Bounds for the local entropy

Roberto Longo

University of Rome Tor Vergata

$\label{eq:conference} \textit{Conference on Curved spacetimes, field theory and beyond}$

April 2024 - IHP, Paris

Tomita-Takesaki modular theory

 \mathcal{M} a von Neumann algebra on \mathcal{H} , $\varphi = (\Omega, \cdot \Omega)$ normal faithful state on \mathcal{M} . Embed \mathcal{M} into \mathcal{H}

$$S_0: X\Omega \mapsto X^*\Omega, \quad X \in \mathcal{M}$$

 $S_{\mathcal{M}} = \bar{S}_0 = J_{\mathcal{M}} \Delta_{\mathcal{M}}^{1/2}$, polar decomposition, $\Delta_{\mathcal{M}}$ and $J_{\mathcal{M}}$ modular operator and conjugation

 $t \in \mathbb{R} \mapsto \sigma_t^{\varphi} \in \operatorname{Aut}(\mathcal{M})$ $\sigma_t^{\varphi}(X) = \Delta_{\mathcal{M}}^{it} X \Delta_{\mathcal{M}}^{-it}, \quad X \in \mathcal{M}$

modular automorphisms intrinsic evolution associated with φ !

$$J_{\mathcal{M}}\mathcal{M}J_{\mathcal{M}}=\mathcal{M}' \quad ext{on } \mathcal{H}$$

 $\log \Delta_{\mathcal{M}}$ is called the modular Hamiltonian of φ

An infinite quantum system is described by a von Neumann algebra \mathcal{M} typically not of type I so Tr does not exist; however Araki's relative entropy between two faithful normal states φ and ψ on \mathcal{M} is defined in general by

 $S(\varphi \| \psi) \equiv -(\eta, \log \Delta_{\xi,\eta} \eta)$

where ξ, η are cyclic vector representatives of φ, ψ and $\Delta_{\xi,\eta}$ is the relative modular operator associated with ξ, η .

 $S(\varphi \| \psi) \ge 0$

positivity of the relative entropy

 \mathcal{H} complex Hilbert space and $H \subset \mathcal{H}$ a closed, real linear subspace. Symplectic complement:

$$H' = \{\xi \in \mathcal{H} : \Im(\xi, \eta) = 0 \,\,\forall \eta \in H\}$$

H is a standard subspace if it is \mathcal{H} cyclic if $\overline{H + iH} = \mathcal{H}$ and separating $H \cap iH = \{0\}$

H standard subspace \rightarrow anti-linear operator S_H

 $S_H: \xi + i\eta \rightarrow \xi - i\eta, \ \xi, \eta \in H$

 $S_{H}^{2} = 1|_{D(S_{H})}, D(S_{H}) = H + iH. S_{H}$ is closed, densely defined, $S_{H}^{*} = S_{H'}$

Modular theory for standard subspaces

Conversely, S densely defined, closed, anti-linear involution on $\mathcal{H} \to \mathcal{H}_S = \{\xi \in D(S) : S\xi = \xi\}$ is a standard subspace:

$H \leftrightarrow S$ is a bijection

Set $S_H = J_H \Delta_H^{1/2}$, polar decomposition. Then J_H is an anti-unitary involution, $\Delta_H > 0$ is non-singular called the modular conjugation and the modular operator; they satisfy $J_H \Delta_H J_H = \Delta_H^{-1}$ and

 $H \leftrightarrow (J, \Delta)$ is a bijection.

Main relations:

 $\Delta_H^{it}H = H, \quad J_HH = H'$

Every closed, real linear H is

 $\mathrm{standard} \oplus (0 \subset \mathcal{H}) \oplus (\mathcal{H} \subset \mathcal{H})$

イロン 不得 とうほう イロン 二日

Examples

Example 1: $\mathcal M$ von Neumann algebra on $\mathcal H,\,\Omega$ cyclic separating vector

$$H = \overline{\mathcal{M}_{\text{s.a.}}\Omega}$$
 is a standard subspace of \mathcal{H}

$$\Delta_H = \Delta_{\mathcal{M}}, \quad J_H = J_{\mathcal{M}}$$

Example 2: \mathcal{H} (one-particle) Hilbert space, $H \subset \mathcal{H}$ real Hilbert space (of vectors localized in a region O)

$$\Gamma(\Delta_H) = \Delta_{\mathcal{A}(H)} \quad \Gamma(J_H) = J_{\mathcal{A}(H)}$$

 $\mathcal{A}(H)$ von Neumann algebra on the Fock space $e^{\mathcal{H}}$

$$\mathcal{A}(H) = \{ V(\xi) : \xi \in H \}^{"}$$

 $V(\xi)$ Weyl unitary

Passivity

 $\log \Delta_H$ is characterised by complete passivity, following Pusz and Woronowicz in the von Neumann algebra case

 \mathcal{H} a complex Hilbert space, $H \subset \mathcal{H}$ a standard subspace and A a selfadjoint linear operator on \mathcal{H} such that $e^{isA}H = H$, $s \in \mathbb{R}$.

A is passive with respect to H if

 $-(\xi,A\xi)\geq 0$, $\xi\in D(A)\cap H$.

A is completely passive w.r.t. H if the generator of $e^{itA} \otimes e^{itA} \cdots \otimes e^{itA}$ is passive with respect to the *n*-fold tensor product $H \otimes H \otimes \cdots \otimes H$, all $n \in \mathbb{N}$.

A is completely passive with respect to H iff $\log \Delta_H = \lambda A$ for some $\lambda \ge 0$.

positivity of energy \longleftrightarrow comp. passivity of modular Hamiltonian (equivalence in principle)

Entropy of a vector relative to a real linear subspace

Let \mathcal{H} be a complex Hilbert space and $H \subset \mathcal{H}$ a standard subspace The entropy of a vector $h \in \mathcal{H}$ with respect to $H \subset \mathcal{H}$ is defined by

 $S(h||H) = -\Im(h, P_H i \log \Delta_H h) = \Re(h, i P_H i \log \Delta_H h)$

(in a quadratic form sense), where P_H is the cutting projection; if H is factorial

 $P_H: H + H' \to H, \quad h + h' \mapsto h$

We have $P_H^* = -iP_H i$ and the formula

 $egin{aligned} P_H &= (1+S_H)(1-\Delta_H)^{-1} \ &= (1-\Delta_H)^{-1} + J_H \Delta_H^{1/2} (1-\Delta_H)^{-1} \,; \end{aligned}$

(P_H is the closure of the right-hand side). In QFT, the cutting projection P_H is geometric.

7/36

Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:

- $S(h||H) \ge 0$ or $S(h||H) = +\infty$ positivity
- If $K \subset H$, then $S(h \| K) \leq S(h \| H)$ monotonicity
- If h_n → h, then S(h||H) ≤ lim inf_n S(h_n|H) lower semicontinuity
- If $H_n \subset H$ is an increasing sequence with $\overline{\bigcup_n H_n} = H$, then $S(h \| H_n) \nearrow S(h \| H)$ monotone continuity
- If h ∈ D(log Δ_H) then S(h||H) < ∞ finiteness on smooth vectors
- S(h||H) = S(k||H) if $k h \in H'$ locality

By locality, we may talk of the entropy of a class of vectors

Entropy of coherent sectors

Given $\xi \in \mathcal{H}$ consider coherent state φ_{ξ} on Weyl von Neumann algebra $\mathcal{A}(\mathcal{H})$ on the Bose Fock space $e^{\mathcal{H}}$:

The vacuum relative entropy of φ_{ξ} on $\mathcal{A}(H)$ is given by

 Ω vacuum vector, $\varphi_{\xi} = (V(\xi)\Omega, \cdot V(\xi)\Omega), V(\xi)$ Weyl unitary

Fermi case (Galanda, Much, Verch): Similar formula for $\varphi_{\xi} = (\Phi(\xi)\Omega, \cdot \Phi(\xi)\Omega), \Phi(\xi)$ selfadjoint (unitary) Fermi free field

The entropy operator \mathcal{E}_H is defined by

 $\mathcal{E}_{H} = A(\Delta_{H}) + J_{H}B(\Delta_{H}),$

 $A(\lambda) \equiv -a(\lambda) \log \lambda, \ B(\lambda) \equiv b(\lambda) \log \lambda$

In the factorial case

 $\mathcal{E}_H = i P_H i \log \Delta_H$

(closure of the right-hand side). We have

 $S(h||H) = \Re(h, \mathcal{E}_H h), \quad k \in \mathcal{H}.$

real quadratic form sense.

The entropy operator \mathcal{E}_H is *real linear*, *positive*, *and selfadjoint* w.r.t. to the real part of the scalar product.

First quantisation: map

 $O \subset \mathbb{R}^d \mapsto H(O)$ real linear space of \mathcal{H}

local, covariant, etc.

Second quantisation: map

 $O \subset \mathbb{R}^d \mapsto \mathcal{A}(O)$ v.N. algebra on $e^{\mathcal{H}}$ $\mathcal{A}(O) = \mathcal{A}(H(O))$

In our case H(O) is generated by the waves with Cauchy data in B (O double cone with time-zero basis B)

By a Klein-Gordon wave (or wave packet), we mean a real solution of the wave equation

$$(\Box + m^2)\Phi = 0 ,$$

with compactly supported, smooth Cauchy data $\Phi|_{x^0=0},\,\Phi'|_{x^0=0}.$

Classical field theory describes Φ by the stress-energy tensor $T_{\mu\nu}$, that provides the energy-momentum density of Φ at any time.

But, how to define the information, or entropy, carried by Φ in a given region at a given time?

Bisognano-Wichmann theorem '75

Rindler spacetime (wedge $W = \{x_1 > |t|\}$), vacuum modular group

a : uniform acceleration of O s/a : proper time of O $\beta = 2\pi/a$: inverse KMS temperature of O

Hawking-Unruh effect!

Entropy of a wave

Let Φ be a real Klein-Gordon wave and H = H(W).

The entropy $S_{\Phi}(\lambda)$ of Φ w.r.t. the wedge region W_{λ} is the entropy of the vector Φ w.r.t. the standard subspace $H(W_{\lambda})$.

$$S_{\Phi}(\lambda) = 2\pi \int_{x^0=\lambda, x^1\geq\lambda} (x^1-\lambda) T_{00}(x) dx$$

then

$$S_{oldsymbol{\Phi}}''(\lambda) = 2\pi \int_{x^0=\lambda,\,x^1=\lambda} \langle oldsymbol{v},\, Toldsymbol{v}
angle dx \geq 0 \;,$$

where v is the light-like vector v = (1, 1, 0..., 0).

Here the energy density is $T_{00} = rac{1}{2} ig(\Phi'^2 + |
abla \Phi|^2 + m^2 \Phi^2 ig)$

The second derivative of $S_{\Phi}''(\lambda)$ gives the QNEC inequality for coherent states and constant null translations

$$S_{\Phi}''(\lambda) \geq 0$$

(F. Ciolli, G. Ruzzi, R. L.)

Borchers' theome one-article analogue

Let $H \subset \mathcal{H}$ be a standard subspace and $T(t) = e^{iAt}$ a one-parameter unitary group on \mathcal{H} such that

- $A \ge 0$
- $T(t)H \subset H$, $t \geq 0$

Then

$$\Delta_H^{is}T(t)\Delta_H^{-is}=T(e^{-2\pi s})t), \ J_HT(t)J_H=T(-t)$$

T(t) and Δ_H^{is} generates a 2-dimensional Lie group!

Let $H \subset \mathcal{H}$ be a standard subspace and $T(t) = e^{iAt}$ a one-parameter unitary group on \mathcal{H} such that

- $A \ge 0$
- $T(t)H \subset H$, $t \geq 0$

Define $H_{\lambda} = T(\lambda)H$, $\lambda \in \mathbb{R}$, translated subspaces. Then the entropy function

 $\lambda \mapsto \mathcal{S}(\lambda) = \mathcal{S}(\psi \| \mathcal{H}_{\lambda})$ is convex for all ψ

and finite for a dense set of vectors. If $S(\lambda_0) < \infty$, then (i) $S(\lambda)$ is finite and C^1 on $[\lambda_0, \infty)$; (ii) $S'(\lambda)$ is absolutely continuous in $[\lambda_0, \infty)$ with almost

everywhere non-negative derivative $S''(\lambda) \ge 0$.

Entropy of localised states: U(1)-current model

One-dimensional case.

U(1)-current j: ℓ real function in $S(\mathbb{R})$, $L(x) \equiv \int_{-x}^{\infty} \ell(t) dt$.

$$S(\lambda) \equiv S(L \| H(\lambda, \infty)) = \pi \int_{\lambda}^{+\infty} (x - \lambda) \ell^2(x) dx$$

 $S(\lambda)$ vacuum relative entropy of excited state by $j\mapsto j+\ell$ (BMT sector with charge $q=\int\ell$)

$$S'(\lambda) = -\pi \int_{\lambda}^{+\infty} \ell^2(x) \mathrm{d}x \leq 0 \;,$$

$$S''(\lambda) = \pi \ell^2(\lambda) \ge 0$$

positivity of S''

L is not a vector in the Hilbert space, *L* but gives a *class* vectors: $\{f \in S(\mathbb{R}^d) : f|_{[\lambda,\infty)} = L|_{[\lambda,\infty)}\}$

Entropy and Klein–Gordon field on a globally hyperbolic spacetime

Figure: Schwarzschild-Kruskal spacetime. The red area is a null translated wedge

The convexity of the entropy w.r.t. to the null translation parameter holds for a Klein–Gordon field on a globally hyperbolic spacetime for coherent states (Ciolli, Ranallo, Ruzzi, L.) (cf. also R.L. and Holland, Ishibashi in untranslated case)

Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space ball B), in the conformal case the modular group is given by the geometric transformation (Hislop, L. '81)

local modular trajectories

$$(u,v)\mapsto ((Z(u,s),Z(v,s))$$

$$Z(z,s) = \frac{(1+z)+e^{-s}(1-z)}{(1+z)-e^{-s}(1-z)}$$

$$u = x_0 + r, \quad v = x_0 - r, \quad r = |\mathbf{x}| \equiv \sqrt{x_1^2 + \dots + x_d^2}$$

The modular Hamiltonian log Δ_B associated with the unit ball *B* in the free scalar, massless QFT is (on Cauchy data)

 $-2\pi A = \log \Delta_B \,.$

$$\log \Delta_B = 2\pi \imath_0 \begin{bmatrix} 0 & \frac{1}{2}(1-r^2) \\ \frac{1}{2}(1-r^2)\nabla^2 - r\partial_r - D & 0 \end{bmatrix}$$

with L_0 the higher dimensional Legendre operator

$$L_D = \frac{1}{2}(1-r^2)\nabla^2 - r\partial_r - D$$

(Work with G. Morsella)

With $S_{\Phi}(R)$ the entropy of Φ in the radius R ball cantered at $\bar{\mathbf{x}}$, we have

$$S_{\Phi}(R) = \pi \int_{B_{R}(\bar{\mathbf{x}})} \frac{R^{2} - r^{2}}{R} \langle T_{00}(t, \mathbf{x}) \rangle_{\Phi} d\mathbf{x} \quad \text{stress-energy tensor term} \\ + \pi \frac{d-1}{2R} \int_{B_{R}(\bar{\mathbf{x}})} \Phi^{2}(t, \mathbf{x}) d\mathbf{x} \qquad \text{Born type term}$$

with $r = |\mathbf{x} - \bar{\mathbf{x}}|$

Nets of standard subspaces

 \mathcal{H} complex Hilbert space, \mathcal{O} the family of double cones of the Minkowski spacetime \mathbb{R}^{d+1} .

A local Poincaré covariant net of real linear subspaces is a map

 $O \in \mathcal{O} \mapsto H(O) \subset \mathcal{H}$,

with H(O) real linear, closed subspace of \mathcal{H} , s.t.

- $O_1 \subset O_2 \implies H(O_1) \subset H(O_2)$ (isotony);
- $O_1 \subset O'_2 \implies H(O_1) \subset H(O_2)'$ (locality);
- \exists a unitary, positive energy representation U of $\mathcal{P}_{+}^{\uparrow}$ on \mathcal{H} s.t. U(g)H(O) = H(gO) (*Poincaré covariance*);
- $\overline{\sum_{x \in \mathbb{R}^{d+1}} H(O+x)} = \mathcal{H}$ (non-degeneracy).

Set $H(C) \equiv \text{lin.span.} \{H(O) : O \subset C\}$ for any region C

Reeh-Schlieder theorem: H(C) is cyclic for every $C \subset \mathbb{R}^{d+1}$ with non-empty interior. Therefore, H(C) is standard if both C and C' have a non-empty interior.

Then, we may consider the modular operator and the modular conjugation

$$\Delta_C = \Delta_{H(C)}, \quad J_C = J_{H(C)}.$$

The following property plays a crucial role:

• For every wedge region $W \subset \mathbb{R}^{d+1}$,

$$\Delta_W^{-is} = Uig(\Lambda_W(2\pi s)ig)\,,\,\,s\in\mathbb{R}\,,$$

(Bisognano-Wichmann property).

 $\Lambda_W = \text{boost subgroup of } \mathcal{P}^{\uparrow}_+ \text{ leavings } W \text{ globally invariant.}$

Consequences (cf. D. Guido, R.L.)

H net with the Bisognano-Wichmann property. Then: (*i*) The representation *U* of $\mathcal{P}^{\uparrow}_{+}$ is unique; (*ii*) For every wedge *W*,

H(W)'=H(W')

(Wedge duality);

(iii) If U does not contain the identity representation, then H(W)is factorial for every wedge W, namely $H(W) \cap H(W)' = \{0\}$; (iv) $\Theta \equiv J_W U(R_W)$ is independent of W, $(0 \in \partial W)$; $\Theta^2 = 1$ and

$$\Theta H(O) = H(-O) \quad \Theta U(g)\Theta = U(rgr)$$

(PCT). Here, R_W is the space π -rotation preserving W and r is the spacetime reflection $r: x \mapsto -x$. $\implies U$ of \mathcal{P}^{\uparrow}_+ extends canonically to an anti-unitary representation \tilde{U} of \mathcal{P}_+ acting covariantly on H.

The dual net

H a local Poincaré covariant net the Bisognano-Wichmann property. The *dual net* H^d is

 $H^d(\mathcal{O}) = H(\mathcal{O}')', \quad \mathcal{O} \in \mathcal{O},$

$$H^{d}(O) = \bigcap_{W \supset O} H(W), \quad W \text{ wedge}$$

By locality, $H(O') \subset H(O)'$, therefore

$$H(O) \subset H^d(O), \quad O \in \mathcal{O}, \quad H^d(W) = H(W).$$

 ${\cal H}^d$ is local, Poincaré covariant, with BW property and satisfies Haag duality

 $H^d(O)' = H^d(O'), \quad O \in \mathcal{O}.$

 H^d is the maximal extension of H on \mathcal{H} that is relatively local with respect to H

Nets and algebras

- $\mathcal H$ complex Hilbert space, \exists a one-to-one correspondence between:
- (a) Anti-unitary, positive energy, representations of \tilde{U} of \mathcal{P}_+ on \mathcal{H} such that $U = \tilde{U}|_{\mathcal{P}^{\uparrow}_+}$ does not contain infinite spin subrepresentations;
- (b) Poincaré covariant, Haag dual nets H of real linear subspaces on H with the Bisognano-Wichmann property

Therefore the dual net H^d depends only on the anti-unitary \tilde{U} of \mathcal{P}_+ and not on H

 \mathcal{A} local, $\mathcal{P}_{+}^{\uparrow}$ -cov. net of von Neumann algebras, with Haag duality

 $\mathcal{A}(\mathcal{O}) = \mathcal{A}(\mathcal{O}')', \quad \mathcal{O} \in \mathcal{O}.$

Set

$$\mathcal{H}_{\mathcal{A}}(\mathcal{O}) = \overline{\mathcal{A}(\mathcal{O})_{\mathrm{sa}}\Omega}\,, \quad \mathcal{O}\in\mathcal{O}$$

In general (possibly always), H_A is not a dual net, namely

 $H_{\mathcal{A}}(O) \subsetneq H^{d}_{\mathcal{A}}(O), \quad O \in \mathcal{O}$

Universal bound (V. Morinelli, R. L.)

H a local, Poincaré covariant net of real linear subspaces on the complex Hilbert space \mathcal{H} , with covariance unitary representation *U*. Given $h \in \mathcal{H}$, we are interested in a bound for the *entropy of h* with respect the region $C \subset \mathbb{R}^{d+1}$ relative to *H* defined by

 $S_H(h\|C) \equiv S(h\|H(C)).$

Given an anti-unitary, positive energy representation V of \mathcal{P}_+ , we then define the entropy of φ with respect to C associated with V as

 $S_V(\varphi \| C) \equiv S_K(\varphi \| C),$

where K is the local net of real linear spaces associated with VWith U the covariance unitary representation of $\mathcal{P}_{+}^{\uparrow}$ of H, let \tilde{U} be the canonical extension of U to an anti-unitary rep. of \mathcal{P}_{+} . For every region $C \subset \mathbb{R}^{d+1}$ and vector $\varphi \in \mathcal{H}$, the bound

 $S_{H}(h\|C) \leq S_{\tilde{U}}(h\|C)$

holds and depends only on \tilde{U} , not on H.

Let H be a local, Möbius covariant net of closed real linear subspaces on the complex Hilbert space \mathcal{H} on \mathbb{R} . Let H^d be the dual net, and \tilde{U} the covariance unitary representation of Möb associated with H^d .

For every interval $I \in \mathcal{I}_0$ of the real line, the bound

 $S_H(\varphi \| I) \leq S_{\tilde{U}}(\varphi \| I)$

holds and depends only on \tilde{U} , not on H. \tilde{U} is quasi-equivalent to the positive energy unitary representation of Möb with lowest weight 1.

Nets associated with the U(1)-current and its derivatives

 $H_{(1)}$ the (one-particle) U(1) current j net on $\mathbb R$

 $[j(x_1), j(x_2)] = i\delta'(x_1 - x_2)$

 $C_0^{\infty}(\mathbb{R})$ densely embeds in the Hilbert space $\mathcal{H}_{(k)}$. $\mathcal{H}_{(k)}$ the net on \mathbb{R} of standard subspaces associated with the *k*-derivative of *j*.

 $H_{(k)}$ is the restriction to \mathbb{R} of the net on S^1 associated with the unitary rep. of Möb with lowest weight k.

 $H_{(k)}(I) \subset H_{(1)}(I)$

The dual net of $H_{(k)}$ is $H_{(1)}$

 $H^{d}_{(k)}(I) = H_{(1)}(I)$

B = (-1, 1). The modular Hamiltonian associated with $H^{(1)}(B)$ on $\mathcal{H}^{(1)}$ is given by

$$\iota_1 \log \Delta_{H^{(1)}(B)} f = \pi (1-x^2) f'\,, \,\, f \in C_0^\infty(\mathbb{R})$$
 ;

 $C_0^\infty(\mathbb{R})$ is a core for $\log \Delta_{H^{(1)}(B)}$. The entropy of $f\in C_0^\infty(\mathbb{R})$ w.r.t. $H^{(1)}(B)$ is

$$S(f \| H^{(1)}(B)) = \pi \int_{B} (1-x^2) f'(x)^2 dx$$
.

イロン イヨン イヨン イヨン 三日

30 / 36

Modular hamiltonian and entropy, higher derivative case

Let $f \in C_0^{\infty}(\mathbb{R})$. Then f belongs to the domain of the modular Hamiltonian $\log \Delta_{H^{(k)}(B)}$ on $\mathcal{H}^{(k)}$ associated with $H^{(k)}(B)$ and

 $(\iota_k \log \Delta_{H^{(k)}(B)} f)(x) = 2\pi (k-1)xf(x) + \pi (1-x^2)f'(x)$

The space $C_0^{\infty}(\mathbb{R})$ is core for $\log \Delta_{H^{(k)}(B)}$.

The entropy of f w.r.t. $H_{(k)}(B)$ on $\mathcal{H}^{(1)}$ is given by

$$S(f||H_{(k)}(B)) = \pi \int_{B} (1-x^{2})f'(x)^{2}dx - \pi k(k-1) \int_{B} f(x)^{2}dx;$$

if
$$\int_B x^n f(x) dx = 0$$
, $n = 0, 1, ..., k - 2$.
Hence, the expression on the right-hand side is non-negative, and

 $S(f \| H_{(k)}(B)) \le S(f \| H_{(1)}(B)), \ k = 1, 2, \dots$

Local entropy of a wave packet (Ciolli, Morsella, Ruzzi, R.L.)

The real linear wave's space $\mathcal{T} = \{\Phi : (\Box + m^2)\Phi = 0\}$ is given in Cauchy data

$$\Phi \leftrightarrow \langle f,g
angle \in S(\mathbb{R}^d) imes S(\mathbb{R}^d)$$

 \bullet The complex structure on ${\mathcal T}$ is then

$$i_m = \begin{bmatrix} 0 & \mu^{-1} \\ -\mu & 0 \end{bmatrix}, \quad \mu = \sqrt{-\nabla^2 + m^2}$$

• The scalar product on ${\mathcal T}$ is the unique Poincaré covariant one

• Local structure: Waves with Cauchy data supported in region O (causal envelop of a space region B) form a real linear subspace $H(O) \equiv H(B)$.

• The information $S(\Phi || O)$ carried by the wave Φ in the region O is the entropy $S(\Phi || H(O))$ of the vector Φ w.r.t. H(O)

Entropy density of a wave packet (in progress)

The classical stress-energy tensor gives the energy

$$\langle T_{00}^{(0)} \rangle_{\Phi} = \frac{1}{2} ((\partial_0 \Phi)^2 + |\nabla_{\mathbf{x}} \Phi|^2)$$

we then have

$$-(\Phi, \log \Delta_B \Phi) = 2\pi \int_{x_0=0}^{\infty} \frac{1-r^2}{2} \langle T_{00}^{(0)} \rangle_{\Phi}(x) dx + \pi D \int_{x_0=0}^{\infty} \Phi^2 dx$$

Recall: the entropy of a massless wave Φ in the unit ball B is

$$S(\Phi \| B) = 2\pi \int_B \frac{1-r^2}{2} \langle T_{00}^{(0)} \rangle_{\Phi}(x) dx + \pi D \int_B \Phi^2 dx$$

Local entropy density of a massive wave packet

► Describe the local, massive modular Hamiltonian: old problem.

$$\log \Delta_B = -\pi \imath_m egin{bmatrix} 0 & M_m \ L_m & 0 \end{bmatrix}$$

Bostelmann, Cadamuro, Mintz: computer numerical analysis

Figure: M_m as m varies

► Get rigorous bound on the local entropy in the massive case New strategy: use the new notion of entropy operator and compare with the half-space entropy

Entropy bounds. A variational problem

 M_+ the *half-space* $x_1 \ge 0$ of \mathbb{R}^d , $m \ge 0$, then

$$\log \Delta_{m,M_{+}} = -\pi \imath_{m} \begin{bmatrix} 0 & x_{1} \\ x_{1}[(\nabla^{2} - m^{2}) - \partial_{x_{1}})] & 0 \end{bmatrix}$$

Problem. B a bounded region in M_+ with regular boundary (say B a ball), and h a smooth function on ∂B of B. Set

$$\mathfrak{I}_h \equiv \inf_{f|_{\partial B}=h} \int_{B^c \cap M_+} x_1 (m^2 f^2 + |\nabla f|^2) dx$$

 $f\in S(\mathbb{R}^d)$

▶ Estimate \Im_h in terms of h

A preliminary problem is the following:

► *Problem 2.* Is the minimum attained (within some Sobolev space)?

Assuming the answer to Problem 2 to be affirmative (I think this the case), let f_h minimize the functional. Then (m = 1)

$$x_1(f_h - \nabla^2 f_h) - \partial_{x_1} f_h = 0$$

so

$$\mathfrak{I}_{h} = \frac{1}{2} \int_{\partial B} x_{1} \partial_{\mathsf{n}}(f_{h}^{2}) dS = \int_{\partial B} x_{1} h \partial_{\mathsf{n}}(f_{h}) dS$$

(normal derivative) and the problem is to estimate this integral in terms of h.