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Tomita-Takesaki modular theory

M a von Neumann algebra on H, ¢ = (,-Q) normal faithful
state on M. Embed M into H

So: XQ— X*Q, XeM

Sp=5 = JMAXE, polar decomposition, A s and Jpq modular
operator and conjugation

t e R of € Aut(M)
ol (X) = AL XAV, XeM
modular automorphisms intrinsic evolution associated with ¢!
IuMIpy =M onH

log A pq is called the modular Hamiltonian of ¢
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Araki's relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exist; however
Araki’s relative entropy between two faithful normal states ¢ and
1 on M is defined in general by

S(plv) = —(n,log Ay m)

where &, 7 are cyclic vector representatives of ¢, and A, is the
relative modular operator associated with &, 7.

S(¢ely) =0

positivity of the relative entropy
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Standard subspaces

‘H complex Hilbert space and H C H a closed, real linear subspace.
Symplectic complement:

H ={¢eH:3(&n)=0Vne H}

H is a standard subspace if it is H cyclic if H+ iH = H and
separating H N iH = {0}

H standard subspace — anti-linear operator Sy

5H5+”7—>f—’777 fﬂ?EH
S7 = 1lp(sy). D(SH) = H + iH. Sh is closed, densely defined,
Sty = S
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Modular theory for standard subspaces

Conversely, S densely defined, closed, anti-linear involution
on H — Hs ={£ € D(S) : S¢ = &} is a standard subspace:

H < S is a bijection

Set Sy = JHA}_,/z, polar decomposition. Then Jy is an
anti-unitary involution, Ay > 0 is non-singular called the modular
conjugation and the modular operator; they satisfy

JuAydy = AL and

H < (J,A) is a bijection.

Main relations: .
Aff,H =H, JyH=H

Every closed, real linear H is

standard ® (0 C H) ® (H C H)
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Example 1I: M von Neumann algebra on H, Q cyclic separating

vector
H = M. is a standard subspace of H

Apg=Am, Inu=Im

Example 2: H (one-particle) Hilbert space, H C H real Hilbert
space (of vectors localized in a region O)

F(AH) = Dany TUH) = Jam)

A(H) von Neumann algebra on the Fock space e

A(H) ={V(): £ € H}"

V(&) Weyl unitary
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log Ay is characterised by complete passivity, following Pusz and
Woronowicz in the von Neumann algebra case

‘H a complex Hilbert space, H C H a standard subspace and A a
selfadjoint linear operator on #H such that e**H = H, s € R.

A is passive with respect to H if
—(§,A§) >0, £eD(A)NH.

A is completely passive w.r.t. H if the generator of
e @ et ... ® e is passive with respect to the n-fold tensor
product HR H® ---® H, all n € N.

A is completely passive with respect to H iff log Ay = \A for
some A > 0.

positivity of energy «~ comp. passivity of modular Hamiltonian
(equivalence in principle)
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Entropy of a vector relative to a real linear subspace

Let H be a complex Hilbert space and H C H a standard subspace

The entropy of a vector h € H with respect to H C H is defined
by

S(h|H) = —S(h, Pyilog Ay h) = R(h, iPilog A h)

(in a quadratic form sense), where Py is the cutting projection; if
H is factorial

Py:H+H —H, h+H—h
We have P}, = —iPyi and the formula
Py=(1+Sy)(1—-Axt
— (1= Ap) AP (1 - Ap) L

(Py is the closure of the right-hand side).

In QFT, the cutting projection Py is geometric,
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Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:
e S(h|H) > 0 or S(h|H) = +oo positivity
e If K C H, then S(h|K) < S(h|H) monotonicity

@ If h, — h, then S(h|H) < liminf, S(hn|H) lower
semicontinuity

e If H, C H is an increasing sequence with | J, H, = H, then
S(h|Hn)  S(h|H) monotone continuity

o If h € D(log Ay) then S(h|H) < oo finiteness on smooth
vectors

e S(h|H) = S(k|H) if k — h € H locality

By locality, we may talk of the entropy of a class of vectors

8/36



Entropy of coherent sectors

Given £ € H consider coherent state ¢¢ on Weyl von Neumann
algebra A(H) on the Bose Fock space e’:

The vacuum relative entropy of ¢ on A(H) is given by

S(pelwo) = S(EIH)

T

Araki’s relative entropy Entropy of vector

Q vacuum vector, pe = (V(£)RQ,- V(£)Q), V(&) Weyl unitary

Fermi case (Galanda, Much, Verch): Similar formula for
e = (P(£)Q, - D(£)Q), (&) selfadjoint (unitary) Fermi free field
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Entropy operator

The entropy operator £y is defined by
En = A(AH) + JHB(AH) ,

A(N) = —a(A)log A, B(A\) = b(\) log A

In the factorial case
5,1-/ = iPHi |Og AH

(closure of the right-hand side). We have
S(h|H) = R(h,Enh), keH.

real quadratic form sense.

The entropy operator &y is real linear, positive, and selfadjoint
w.r.t. to the real part of the scalar product.
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First and second quantisation

First quantisation: map
O c RY — H(O) real linear space of

local, covariant, etc.

Second quantisation: map

O c RY — A(O) v.N. algebra on e*

In our case H(O) is generated by the waves with Cauchy data in B
(O double cone with time-zero basis B)
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By a Klein-Gordon wave (or wave packet), we mean a real solution
of the wave equation

(O+m*)d =0,

with compactly supported, smooth Cauchy data ®|0_g, ®’|,0—g.

Classical field theory describes ® by the stress-energy tensor 7,
that provides the energy-momentum density of  at any time.

But, how to define the information, or entropy, carried by ® in a
given region at a given time?
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Bisognano-Wichmann theorem ‘75

Rindler spacetime (wedge W = {x; > |t|}), vacuum modular
group

t = a~'sinh 27s, x1 = a_ ' cosh 27s

1/a X1

trajectory unif. accelerated observer O

a : uniform acceleration of O
s/a: proper time of O
B =2m/a: inverse KMS temperature of O

Hawking-Unruh effect!
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Entropy of a wave

Let ® be a real Klein-Gordon wave and H = H(W).

The entropy Se(\) of ® w.r.t. the wedge region W) is the entropy
of the vector ® w.r.t. the standard subspace H(W,).

So(N) = 27r/ (x! — ) Too(x) dx
xX0=X\, x>\
then
Se(\) = 277/ (v, Tv)dx >0,
x0=)\, x1=\

where v is the light-like vector v = (1,1,0...,0).
Here the energy density is Top = 4 (9 + [VO[? + m?$?)

The second derivative of SZ(\) gives the QNEC inequality for
coherent states and constant null translations

Se(N) >0
(F. Ciolli, G. Ruzzi, R. L.)
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Borchers' theome one-article analogue

Let H C H be a standard subspace and T(t) = e a
one-parameter unitary group on H such that
e A>0

e T(t)YHCH, t>0
Then

ART(AL® = T(e™)t) . JuT(8)In = T(~1)

T(t) and Ai,f, generates a 2-dimensional Lie group!
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Abstract result

Let H C H be a standard subspace and T(t) = e a
one-parameter unitary group on H such that
e A>0

o T()HC H, t >0
Define Hy = T(A\)H, X € R, translated subspaces. Then the
entropy function

A= S(A) = S(¥|Hy) is convex for all )

and finite for a dense set of vectors. If S(\g) < oo, then

(i) S()) is finite and C! on [Ag, 00);

(i) S’()) is absolutely continuous in [Ag, 00) with almost
everywhere non-negative derivative S”(\) > 0 .
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Entropy of localised states: U(1)-current model

One-dimensional case.
U(1)-current j: ¢ real function in S(R = [Z it

+oo
SO\ = S(LIH(A, 00)) = 7 /A (x — A)2(x)dx

S(A) vacuum relative entropy of excited state by j — j + ¢ (BMT
sector with charge g = [ /)

—+o00
S\ = —7r/ 2(x)dx <0,
A

S"(\) =7?(\) >0
positivity of S”

L is not a vector in the Hilbert space, L but gives a class vectors:
{f € S(RY) : flro0) = Llppoo)}
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Entropy and Klein—Gordon field on a globally hyperbolic
spacetime

Figure: Schwarzschild-Kruskal spacetime. The red area is a null
translated wedge

The convexity of the entropy w.r.t. to the null translation
parameter holds for a Klein—Gordon field on a globally hyperbolic
spacetime for coherent states (Ciolli, Ranallo, Ruzzi, L.) (cf. also

R.L. and Holland, Ishibashi in untranslated case)
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Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space
ball B), in the conformal case the modular group is given by the
geometric transformation (Hislop, L. ‘81)

t

local modular trajectories

0 X1
(u,v) — ((Z(u,s), Z(v,s))
_ (42)+e*(1-2)
2(z,5) = (L=
u=xp+r, v=xg—r, r=I[x= X12+~-+x§
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The local entropy of a massless wave

The modular Hamiltonian log Apg associated with the unit ball B
in the free scalar, massless QFT is (on Cauchy data)

—2rA=logAp.

B 0 %(1 —r?)
0EAE =20 |11 232 5 D 0
with Lo the higher dimensional Legendre operator

1
Lp=5(1- r’)V? —rd, — D

(Work with G. Morsella)
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Local information in a wave packet

With So(R) the entropy of @ in the radius R ball cantered at X,
we have

R2 2
So(R) = 77/ ! (Too(t,x))wdx stress-energy tensor term
Bex) R

d—1

TR

/ 2(t,x)dx Born type term
Br(x)

with r = |x — X|
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Nets of standard subspaces

‘H complex Hilbert space, O the family of double cones of the
Minkowski spacetime RI*1,
A local Poincaré covariant net of real linear subspaces is a map

0O~ HO)CH,
with H(O) real linear, closed subspace of H, s.t.
e 01 C 0O, —= H(Ol) - H(Oz) (isotony);
e 01 C 0 = H(01) C H(O2) (locality);

@ I a unitary, positive energy representation U of PI on H s.t.
U(g)H(O) = H(gO) (Poincaré covariance);

® > crdr1 H(O + x) = H (non-degeneracy).
Set H(C) = lin.span.{H(O) : O C C} for any region C
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Reeh-Schlieder theorem: H(C) is cyclic for every C C R9*! with
non-empty interior. Therefore, H(C) is standard if both C and C’

have a non-empty interior.
Then, we may consider the modular operator and the modular

conjugation
Ac=Anicys Jc=Jn)-

The following property plays a crucial role:

o For every wedge region W C R+,
Aye = U(Aw(27s)), s € R,

(Bisognano-Wichmann property).
Aw = boost subgroup of 731 leavings W globally invariant.
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Consequences (cf. D. Guido, R.L.)

H net with the Bisognano-Wichmann property. Then:
(i) The representation U of 731 is unique;
(ii) For every wedge W,

(Wedge duality);

(iii) 1f U does not contain the identity representation, then H(W)
is factorial for every wedge W, namely H(W)n H(W)' = {0};

(iv) © = JwU(Rw) is independent of W, (0 € 0W); ©2 = 1 and
©OH(O) =H(-0) ©U(g)e = U(rgr)

(PCT). Here, Ry is the space m-rotation preserving W and r
is the spacetime reflection r : x — —x.

= U of 731 extends canonically to an anti-unitary
representation U of ‘P, acting covariantly on H.
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The dual net

H a local Poincaré covariant net the Bisognano-Wichmann
property. The dual net HY is

HY(0) = H(O')Y, 0€cO,

W>0
By locality, H(O') C H(O)', therefore

H(0) c HY(0), 0€ 0, HIW)=H(W).

H9 is local, Poincaré covariant, with BW property and satisfies
Haag duality
HY(0) = HY(0), 0€eO.

H is the maximal extension of H on H that is relatively local
with respect to H
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Nets and algebras

H complex Hilbert space, 3 a one-to-one correspondence between:

(a) Anti-unitary, positive energy, representations of U of P, on H
such that U = U|P¢ does not contain infinite spin
+

subrepresentations;
(b) Poincaré covariant, Haag dual nets H of real linear subspaces
on H with the Bisognano-Wichmann property

Therefore the dual net H? depends only on the anti-unitary U of
P+ and not on H
A local, Pi—cov. net of von Neumann algebras, with Haag duality

A(0) = A(O'), 0cO.

Set
Ha(0) = A(0)2, 0€O0O

In general (possibly always), H4 is not a dual net, namely
HA(0) € H4(0), 0€cO
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Universal bound (V. Morinelli, R. L.)

H a local, Poincaré covariant net of real linear subspaces on the
complex Hilbert space H, with covariance unitary representation
U. Given h € H, we are interested in a bound for the entropy of h
with respect the region C C Rt relative to H defined by

Su(h|C) = S(h|H(C)) .

Given an anti-unitary, positive energy representation V of P, we
then define the entropy of o with respect to C associated with V
as

Sv(elC) = Sk(elC),
where K is the local net of real linear spaces associated with V/

With U the covariance unitary representation of Pi of H, let U be
the canonical extension of U to an anti-unitary rep. of P,.
For every region C C R4*! and vector ¢ € H, the bound

SH(h|C) < Sy(h]C)

holds and depends only on U, not on H.
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Mobius covariant net

Let H be a local, Mobius covariant net of closed real linear
subspaces on the complex Hilbert space 7 on R. Let HY be the
dual net, and U the covariance unitary representation of Mab
associated with HY.

For every interval | € Zj of the real line, the bound

Sulell) < Su(ell)

holds and depends only on U, not on H.
U is quasi-equivalent to the positive energy unitary representation
of Mob with lowest weight 1.

28/36



Nets associated with the U(1)-current and its derivatives

H1) the (one-particle) U(1) current j net on R
[i(x1),i0e)] = id'(xa — x2)

C5°(R) densely embeds in the Hilbert space H .

Hky the net on R of standard subspaces associated with the
k-derivative of j.

H(x) is the restriction to R of the net on S associated with the
unitary rep. of Mob with lowest weight k.

Huo (1) € Hy (1)

The dual net of H is Hy)

Hiio (1) = Hay (1)
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Modular hamiltonian and entropy, U(1)-case

B = (—1,1). The modular Hamiltonian associated with H()(B)
on H() is given by

t1log Ay gyf = (1 - )", f e CO(R);
C3°(R) is a core for log Apaye)-
The entropy of f € C5°(R) w.r.t. HY(B) is

S(FIHW(B)) = W/B(1 — x?)f'(x)?dx .
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Modular hamiltonian and entropy, higher derivative case

Let f € C§°(R). Then f belongs to the domain of the modular
Hamiltonian log Ay (g) on H) associated with H(¥)(B) and

(tklog AH(k)(B)f>(X) =2m(k — 1)xf(x) +m(1 — x)f'(x)
The space Cg°(R) is core for log ANTOIEL
The entropy of f w.r.t. Hy(B) on HD is given by

S(flHw(B)) = w/ (1 — x®)f'(x)?dx — wk(k — 1) / f(x)%dx;
B JB
if [px"f(x)dx=0,n=0,1,...,k—2.
Hence, the expression on the right-hand side is non-negative, and

S(flHw(B)) < S(flH1(B)), k=1,2,...
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Local entropy of a wave packet (Ciolli, Morsella, Ruzzi, R.L.)

The real linear wave's space 7 = {® : (O + m?)® = 0} is given in
Cauchy data
® < (f,g) € S(R?) x S(RY)

e The complex structure on 7 is then
0 -1
Zm:|:_u MO:|7 M:v—v2+m2
e The scalar product on 7T is the unique Poincaré covariant one

e Local structure: Waves with Cauchy data supported in region O

(causal envelop of a space region B) form a real linear subspace
H(O) = H(B).

e The information S(®|O) carried by the wave @ in the region O
is the entropy S(®|H(O)) of the vector ® w.r.t. H(O)
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Entropy density of a wave packet (in progress)

The classical stress-energy tensor gives the energy
7 do®)? + |Vxo[?
< oo) (( 0 ) ‘H x ’ )

we then have

1—r
2

2
<Tég)>¢(x)dx+7rD/ ®2dx

x0=0

—(P,log Ag®) = 27r/

x0=0

Recall: the entropy of a massless wave ® in the unit ball B is

S(®|B) =27 / Lo

<T(§g)>¢(x)dx+7r0/ ®2dx
JB

JB
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Local entropy density of a massive wave packet

» Describe the local, massive modular Hamiltonian: old problem.

0 Mm]

log Ag = —mim |:Lm 0

Bostelmann, Cadamuro, Mintz: computer numerical analysis

Figure: M,, as m varies

» Get rigorous bound on the local entropy in the massive case

New strategy: use the new notion of entropy operator and

compare with the half-space entropy
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Entropy bounds. A variational problem

M, the half-space x; > 0 of RY, m > 0, then

log A = —m 0 X1
8 Sm M. = T G [(V2 — m?) — 8,)] 0

Problem. B a bounded region in M with regular boundary (say
B a ball), and h a smooth function on 9B of B. Set

Jp= inf / xi(m?f2 + |V £]?)dx { s
flos=hJBenM,
f e S(rY) oM,

» Estimate J, in terms of h
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A preliminary problem is the following:

» Problem 2. Is the minimum attained (within some Sobolev
space)?

Assuming the answer to Problem 2 to be affirmative (I think this
the case), let f, minimize the functional. Then (m = 1)

x1(fn — V2fy) — Oy fr = 0,

SO

Jp = 1/ x10n(f2)dS = [ x1hOn(fn)dS
2 Jos 0B

(normal derivative) and the problem is to estimate this integral in
terms of h.
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