a space region B) form a real linear subspace $H(O) \equiv H(B)$.
- The information $S(\Phi \| O)$ carried by the wave Φ in the region O is the entropy $S(\Phi \| H(O))$ of the vector Φ w.r.t. $H(O)$

The classical stress-energy tensor gives the energy

$$
\left\langle T_{00}^{(0)}\right\rangle_{\Phi}=\frac{1}{2}\left(\left(\partial_{0} \Phi\right)^{2}+\left|\nabla_{\mathbf{x}} \Phi\right|^{2}\right)
$$

we then have

$$
-\left(\Phi, \log \Delta_{B} \Phi\right)=2 \pi \int_{x_{0}=0} \frac{1-r^{2}}{2}\left\langle T_{00}^{(0)}\right\rangle_{\Phi}(x) d x+\pi D \int_{x_{0}=0} \Phi^{2} d x
$$

Recall: the entropy of a massless wave Φ in the unit ball B is

$$
S(\Phi \| B)=2 \pi \int_{B} \frac{1-r^{2}}{2}\left\langle T_{00}^{(0)}\right\rangle_{\Phi}(x) d x+\pi D \int_{B} \Phi^{2} d x
$$

Local entropy density of a massive wave packet

- Describe the local, massive modular Hamiltonian: old problem.

$$
\log \Delta_{B}=-\pi \imath_{m}\left[\begin{array}{cc}
0 & M_{m} \\
L_{m} & 0
\end{array}\right]
$$

Bostelmann, Cadamuro, Mintz: computer numerical analysis

Figure: M_{m} as m varies

- Get rigorous bound on the local entropy in the massive case New strategy: use the new notion of entropy operator and compare with the half-space entropy

Entropy bounds. A variational problem

M_{+}the half-space $x_{1} \geq 0$ of $\mathbb{R}^{d}, m \geq 0$, then

$$
\log \Delta_{m, M_{+}}=-\pi \imath_{m}\left[\begin{array}{cc}
0 & x_{1} \\
\left.x_{1}\left[\left(\nabla^{2}-m^{2}\right)-\partial_{x_{1}}\right)\right] & 0
\end{array}\right]
$$

Problem. B a bounded region in M_{+}with regular boundary (say B a ball), and h a smooth function on ∂B of B. Set

$$
\begin{aligned}
& I_{h} \equiv \inf _{f \mid \partial B=h} \int_{B^{c} \cap M_{+}} x_{1}\left(m^{2} f^{2}+|\nabla f|^{2}\right) d x \\
& f \in S\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

- Estimate \mathfrak{I}_{h} in terms of h

A preliminary problem is the following:

- Problem 2. Is the minimum attained (within some Sobolev space)?

Assuming the answer to Problem 2 to be affirmative (I think this the case), let f_{h} minimize the functional. Then $(m=1)$

$$
x_{1}\left(f_{h}-\nabla^{2} f_{h}\right)-\partial_{x_{1}} f_{h}=0,
$$

so

$$
\Im_{h}=\frac{1}{2} \int_{\partial B} x_{1} \partial_{\mathbf{n}}\left(f_{h}^{2}\right) d S=\int_{\partial B} x_{1} h \partial_{\mathbf{n}}\left(f_{h}\right) d S
$$

(normal derivative) and the problem is to estimate this integral in terms of h.

