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Tomita-Takesaki modular theory

M a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

S0 : XΩ 7→ X ∗Ω, X ∈M

SM = S̄0 = JM∆
1/2
M , polar decomposition, ∆M and JM modular

operator and conjugation

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆it
MX∆−itM , X ∈M

modular automorphisms intrinsic evolution associated with ϕ!

JMMJM =M′ on H

log ∆M is called the modular Hamiltonian of ϕ
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Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exist; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ||ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ||ψ) ≥ 0

positivity of the relative entropy
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Standard subspaces

H complex Hilbert space and H ⊂ H a closed, real linear subspace.
Symplectic complement:

H ′ = {ξ ∈ H : =(ξ, η) = 0 ∀η ∈ H}

H is a standard subspace if it is H cyclic if H + iH = H and
separating H ∩ iH = {0}

H standard subspace → anti-linear operator SH

SH : ξ + iη → ξ − iη, ξ, η ∈ H

S2
H = 1|D(SH), D(SH) = H + iH. SH is closed, densely defined,

S∗H = SH′
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Modular theory for standard subspaces

Conversely, S densely defined, closed, anti-linear involution
on H → HS = {ξ ∈ D(S) : Sξ = ξ} is a standard subspace:

H ↔ S is a bijection

Set SH = JH∆
1/2
H , polar decomposition. Then JH is an

anti-unitary involution, ∆H > 0 is non-singular called the modular
conjugation and the modular operator; they satisfy
JH∆HJH = ∆−1

H and

H ↔ (J,∆) is a bijection.

Main relations:
∆it

HH = H, JHH = H ′

Every closed, real linear H is

standard⊕ (0 ⊂ H)⊕ (H ⊂ H)
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Examples

Example 1: M von Neumann algebra on H, Ω cyclic separating
vector

H =Ms.a.Ω is a standard subspace of H

∆H = ∆M, JH = JM

Example 2: H (one-particle) Hilbert space, H ⊂ H real Hilbert
space (of vectors localized in a region O)

Γ(∆H) = ∆A(H) Γ(JH) = JA(H)

A(H) von Neumann algebra on the Fock space eH

A(H) = {V (ξ) : ξ ∈ H}”

V (ξ) Weyl unitary
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Passivity

log ∆H is characterised by complete passivity, following Pusz and
Woronowicz in the von Neumann algebra case

H a complex Hilbert space, H ⊂ H a standard subspace and A a
selfadjoint linear operator on H such that e isAH = H, s ∈ R.

A is passive with respect to H if

−(ξ,Aξ) ≥ 0 , ξ ∈ D(A) ∩ H .

A is completely passive w.r.t. H if the generator of
e itA ⊗ e itA · · · ⊗ e itA is passive with respect to the n-fold tensor
product H ⊗ H ⊗ · · · ⊗ H, all n ∈ N.

A is completely passive with respect to H iff log ∆H = λA for
some λ ≥ 0.

positivity of energy ! comp. passivity of modular Hamiltonian
(equivalence in principle)

6 / 36



Entropy of a vector relative to a real linear subspace

Let H be a complex Hilbert space and H ⊂ H a standard subspace

The entropy of a vector h ∈ H with respect to H ⊂ H is defined
by

S(h||H) = −=(h,PH i log ∆H h) = <(h, iPH i log ∆H h)

(in a quadratic form sense), where PH is the cutting projection; if
H is factorial

PH : H + H ′ → H , h + h′ 7→ h

We have P∗H = −iPH i and the formula

PH = (1 + SH)(1−∆H)−1

= (1−∆H)−1 + JH∆
1/2
H (1−∆H)−1 ;

(PH is the closure of the right-hand side).

In QFT, the cutting projection PH is geometric.
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Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:

S(h||H) ≥ 0 or S(h||H) = +∞ positivity

If K ⊂ H, then S(h||K ) ≤ S(h||H) monotonicity

If hn → h, then S(h||H) ≤ lim infn S(hn|H) lower
semicontinuity

If Hn ⊂ H is an increasing sequence with
⋃

n Hn = H, then
S(h||Hn)↗ S(h||H) monotone continuity

If h ∈ D(log ∆H) then S(h||H) <∞ finiteness on smooth
vectors

S(h||H) = S(k ||H) if k − h ∈ H ′ locality

By locality, we may talk of the entropy of a class of vectors
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Entropy of coherent sectors

Given ξ ∈ H consider coherent state ϕξ on Weyl von Neumann
algebra A(H) on the Bose Fock space eH:

The vacuum relative entropy of ϕξ on A(H) is given by

S(ϕξ||ϕ0) = S(ξ||H)

Araki’s relative entropy Entropy of vector

Ω vacuum vector, ϕξ = (V (ξ)Ω, ·V (ξ)Ω), V (ξ) Weyl unitary

Fermi case (Galanda, Much, Verch): Similar formula for
ϕξ = (Φ(ξ)Ω, ·Φ(ξ)Ω), Φ(ξ) selfadjoint (unitary) Fermi free field
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Entropy operator

The entropy operator EH is defined by

EH = A(∆H) + JHB(∆H) ,

A(λ) ≡ −a(λ) log λ, B(λ) ≡ b(λ) log λ

In the factorial case
EH = iPH i log ∆H

(closure of the right-hand side). We have

S(h||H) = <(h, EHh) , k ∈ H .

real quadratic form sense.

The entropy operator EH is real linear, positive, and selfadjoint
w.r.t. to the real part of the scalar product.
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First and second quantisation

First quantisation: map

O ⊂ Rd 7→ H(O) real linear space of H

local, covariant, etc.

Second quantisation: map

O ⊂ Rd 7→ A(O) v.N. algebra on eH

A(O) = A(H(O))

In our case H(O) is generated by the waves with Cauchy data in B
(O double cone with time-zero basis B)
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Wave packets

By a Klein-Gordon wave (or wave packet), we mean a real solution
of the wave equation

(�+ m2)Φ = 0 ,

with compactly supported, smooth Cauchy data Φ|x0=0, Φ′|x0=0.

Classical field theory describes Φ by the stress-energy tensor Tµν ,
that provides the energy-momentum density of Φ at any time.

But, how to define the information, or entropy, carried by Φ in a
given region at a given time?
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Bisognano-Wichmann theorem ‘75

Rindler spacetime (wedge W = {x1 > |t|}), vacuum modular
group

•

t

1/a x1

t = a−1 sinh 2πs, x1 = a−1 cosh 2πs

trajectory unif. accelerated observer O

a : uniform acceleration of O
s/a : proper time of O
β = 2π/a : inverse KMS temperature of O

Hawking-Unruh effect!
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Entropy of a wave

Let Φ be a real Klein-Gordon wave and H = H(W ).

The entropy SΦ(λ) of Φ w.r.t. the wedge region Wλ is the entropy
of the vector Φ w.r.t. the standard subspace H(Wλ).

SΦ(λ) = 2π

∫
x0=λ, x1≥λ

(x1 − λ)T00(x) dx

then

S ′′Φ(λ) = 2π

∫
x0=λ, x1=λ

〈v ,Tv〉dx ≥ 0 ,

where v is the light-like vector v = (1, 1, 0 . . . , 0).

Here the energy density is T00 = 1
2

(
Φ′2 + |∇Φ|2 + m2Φ2

)
The second derivative of S ′′Φ(λ) gives the QNEC inequality for
coherent states and constant null translations

S ′′Φ(λ) ≥ 0

(F. Ciolli, G. Ruzzi, R. L.)
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Borchers’ theome one-article analogue

Let H ⊂ H be a standard subspace and T (t) = e iAt a
one-parameter unitary group on H such that
• A ≥ 0

• T (t)H ⊂ H, t ≥ 0

Then

∆is
HT (t)∆−isH = T (e−2πs)t) , JHT (t)JH = T (−t)

T (t) and ∆is
H generates a 2-dimensional Lie group!
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Abstract result

Let H ⊂ H be a standard subspace and T (t) = e iAt a
one-parameter unitary group on H such that
• A ≥ 0

• T (t)H ⊂ H, t ≥ 0

Define Hλ = T (λ)H , λ ∈ R, translated subspaces. Then the
entropy function

λ 7→ S(λ) = S(ψ||Hλ) is convex for all ψ

and finite for a dense set of vectors. If S(λ0) <∞, then

(i) S(λ) is finite and C 1 on [λ0,∞);

(ii) S ′(λ) is absolutely continuous in [λ0,∞) with almost
everywhere non-negative derivative S ′′(λ) ≥ 0 .
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Entropy of localised states: U(1)-current model

One-dimensional case.

U(1)-current j : ` real function in S(R), L(x) ≡
∫∞
−x `(t)dt.

S(λ) ≡ S(L||H(λ,∞)) = π

∫ +∞

λ
(x − λ)`2(x)dx ,

S(λ) vacuum relative entropy of excited state by j 7→ j + ` (BMT
sector with charge q =

∫
`)

S ′(λ) = −π
∫ +∞

λ
`2(x)dx ≤ 0 ,

S ′′(λ) = π`2(λ) ≥ 0

positivity of S ′′

L is not a vector in the Hilbert space, L but gives a class vectors:
{f ∈ S(Rd) : f |[λ,∞) = L|[λ,∞)}
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Entropy and Klein–Gordon field on a globally hyperbolic
spacetime

Figure: Schwarzschild-Kruskal spacetime. The red area is a null
translated wedge

The convexity of the entropy w.r.t. to the null translation
parameter holds for a Klein–Gordon field on a globally hyperbolic
spacetime for coherent states (Ciolli, Ranallo, Ruzzi, L.) (cf. also
R.L. and Holland, Ishibashi in untranslated case)
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Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space
ball B), in the conformal case the modular group is given by the
geometric transformation (Hislop, L. ‘81)

x10

t

local modular trajectories

(u, v) 7→
(
(Z(u, s),Z(v , s)

)

Z (z , s) = (1+z)+e−s(1−z)
(1+z)−e−s(1−z)

u = x0 + r , v = x0 − r , r = |x| ≡
√
x2

1 + · · ·+ x2
d

19 / 36



The local entropy of a massless wave

The modular Hamiltonian log ∆B associated with the unit ball B
in the free scalar, massless QFT is (on Cauchy data)

−2πA = log ∆B .

log ∆B = 2πı0

[
0 1

2 (1− r2)
1
2 (1− r2)∇2 − r∂r − D 0

]
with L0 the higher dimensional Legendre operator

LD =
1

2
(1− r2)∇2 − r∂r − D

(Work with G. Morsella)
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Local information in a wave packet

With SΦ(R) the entropy of Φ in the radius R ball cantered at x̄,
we have

SΦ(R) = π

∫
BR(x̄)

R2 − r2

R
〈T00(t, x)〉Φdx stress-energy tensor term

+ π
d − 1

2R

∫
BR(x̄)

Φ2(t, x)dx Born type term

with r = |x− x̄|
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Nets of standard subspaces

H complex Hilbert space, O the family of double cones of the
Minkowski spacetime Rd+1.
A local Poincaré covariant net of real linear subspaces is a map

O ∈ O 7→ H(O) ⊂ H ,

with H(O) real linear, closed subspace of H, s.t.

O1 ⊂ O2 =⇒ H(O1) ⊂ H(O2) (isotony);

O1 ⊂ O ′2 =⇒ H(O1) ⊂ H(O2)′ (locality);

∃ a unitary, positive energy representation U of P↑+ on H s.t.
U(g)H(O) = H(gO) (Poincaré covariance);∑

x∈Rd+1 H(O + x) = H (non-degeneracy).

Set H(C ) ≡ lin.span.{H(O) : O ⊂ C} for any region C
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Reeh-Schlieder theorem: H(C ) is cyclic for every C ⊂ Rd+1 with
non-empty interior. Therefore, H(C ) is standard if both C and C ′

have a non-empty interior.
Then, we may consider the modular operator and the modular
conjugation

∆C = ∆H(C) , JC = JH(C) .

The following property plays a crucial role:

For every wedge region W ⊂ Rd+1,

∆−isW = U
(
ΛW (2πs)

)
, s ∈ R ,

(Bisognano-Wichmann property).

ΛW = boost subgroup of P↑+ leavings W globally invariant.
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Consequences (cf. D. Guido, R.L.)

H net with the Bisognano-Wichmann property. Then:

(i) The representation U of P↑+ is unique;

(ii) For every wedge W ,

H(W )′ = H(W ′)

(Wedge duality);

(iii) If U does not contain the identity representation, then H(W )
is factorial for every wedge W , namely H(W )∩H(W )′ = {0};

(iv) Θ ≡ JWU(RW ) is independent of W , (0 ∈ ∂W ); Θ2 = 1 and

ΘH(O) = H(−O) ΘU(g)Θ = U(rgr)

(PCT). Here, RW is the space π-rotation preserving W and r
is the spacetime reflection r : x 7→ −x .
=⇒ U of P↑+ extends canonically to an anti-unitary

representation Ũ of P+ acting covariantly on H.
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The dual net

H a local Poincaré covariant net the Bisognano-Wichmann
property. The dual net Hd is

Hd(O) = H(O ′)′ , O ∈ O ,

Hd(O) =
⋂

W⊃O
H(W ), W wedge

By locality, H(O ′) ⊂ H(O)′, therefore

H(O) ⊂ Hd(O) , O ∈ O, Hd(W ) = H(W ).

Hd is local, Poincaré covariant, with BW property and satisfies
Haag duality

Hd(O)′ = Hd(O ′) , O ∈ O .
Hd is the maximal extension of H on H that is relatively local

with respect to H
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Nets and algebras

H complex Hilbert space, ∃ a one-to-one correspondence between:

(a) Anti-unitary, positive energy, representations of Ũ of P+ on H
such that U = Ũ|P↑+ does not contain infinite spin

subrepresentations;

(b) Poincaré covariant, Haag dual nets H of real linear subspaces
on H with the Bisognano-Wichmann property

Therefore the dual net Hd depends only on the anti-unitary Ũ of
P+ and not on H

A local, P↑+-cov. net of von Neumann algebras, with Haag duality

A(O) = A(O ′)′ , O ∈ O .
Set

HA(O) = A(O)saΩ , O ∈ O
In general (possibly always), HA is not a dual net, namely

HA(O) ( Hd
A(O) , O ∈ O
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Universal bound (V. Morinelli, R. L.)

H a local, Poincaré covariant net of real linear subspaces on the
complex Hilbert space H, with covariance unitary representation
U. Given h ∈ H, we are interested in a bound for the entropy of h
with respect the region C ⊂ Rd+1 relative to H defined by

SH(h||C ) ≡ S
(
h||H(C )

)
.

Given an anti-unitary, positive energy representation V of P+, we
then define the entropy of ϕ with respect to C associated with V
as

SV (ϕ||C ) ≡ SK (ϕ||C ) ,

where K is the local net of real linear spaces associated with V

With U the covariance unitary representation of P↑+ of H, let Ũ be
the canonical extension of U to an anti-unitary rep. of P+.
For every region C ⊂ Rd+1 and vector ϕ ∈ H, the bound

SH(h||C ) ≤ SŨ(h||C )

holds and depends only on Ũ, not on H.
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Möbius covariant net

Let H be a local, Möbius covariant net of closed real linear
subspaces on the complex Hilbert space H on R. Let Hd be the
dual net, and Ũ the covariance unitary representation of Möb
associated with Hd .
For every interval I ∈ I0 of the real line, the bound

SH(ϕ||I ) ≤ SŨ(ϕ||I )

holds and depends only on Ũ, not on H.
Ũ is quasi-equivalent to the positive energy unitary representation
of Möb with lowest weight 1.
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Nets associated with the U(1)-current and its derivatives

H(1) the (one-particle) U(1) current j net on R

[j(x1), j(x2)] = iδ′(x1 − x2)

C∞0 (R) densely embeds in the Hilbert space H(k).

H(k) the net on R of standard subspaces associated with the
k-derivative of j .

H(k) is the restriction to R of the net on S1 associated with the
unitary rep. of Möb with lowest weight k.

H(k)(I ) ⊂ H(1)(I )

The dual net of H(k) is H(1)

Hd
(k)(I ) = H(1)(I )
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Modular hamiltonian and entropy, U(1)-case

B = (−1, 1). The modular Hamiltonian associated with H(1)(B)
on H(1) is given by

ι1 log ∆H(1)(B)f = π(1− x2)f ′ , f ∈ C∞0 (R) ;

C∞0 (R) is a core for log ∆H(1)(B).

The entropy of f ∈ C∞0 (R) w.r.t. H(1)(B) is

S
(
f ||H(1)(B)

)
= π

∫
B

(1− x2)f ′(x)2dx .
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Modular hamiltonian and entropy, higher derivative case

Let f ∈ C∞0 (R). Then f belongs to the domain of the modular
Hamiltonian log ∆H(k)(B) on H(k) associated with H(k)(B) and(

ιk log ∆H(k)(B)f
)
(x) = 2π

(
k − 1)xf (x) + π(1− x2)f ′(x)

The space C∞0 (R) is core for log ∆H(k)(B).

The entropy of f w.r.t. H(k)(B) on H(1) is given by

S
(
f ||H(k)(B)

)
= π

∫
B

(1− x2)f ′(x)2dx − πk(k − 1)

∫
B
f (x)2dx ;

if
∫
B xnf (x)dx = 0, n = 0, 1, . . . , k − 2.

Hence, the expression on the right-hand side is non-negative, and

S
(
f ||H(k)(B)

)
≤ S

(
f ||H(1)(B)

)
, k = 1, 2, . . .
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Local entropy of a wave packet (Ciolli, Morsella, Ruzzi, R.L.)

The real linear wave’s space T = {Φ : (�+ m2)Φ = 0} is given in
Cauchy data

Φ↔ 〈f , g〉 ∈ S(Rd)× S(Rd)

• The complex structure on T is then

ım =

[
0 µ−1

−µ 0

]
, µ =

√
−∇2 + m2

• The scalar product on T is the unique Poincaré covariant one

• Local structure: Waves with Cauchy data supported in region O
(causal envelop of a space region B) form a real linear subspace
H(O) ≡ H(B).

• The information S(Φ||O) carried by the wave Φ in the region O
is the entropy S(Φ||H(O)) of the vector Φ w.r.t. H(O)
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Entropy density of a wave packet (in progress)

The classical stress-energy tensor gives the energy

〈T (0)
00 〉Φ =

1

2

(
(∂0Φ)2 + |∇xΦ|2

)
we then have

−(Φ, log ∆BΦ) = 2π

∫
x0=0

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
x0=0

Φ2dx

Recall: the entropy of a massless wave Φ in the unit ball B is

S(Φ||B) = 2π

∫
B

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
B

Φ2dx
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Local entropy density of a massive wave packet

I Describe the local, massive modular Hamiltonian: old problem.

log ∆B = −πım
[

0 Mm

Lm 0

]
Bostelmann, Cadamuro, Mintz: computer numerical analysis

Figure: Mm as m varies

I Get rigorous bound on the local entropy in the massive case

New strategy: use the new notion of entropy operator and
compare with the half-space entropy
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Entropy bounds. A variational problem

M+ the half-space x1 ≥ 0 of Rd , m ≥ 0, then

log ∆m,M+ = −πım
[

0 x1

x1[(∇2 −m2)− ∂x1)] 0

]
Problem. B a bounded region in M+ with regular boundary (say
B a ball), and h a smooth function on ∂B of B. Set

Ih ≡ inf
f |∂B=h

∫
Bc∩M+

x1(m2f 2 + |∇f |2)dx

f ∈ S(Rd)
x1

B

h

Bc ∩M+

f

I Estimate Ih in terms of h
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A preliminary problem is the following:

I Problem 2. Is the minimum attained (within some Sobolev
space)?

Assuming the answer to Problem 2 to be affirmative (I think this
the case), let fh minimize the functional. Then (m = 1)

x1(fh −∇2fh)− ∂x1fh = 0 ,

so

Ih =
1

2

∫
∂B

x1∂n(f 2
h )dS =

∫
∂B

x1h ∂n(fh)dS

(normal derivative) and the problem is to estimate this integral in
terms of h.
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