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Starting Inflation e N

e For long time, unclear how inflation starts. ﬁ @
e Two challenges: | . b &

— Philosophical challenge: unusual 1n Physics:

* normally: choose initial state and predict evolution
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* here: viability of some 1nitial states

e High inhomogeneity = Lack of Control



Starting Inflation

e High inhomogeneity —> Lack of Control
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Starting Inflation
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e High inhomogeneity —> Lack of Control
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Starting Inflation

e High inhomogeneity —> Lack of Control

e Advanced numerical techniques (same codes as LIGO)
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Starting Inflation

e High inhomogeneity —> Lack of Control
e Advanced numerical techniques (same codes as LIGO)

e Establish that inflation starts (J(1) times out

of inhomogenous initial conditions

230 =10° =2 =} 1 2 10 30 10° 10! 102 10°
H/H, p/PA

A 2 it
@ size-C
& N\
ENERGY

N

¢

with East, Linde and Kleban 2016



de Sitter no-hair Theorem

—Conjecture (~Hawking, ..., Kleban & I):

all initial expanding universes with [\ > () and with the right topology will reach de

Sitter space



Starting Inflation: Connections to Math

* Handle analytically spacetimes with no symmetries and singularities

e ~Hawking-Penrose, Christodoulou, Huiskin, ...
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Starting Inflation: Connections to Math

* Handle analytically spacetimes with no symmetries and singularities
e ~Hawking-Penrose, Christodoulou, Huiskin, ...
e Thurston Geometrization Classification (Poincare Hypothesis)

—Mean Curvature Flow

TS \%{5 x[ Q/L/f (/




Thurston Geometrization Conjecture

Thurston, Hamilton, Perelman

— All compact oriented 3-manifold fall into one of these three classes
—(1) Closed”: R can be anything
eex:  S%, S*x St S/I(with T’ € SO(4)), RP?

e and connected sums

—(ii) > Flat”: R® must be either negative somewhere or zero everywhere
e ox: R°/T( with T" an isometryof R°)
e and connected sums
—(111) " Open’’: R® must be negative somewhere

eex: H* /T, H? x R, nil, sol, SL(2, R)

—Any connected sum of (1) and (11) with a factor of (i11) 1s of kind (111)



Personal comments on the connection to Math
* GR/Diff. Geometry is very active field of Mathematics

—often: deal with stability of spacetimes: so, they know what they have at hand
—often: focus on the fact that bad things must happen
—sometimes: more interested in geometry conclusions than physics conclusions

* In Cosmology: almost always deal with small fluctuations: we know the asymptotic

regime of the universe, up to small corrections.

— Exceptions: eternal inflation and prior to inflation

* Here we are dealing with something different:
—the spacetime 1s quite unknown, and we wish to explore it

— to answer pressing physics question
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Homogenous Cosmology

— Already Wald (1983) had shown that if the DEC 1s preserved, all homogeneous but
inosotropic universe (Bianchi universes) that are not “closed’ (that 1s non-Bianchi-

Type-IX universes) and A > 0, asymptote to de Sitter.
-DEC: —1*", k" is future-directed timelike or null for any timelike K+
~WEC: T,,t't" >0 (ie.“p>0,p+p>0"), for any t* timelike
—SEC: (T,ul/ R %g,uuT)k'uku Z 0

—But inhomogeneities are more challenging.

—diff. equations become partial diff., and singularities form, geodesic cross, etc.. It 1s

a hugely less symmetric situation.
e we will however see that a sort of similar conclusion holds

 Let us therefore consider general "cosmologies’.



A Cosmology

— First Assumption: we consider a cosmology:

— a connected 3+1 dimensional spacetime with a compact Cauchy surface

e This implies (Geroch 1970):
—the spacetime is topologically R x M where M 1s a 3-manifold

—1t can be foliated by a family of topologically identical Cauchy surfaces 7,




Hypothesis

—We will prove a theorem under the following assumptions:

—First Assumption: A cosmology \/[ (3+1)

—Second Assumption: Matter satisfies Dominant and Strong energy condition and there 1s
also A > ()

—Third Assumption: The spatial topology of ¢ must not be “closed’, i.e. it must not be

of type (i) that we defined earlier (roughly, A/; must not have topology of sphere)



241 dimensions



Proved

— de Sitter no hair theorem proved in  with Creminelli, Vasy, Comm Math Phys 2020

— Here the Gauss-Bonnet theorem and the fact that the Riemann 1s known 1n terms of the

Ricci played a hugely simplifying role.

— Though, quite non trivial statement.



3+1 dimensions



Anisotropic Inhomogenous Cosmology
with Kleban JCAP 2016



Theorem with Kleban JCAP2016

There cannot exist a non-singular spacelike
hypersurface with maximum volume: given any time
slice, there 1s another with larger spatial volume.
Furthermore, in an watially expanding universe there
must be at least one expanding region on every
timeslice, and 1f A > 0 the expansion rate in that region
1s bounded from below by that of de Sitter spacetime in

the flat slicing.

For the first sentence, see also
Barrow and Tippler 1985



Theorem with Kleban JCAP2016

—This implies that in a big bang cosmology, there cannot be a big crunch

— very strongly suggesting cosmology reaches infinite volume, gradient energy will
dilute, and inflation will start, no matter initial inhomogeneities and scale of

inflation.

There cannot Fri
hypersurface with mu,'ﬂ"" um volume: qiven any time
slice, there is anotherfwith larger spatial volume.
Furthermore, 1n an waitially expanding universe there
must be at least one expanding region on every
timeslice, and if A > 0 the expansion rate in that region
1s bounded from below by that of de Sitter spacetime in

the flat slicing.

For the first sentence, see also
Barrow and Tippler 1985



Notation W

M
n,, 1s the orthonormal vector to M/ : n,nt = —1 // / A

(4)

— Spatial metric v Guv = Guv — Tl

— Extrinsic curvature K,ul/ — glf‘Van,, — KgW + O v

1
3

—how much the tamily of geodesics induced by 77,, deviates

—Notice [, log \/ﬁ - [{’ : rate of growth of volume

= Vh~ \/hye"



Proof

—Consider ( A reabsorbed in stress tensor)
|4 174
n'n” &G 1, = G, ,n"n
—From Gauss-Codazzi

1
n'n"G,, = 5 {R(S) + (Kﬁ)2 — KWK’“‘”} = 3 — surface quantities

— —> we have y (3) )
IGWGNTMVTLMTL = R 2

—1If a surface has extremal volume, the volume 1s stationary wrt any variations. Since
LologVh=K, = K=0 everywhere

—Then, if there exist an extremal surface, on that surface we must have,

167G N T,,n"n” = RB) — o o

—a



Proof

—Consider ( A reabsorbed in stress tensor)
|4 174
n'n” &G 1, = G, ,n"n
—From Gauss-Codazzi

1
n'n"G,, = 5 {R(S) + (Kﬁ)Q — KWK’“‘”} = 3 — surface quantities

— —> we have y (3) )
167TGNTM,/TL'“TL = R 2

—1If a surface has extremal volume, the volume 1s stationary wrt any variations. Since
LologVh=K, => K =0 everywhere

—Then, if there exist an extremal surface, on that surface we must have,

167G N T,,,n"n" = R®) —oo,,
_/_/ H/—/
>0 by WEC <0



A no Big-Crunch theorem
e Impose Weak Energy Condition

167G N T,,n"n" = R —o™o,,
S —— N e’
>0 by WEC <0

T th't" >0 (1e.“p>0,p+p>0"), for any t* timelike

e If there is a topological condition such that R®) < (0 at least at one point
e —> equation cannot be satisfied, => extremal surface does not exists

* The by-now-proved Poincare Hypothesis, indeed shows that “most” of 3-manifold

must have R®) < 0 at least at one point

—for these topologies, some regions of the universe keep expanding,

notwithstanding the development of singularities

—therefore they likely reach infinite volume, energy dilutes, and inflation start



A de Sitter no-hair Theorem
for Cosmologies

with 1sometry group forming 2-dimensional orbits
with Creminelli, Hershkovits, Vasy Advances in Math. 2023



Hypothesis

—Fourth Assumption: there is a group (3 which actson M ()" and such that the
induced action on M ©*Vis by isometries, and such that the orbits under (G are closed

surfaces.
—In reality, (7 acts on the universal cover of )/ (3)

—Homogenous anisotropic surfaces



Hypothesis
IDENTIFY

L/ZA SURFACE

\
| s \,ISOMETRY
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—Examples: TS — Sl X Sl X Sl
S% x S
(H?/T") x S1



Theorem

If the 2-surfaces have non-positive Euler characteristic (or
in the case of 2-spheres, if the initial 2-spheres are large
enough) and also if the initial spatial slice is expanding
everywhere, then, asymptotically, the spacetime becomes
physically indistinguishable from de Sitter space on
arbitrarily large regions of spacetime. This holds true
notwithstanding the presence of initial arbitrarily-large
density fluctuations and potential singularities.

with Creminelli, Hershkovits, Vasy Advances in Math. 2023



Notation W

M
n,, 1s the orthonormal vector to M/ : n,nt = —1 // / A

(4)

— Spatial metric v Guv = Guv — Tl

— Extrinsic curvature K,ul/ — glf‘Van,, — KgW + O v

1
3

—how much the tamily of geodesics induced by 77,, deviates

—Notice [, log \/ﬁ - [{’ : rate of growth of volume

= Vh~ \/hye"



Notation

m»
— " is the orthonormal vector to 2-surface inside M : / / //{)\
tﬂt:u p— 1

— Spatial 2-metric h,uy: Juv — h,uu - t,uty

— Extrinsic curvature A ,, = hMaVQtV H = h”VAMV



Method:
Mean Curvature Flow



Mean Curvature Flow

—We probe the geometry of the manifold, solution to Einstein equations, using mean

curvature flow:

dV
Lnlog\/ﬁzK, = —:/ d*zvVh K2 > 0
i Ja

—We reconstruct the spacetime geometry from the one of the flow surfaces.



Mean Curvature Flow

—Important facts:

with Creminelli, Vasy, Comm Math Phys 2020
evolution of Ecker Huisken 1989

—The flow stays regular, and so exists, at all times
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Mean Curvature Flow

—Important facts:
with Creminelli, Vasy, Comm Math Phys 2020

—Stays away from singularities

—as there spatial volume decreases

Crushing Singularity




Mean Curvature Flow

—Important facts:
with Creminelli, Vasy, Comm Math Phys 2020

—Stays away from singularities

—as there spatial volume decreases

—e.g. barriers in Swartzschild and Kerr




Mean Curvature Flow

—Important facts:
with Creminelli, Vasy, Comm Math Phys 2020

—The flow stays regular, and so exists, at all times

—The maximum of the extrinsic curvature on a slice, /' ,decays exponentially

towards K 5: K, (M) < Kp+ e_gKIQXAl(Km(O) — K,y)

dK 1
o~ AK 4+ S K (K? = K{) + 0*K + Rpn'n"K =0,
T
dK 1
= -~ AK+ K (K* = K}) +0°K <0,
T

— K > 0 atall times Ecker, Ecker Huiskin

— Simple application of maximum principle



Steps of Proot



Steps of proof: (1)

| DENTIFY

—Growth of geometric quantities:

—from some flow-time on:

Smin()\Q) < 1_|_ 5

Smin()\1>63 K/2\(>\2_)\1) o

(1+6)7"'<

(1+6)7t<

1+0)' < ( <
(1+0)7 = V()\O,Q)QK/Q\(A—AO,2> -

—uniformity of expansion rate close to dS:

1 1
/ AV (|KX = K|+ 0%) < o—Cy eaX0h0)
M A (for the surface, see also Mirbabayi 2018 )



Steps of proof: (2)

| DENTIFY

—Closeness to exponentially expanding spatial slices:

—Define EK?\()\—)\O)

g = 9()\0)63

e 1.€.: the spatial metric at some time, then let it grow as in dS

—from some flow-time on:

1g(N) —g(\)||g < Chye 585N

* pointwise



Steps of proof: (3)

| DENTIFY

—Closeness to dS spatial slices over exponentially expanding Balls:

—Define the spatial slices of dS:

2K3(A=Xo)

gdS()\) = € JdEuc

—from some flow-time on:

_ 1 g2
||g()\) T gdS()\>Hg()\)<e BRI )

. . 1 72 1 7-2 .
pointwise on BMr9N) (p)\, KLAemKA/\O . esHA(A AO)).

Here py results from following p along the flow.



—Spacetime Closeness to dS over exp. growing Balls:
—The flow defines a natural 4-metric
ds; = 9(4)d$“dx = —K%d)\* + gijdajidxj
e foliates the whole spacetimes (so there are no singularities, geodesic
completeness)
—Define the dS metric  ds3q := gés) = —Kid\* + (gas)ijdr'dz?.
—Take any future oriented timelike or null curve

—from some flow-time on:

L¥i[] — L[] < —B e~ 4 8 e a50% (N — A).



—Dilution of matter:

—from some flow-time on

167TGN/dz |TW6“"’6”Z’| < 167TGN/dz T,,ntn” < 014KA6_%K12\/\



—Physical equivalence to dS over exp. growing Balls
—Consider an observer
—equivalence of lengths
» —>same geodesics
» —> same horizon as in dS

—Observer has access to matter only from finite volume. All times, in this volume:

12)2C
167TGN/ Tt n”’| < m12) Hemafir
Mt (55, (Be(32))) Ka

—available energy-momentum is below any threshold: it feels as dS




Proof



Steps of proof: (1)

| DENTIFY

—Growth of geometric quantities:

—from some flow-time on:

Smin()\Q) < 1_|_ 5

Smin()\1>63 K/2\(>\2_)\1) o

(1+6)7"'<

(1+6)7t<

1+0)' < ( <
(1+0)7 = V()\O,Q)QK/Q\(A—AO,2> -

—uniformity of expansion rate:

1 1 pe2
/ AV (|KX = K?| + 0%) < --C7 ea 0o
My A (for the surface, see also Mirbabayi 2018 )



Steps of proof: (1)

| DENTIFY

—From Gauss-Codazzi:

174 14
Guntn” =8rGyT,,n"n",

2 2
= OGR4 §K2 —o? = gKi + 167G NT
= (3)R+§K2—OZZ§KJ2\,

= (S)R Z —CQKAB_%K*’Q\A ,

—Take global coordinates g = dz* + h, ,

—a Combination of Riccati-Gauss-Codazzi:

5 LA AW — _(3)R _ (2)R . (3)R + AMVA'LW — H?
Qv — 2z —

2

—On a mimimal slice: 77 — > Y
H =0and H >0, OR=®R - A, A" — H> - 2H' < ®R
=3 % §—§K2+02 < @R

41x0 < A7\

—But; @) <
R(Z’A)_S(z,)\) = 5oV

+ QCQKAB_%K?\A .

2 4
= S|K} - K?|+0” < OR 4 205 K}e 3R <



Steps of proof: (1)

—Evolution equation of metric:

| DENTIFY

dg;; 2 2
d)\] = 2KK;; = §K29fij +2Ko0;; = gKf\giﬂ’ + Esyij
Esij = 5(K?=K})gi; +2K 03,

4 X0

S -+ QCQKKG_%K?\A .

2
— = S|KI- K40 < PR+ 20K K3e 3K <

d 9 ]
. —d K24+ -FEq)dS .
= (3 AT S) °

4 4
Eg| <2 ([ ; X0 202K§e—%K%/\] + 2K, (14 Cy) [,/ S”XO + \/QCQ'KAQ—%K@D

min

— after proving that this derivative makes sense almost everytime.

— for the sphere, ensure first F'g decays, then

o (S ~ 3400

— < log 2




Steps of proof: (1)

| DENTIFY

—Now with traverse length:

OR=—A,A" — H> + DR — 2H'

Y / ( — K?) + 2) < K2C5 e 35X L(N)

L(\) , L(\) 9 o o
=>/ dz 0% < K2Cse 35 L) + / dz 3 (K? — K}) < K3 (C5 4 Cy) e 38N L(N)
0 0



Steps of proof: (1)

| DENTIFY

—Now with traverse length:

L(X) L()N)
L'(\ :/ dz KKZZ:/ dz (
0 0

KX
3

C 2 172 2 172 1 7.2
EL(V)| < KR—re i LY + K3 (1 + Ole—ﬁKA/\) (C5 4 Cy)2e 35 L(N)

= |L'(A) LN < EL(A)

—and one proceeds as before (and similarly for the volume)



Steps of proof: (1)

| DENTIFY

—Growth of geometric quantities:

—from some flow-time on:

Smin()\Q) < 1_|_ 5

Smin()\1>63 K/2\(>\2_)\1) o

(1+6)7"'<

(1+6)7t<

1+0)' < ( <
(1+0)7 = V()\O,Q)QK/Q\(A—AO,2> -

—uniformity of expansion rate:

1 1 pe2
/ AV (|KX = K?| + 0%) < --C7 ea 0o
My A (for the surface, see also Mirbabayi 2018 )



Steps of proof: (2)

| DENTIFY

—Closeness to exponentially expanding spatial slices:
_ , ZK2(A=X
Deﬁne g c— g()\o)eg A( 0)
e the spatial metric at some time, then let it grow as in dS

—from some flow-time on:

1g(N) —g(\)||g < Chye 588N

* pointwise
—The 1dea 1s to notice that, from some time on, the expansion rate 1s the one of dS.

* however, this proof is quite subtle.



| DENT iFY

Steps of proot: (2)
e First we show that the metric becomes less and less

dependent on <.

* In fact, notice that L5_g,, = 24,

H? + A, A

2
H + < CgK2e if N = |HI< =

e Integrate above

© 3 © 3
/o A AP < 55%\2 +4dey , = /0 Al < \/55?@2 + 4deyz .

. . : d _ 7.2
e So we see that the extrinsic curvature 1s small. Therefore, with grroT = dz* + g*

6_4\/2€>‘(22_Zl) < g(W7 W) < 64\/2€>‘(Z2_Zl)
— gprod(W’ W) —

* Therefore there 1s a long distance over which the metric changes by less than (1 4+ 9 )

log?(1+46) 1 1 [3
d° = — log?(1 + 6
A 39, K64\ Cq og"(1+0)e

K2

W




| DENT iFY

Steps of proot: (2)
* New we show that the expansion rate converges

in some average to the dS one.

e Recollect g 1= g()\o)egK/Q\(A—AO)

« Define E(\) i— /M 1900 — gy dViy
A

e Notice

E(\) =0
e Evolution:

, 2 4
B0 = [ Kllg—gllav,+2 [ (g8 2KK, — SKig)aV, — sKIEO)
./\/l>\ MA

e Estimate all terms: 3
[ vy kg - gl < K3 (14 500 ) B
My

C1
° ... = FE < KZ(; e~ 3 KRN0 IR , as good as could be.

A
—some of these terms require conditional proximity to the reference metric.

19(N) — g(XN)llgov) <7
 Putting this with the fact that the metric 1s quasi constant in 2z , leads unconditionally:

= |lg(\) — g\\)||g < Crpe~sFiN



Steps of proof: (3)

| DENTIFY

—Closeness to dS spatial slices over exponentially expanding Balls:

—Define the spatial slices of dS:

2K3(A=Xo)

gdS()\) = € JdEuc

—from some flow-time on:

_ 1 g2
||g()\) T gdS()\>Hg()\)<e BRI )

. . 1 72 1 7-2 .
pointwise on BMr9N) (p)\, KLAemKA/\O . esHA(A AO)).

Here py results from following p along the flow.



Steps of proof: (3)

S~ A 8%'5“))

| DENTIFY

2
_Intuitive: the metric takes the form: 9 = d2° + .,
—Each 2-slice 1s expanding, so it gets flatter. Then also it is slowly varying in 2.

—Furthermore, the growth 1s pointwise the same (by the former theorem), so, once they

are close, they remain close.
— => Closeness to dS spatial slices over exponentially expanding Balls:

—Define the spatial slices of dS 115()) — g q( Mooy <€ L K2

)

A) =
gdS( ) e pomtwise on B(MA’Q(A)) (p 7L€112[{2)\ egl),KQ()\ AO)).

Here py results from following p along the flow.



—Spacetime Closeness to dS over exp. growing Balls:
—The flow defines a natural 4-metric
ds; = 9(4)d$“dx = —K%d)\* + gijdajidxj
e foliates the whole spacetimes (so there are no singularities, geodesic
completeness)
—Define the dS metric  ds3q := gés) = —Kid\* + (gas)ijdr'dz?.
—Take any future oriented timelike or null curve

—from some flow-time on:

L¥i[] — L[] < —B e~ 4 8 e a50% (N — A).



*Given g2 = W datdy” = —K2dN? + g;;da'da?
e we need more control on K :

— K 1s almost-always < independent:

dK 1 Mz Clo 1
— —AK+-K (K* - K; ‘K <0 = / Ad)\’/ dV |[VK|? < =12 g38aA
A\ +3kd DR \ o, WVIVER S g e
* We can define Bad gradient times (with very small measure):
1/9 |
3. 1 € )
B, :={K:xelii+1)] /dz VKN 2)2 > Cp K3emsil = |By| < 2 s — ¢ -

* In the complementary (good gradient times): pointwise
1 .
1

K — K| <2Kp\/Chae™ 9",



e Given ds? = gfﬁ,)dx“dx” = KN\ + gi;datda?

 Foliation of spacetime by this metric:

d ot
—tmin(A) = =— (2, \) = K(z)\, \) = tnin(A) = tmin(Aoa) +/ AN K(xy, ') >
d)\ O\ | Ao,4,\]
, , K\ 1
> tmin(No.4) +/ dN K(zx, A') > tmin(Aoa) + — ()\ Ao4 — 2) :
Mo, AING 2 K3

* S0, no singularities, geodesic completeness.

e Since K = K, up to small quantities, or up to exponentially small time intervals
(during which K < 2K, ), and since the spatial metric 1s always exponentially close to

dS on exp. growing balls => upon integration on any curve, we get the same result.

—In particular, null curves stay in the ball (intuitive)



—Dilution of matter:

—from some flow-time on

167TGN/dZ T, nt'n"| = 167TGN/dZ T,,ntn” =

2
— /dZ ((3)R_|_ § (K2 o KZQ\) . 0.2) S 014KA€_%K/2\>\ j
167TGN/dz }Tuye“a’e”b| < 167TGN/dz T,,nMn” < C'MKAB_%K/Q\A

—compatible with Israel junction condition for domain walls



Steps of proof: (5)

| DENT iAFY

—How come we get pointwise converg.?
2d SURFACE

\,ISOMETRY

—Domain wall of aliens:

167TGN/dz |T/ﬂ,e“a’e”b| < 167TGN/dz T,,n"n” < 014KA6_%K/2\>\

—Israel junction conditions: metric continues

_ g ~
Ky — Koy = 87Gy (Sap — 22267°5,5)
_ L2y
—Because of DES, S ~ e 374

. . 2 C1go
—In agreement with pointwise convergence of metric and with |[H| < 7 v Cg K pe™ 3544



—Physical equivalence to dS over exp. growing Balls
—Consider an observer
—equivalence of lengths
» —>same geodesics
» —>same horizon as in dS

—QObserver has access to matter only from finite volume. At all times, 1n this volume:

12)2C
167TGN/ Tt n”’| < m12) Hemafir
Mt (55, (Be(32))) Ka

—available energy-momentum is below any threshold




Theorem

If the 2-surfaces have non-positive Euler characteristic (or
in the case of 2-spheres, if the initial 2-spheres are large
enough) and also if the initial spatial slice is expanding
everywhere, then the asymptotically the spacetime becomes
physically indistinguishable from de Sitter space on
arbitrarily large regions of spacetime. This holds true
notwithstanding the presence of initial arbitrarily-large
density fluctuations and potential singularities.

with Creminelli, Hershkovits, Vasy Advances in Math. 2023



Mean Curvature Flow 1n de Sitter
with Hershkovits 2023



Is Mean Curvature Flow good?

e The usage of MCF revealed itself useful for the 2-isometry case. But that was a

symmetric case, with no singularities.

* In general, we expect singularities to form, so, we need to be able to describe some

local regions of A,

e We achieved this in with Hershkovits 2023

* Consider a tube of de Sitter space:

Nr={(z.t) eR®* xR | |z| < R}

2t 2 2 2 2
g = e“*(dxy + daj + dx3) — dt




Locally converging to FRW slicing

®* . Theorem 1.3 (Main theorem - geometric version). There exists a universal
R < oo with the following significance: Let (Ms)sei0,00) be a graphical mean

curvature flow in Ngr N{t > 0} with bounded, non negative mean curvature,
and with graphical function u(x,s). Then

(10) lim «(0, \) = oo,

A—r00

and setting M) = Ou0.0) (Mxys), we have

Cee (R3xR)  —
(11) ar GeeE,

as A\ — 0.

e where M, =t ! (3s) iste MCF given by the flat slices of the FRW slicing of dS.



Locally converging to FRW slicing

* Proof:
—several 1deas
—perhaps most innovative/crucial:
* study the evolution of v? (nw(r),
ewith 1(7) = (R —1r)P
at |;'17\2

r(xy,re,x3.t) = €

* so effectively focus the study on the tube:
Do r = {(z.t) | e|z]* < R}

°cg:

sup v< C
ZG]\"IS mDa.R/Q



