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• For long time, unclear how inflation starts.

• Two challenges:

– Philosophical challenge: unusual in Physics:

• normally: choose initial state and predict evolution

• here: viability of some initial states

• High inhomogeneity        Lack of Control

Starting Inflation
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Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.
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• High inhomogeneity        Lack of Control

• Advanced numerical techniques (same codes as LIGO)
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• High inhomogeneity        Lack of Control

• Advanced numerical techniques (same codes as LIGO)

• Establish that inflation starts            times out                                                                          
of inhomogenous initial conditions

Starting Inflation

O(1) (1)

@t⇢+ @i

�
⇢v

i
�
= 0 (2)

@tv
i + v

j
@jv

i +
1

⇢
@ip = viscous terms (3)

��
4 (4)

S =

Z
d
4
x () (5)

⌦m, h (6)

(7)

ln(1010As) ⌦m h
�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000
Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

) (1)

d
2
�T (t)

dt2
+ k

2
�T (t) = 0 (2)

hngal(~x)ngal(~y)i , hngal(~k)ngal(~k
0)i ⌘ P (~k) �(3)

⇣
~k + ~k

0

⌘
(3)

h�(0)�(z)i ⇠
1

z

p
�+O(�)

(4)

��
4 in de Sitter space (5)

O(1) (6)

@t⇢+ @i

�
⇢v

i
�
= 0 (7)

@tv
i + v

j
@jv

i +
1

⇢
@ip = viscous terms (8)

��
4 (9)

S =

Z
d
4
x () (10)

⌦m, h (11)

(12)

ln(1010As) ⌦m h
�stat �sys �stat �sys �stat �sys

Challenge 0.10 0.00 0.012 0.000 0.029 0.000
Challenge with rd 0.06 0.00 0.008 0.000 0.009 0.000
Patchy NGC 0.18 0.00 0.019 0.007 0.043 0.018
Patchy NGC with rd 0.12 0.07 0.016 0.000 0.018 0.000
Patchy NGC with Bisp. 0.15 0.00 0.016 0.006 0.032 0.022
Patchy NGC with Bisp. with rd 0.11 0.09 0.015 0.000 0.016 0.000

Table 1: Summary of individual Analysis over Simulations up to kmax = 0.25hMpc�1 for the power
spectrum and up to kmax = 0.1hMpc�1 for the bispectrum monopole. See Sec. ?? for a description of
how we measure the systematic error, and the special discussion we have about Patchy mocks and also
that the convergence criterion of the MCMC for the Challenge Full boxes is less strict.

with East, Linde and Kleban 2016



–Conjecture (~Hawking, …, Kleban & I): 

all initial expanding universes with                   and with the right topology will reach de 
Sitter space 

de Sitter no-hair Theorem
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• Handle analytically spacetimes with no symmetries and singularities

• ~Hawking-Penrose, Christodoulou, Huiskin, …

Starting Inflation: Connections to Math

\



• Handle analytically spacetimes with no symmetries and singularities

• ~Hawking-Penrose, Christodoulou, Huiskin, … 

• Thurston Geometrization Classification (Poincarè Hypothesis)

– Mean Curvature Flow

Starting Inflation: Connections to Math
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Thurston Geometrization Conjecture

– All compact oriented 3-manifold fall into one of these three classes

–(i) ``Closed’’:         can be anything 

• ex:                

• and connected sums

–(ii) ``Flat’’:           must be either negative somewhere or zero everywhere

•  ex:

• and connected sums

–(iii) ``Open’’:            must be negative somewhere

• ex: 

–Any connected sum of (i) and (ii) with a factor of (iii) is of kind (iii)

Thurston, Hamilton, Perelman
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• GR/Diff. Geometry is very active field of Mathematics

– often: deal with stability of spacetimes: so, they know what they have at hand

– often: focus on the fact that bad things must happen

– sometimes: more interested in geometry conclusions than physics conclusions

• In Cosmology: almost always deal with small fluctuations: we know the asymptotic 
regime of the universe, up to small corrections.

– Exceptions: eternal inflation and prior to inflation

• Here we are dealing with something different:

– the spacetime is quite unknown, and we wish to explore it

– to answer pressing physics question 

Personal comments on the connection to Math







–Already Wald (1983) had shown that if the DEC is preserved, all homogeneous but 
inosotropic universe (Bianchi universes) that are not `closed’ (that is non-Bianchi-
Type-IX universes) and            , asymptote to de Sitter.

–DEC:                   is future-directed timelike or null for any timelike  

–WEC: 

–SEC: 

–But inhomogeneities are more challenging.

–diff. equations become partial diff., and singularities form, geodesic cross, etc.. It is 
a hugely less symmetric situation.

• we will however see that a sort of similar conclusion holds

• Let us therefore consider general `cosmologies’.

Homogenous Cosmology

DEC : Tµ⌫t
⌫ is past directed for all future directed timelike tµ, “⇢ > p00 (1)

) �µ⌫ = 0, Tµ⌫ = 0 (with dominant energy condition) (2)

R(3) = 0 everywhere (3)

H3/�, H2
⇥R, nil, sol, fSL(2, R) (4)

R3/�( with � an isometryof R3) (5)

S3, S2
⇥ S1, S3/�(with � 2 SO(4)), RP 3 (6)

16⇡GTµ⌫n
µn⌫

| {z }
�0 by WEC

= R(3)
��µ⌫�µ⌫| {z }

0

(7)

16⇡GTµ⌫n
µn⌫ = R(3)

� �µ⌫�µ⌫ (8)

nµn⌫Gµ⌫ =
1

2

n
R(3) +

�
Kµ

µ

�2
�Kµ⌫K

µ⌫
o
= 3� surface quantities (9)

nµn⌫Gµ⌫ = 8⇡GTµ⌫ nµn⌫ (10)

)

p

h ⇠

p
h0 e

Kt (11)

Kµ⌫ = hµ
⇢
r⇢n⌫ , (12)

K = rµn
µ , �µ⌫ = Kµ⌫ �

1

3
Khµ⌫ (13)

R(3)
 0 at least at one point (14)

R(3)
� 0 everywhere (15)

K = 0 everywhere (16)

Tµ⌫t
µt⌫ � 0 (i.e.“⇢ � 0, ⇢+ p > 000) , for any tµ timelike (17)

/ MPl/HI (18)

)
�
�

k
a2

�

k
a2

⇠ 1 (19)

⇢FRW (20)

�⇢/⇢ ⇠ 1 ) �⇢FRW/⇢FRW ⇠ 1 (21)
k

a2max

. HI ⇠ ⇤ (22)

(⇢ > 0&⇤ > 0)& k  0 ) Impossible (23)

)
k

a2
=

8⇡G

3
⇢+

⇤

3
(24)

) H = 0 (25)

Gµ⌫ = 8⇡GTµ⌫ � ⇤gµ⌫ , (26)

) Gµ⌫n
µn⌫ = (8⇡GTµ⌫ � ⇤gµ⌫)n

µn⌫ (27)

) H2 +
k

a2
=

8⇡G

3
⇢+

⇤

3
(28)

hµ⌫ = gµ⌫ + nµn⌫ (29)

. . .

⇤ > 0 (1)

distance = a⇥ time2 (2)

sin(✓i) = nr sin(✓r) (3)

(Rµ⌫⇢�)2n⇤2n
C

⇤4n
. (Rµ⌫⇢�)2n

⇤2n
R

(4)

�  0 (5)

⇤R ! 0 (6)
d

d�
= K

d

dt
(7)

n
µ
n
⌫ 8⇡G Tµ⌫ = Gµ⌫n

µ
n
⌫ (8)Z

d
4
x
p
�g Rµ⌫⇢�R̃

µ⌫⇢� (9)
Z

S

p
h

(2)
R = 0 (10)

H|
S
= 0 (11)Z p
h

(2)
R = 0 (12)

K
2 (13)

K ! K⇤ & �µ⌫ ! 0 almost everywhere

) gij(t) ! gij(t0)e
2
3K⇤t & (2)

Rµ⌫ ! 0 almost everywhere

Kµ⌫ =
1

2
Khµ⌫ + �µ⌫ (14)

hK2i ! K
2
⇤ (15)

hK2i � K
2
⇤ (16)

& dV/d� = hK2iV (17)

(18)



–First Assumption: we consider a cosmology:

– a connected 3+1 dimensional spacetime with a compact Cauchy surface

•  This implies (Geroch 1970):

–the spacetime is topologically 

–it can be foliated by a family of topologically identical Cauchy surfaces

A Cosmology



–We will prove a theorem under the following assumptions: 

–First Assumption: A cosmology

–Second Assumption: Matter satisfies Dominant and Strong energy condition and there is 
also 

–Third Assumption: The spatial topology of          must not be `closed’, i.e. it must not be 
of type (i) that we defined earlier (roughly,          must not have topology of sphere) 
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2+1 dimensions



Proved

with Creminelli, Vasy, Comm Math Phys 2020–  de Sitter no hair theorem proved in 

–  Here the Gauss-Bonnet theorem and the fact that the Riemann is known in terms of the 
Ricci played a hugely simplifying role.

–  Though, quite non trivial statement.



3+1 dimensions



Anisotropic Inhomogenous Cosmology
with Kleban JCAP 2016



Theorem with Kleban JCAP2016

For the first sentence, see also 
Barrow and Tippler 1985



–This implies that in a big bang cosmology, there cannot be a big crunch

– very strongly suggesting cosmology reaches infinite volume, gradient energy will 
dilute, and inflation will start, no matter initial inhomogeneities and scale of 
inflation.

Theorem

For the first sentence, see also 
Barrow and Tippler 1985

with Kleban JCAP2016



–             is the orthonormal vector to         : 

–  Spatial metric          :

–  Extrinsic curvature 

–how much the family of geodesics induced by           deviates

–Notice                                     : rate of growth of volume

Notation

)

p

h ⇠

p
h0 e

Kt (1)

Kµ⌫ = hµ
⇢
r⇢n⌫ , (2)

K = rµn
µ
, �µ⌫ = Kµ⌫ �

1

3
Khµ⌫ (3)

R
(3)

 0 at least at one point (4)

R
(3)

� 0 everywhere (5)

K = 0 everywhere (6)

Tµ⌫t
µ
t
⌫
� 0 (i.e.“⇢ � 000) , for any t

µ timelike (7)

/ MPl/HI (8)

)
�
�

k
a2

�

k
a2

⇠ 1 (9)

⇢FRW (10)

�⇢/⇢ ⇠ 1 ) �⇢FRW/⇢FRW ⇠ 1 (11)
k

a2max

. HI ⇠ ⇤ (12)

(⇢ > 0&⇤ > 0)& k  0 ) Impossible (13)

)
k

a2
=

8⇡G

3
⇢+

⇤

3
(14)

) H = 0 (15)

Gµ⌫ = 8⇡GTµ⌫ � ⇤gµ⌫ , (16)

) Gµ⌫n
µ
n
⌫ = (8⇡GTµ⌫ � ⇤gµ⌫)n

µ
n
⌫ (17)

) H
2 +

k

a2
=

8⇡G

3
⇢+

⇤

3
(18)

hµ⌫ = gµ⌫ + nµn⌫ (19)

) h00 = h0i = 0 , hij = gij (20)

nµ = (1,~0) (21)

a(t) = radius of curvature (22)

K = +1 , Sphere (23)

K = 0 ,Flat (24)

K = �1 ,Hiperboloid (25)

ds
2 = �dt

2 + a(t)2d⌃2 (26)

d⌃2 =
dr

2

1� kr2
+ r

2
d⌦2

2 , d⌦2
2 = d✓

2 + sin(✓)2d�2 (27)

HI ⌧ MPl ) prob ⇠ e
�MPl

HI (28)

ci(t) =

Z
dt

0
K(t, t0) D(t0)i (29)

Figure 2: A pictorial representation of an example of the geometry of the spatial slices allowed by

our assumptions.

4 Notations and statement of main results

Notation and conventions. The Riemann tensor is defined through (rµr⌫�r⌫rµ)!⇢ =

R �
µ⌫⇢ !�, the Ricci tensor by Rµ⌫ := R �

µ�⌫ (we also use the notation Ric(a, b), with a, b being

two vectors), the Ricci scalar (also known as scalar curvature) by R := R µ
µ .

A time sliceM� has an induced Riemannian metric gµ⌫ , and we can write g(4)µ⌫ = gµ⌫�nµn⌫ ,

where g(4)µ⌫ is the spacetime metric (we use the mostly-plus convention) and nµ is orthonormal

to M�, nµnµ = �1, and future-directed. The extrinsic curvature (also known as second

fundamental form) of these slices is defined asKµ⌫ := g ↵
µ r↵n⌫ , satisfying nµKµ⌫ = 0 and with

trace (also known as mean curvature) K := gµ⌫Kµ⌫ = g(4)µ⌫Kµ⌫ , and traceless part �µ⌫ :=

Kµ⌫ �
1

3
Khµ⌫ (with our sign convention K > 0 corresponds to expansion). We also define

�2 := �µ⌫�µ⌫ ; notice that �2
� 0, since �µ⌫ is a tensor projected on the spatial hypersurfaces.

The Ricci tensor and Ricci scalar (scalar curvature) associated with the induced metric gµ⌫
on the 3-dimensional slices are denoted, respectively, by (3)Rµ⌫ and (3)R.

Similarly, each 2-dimensional symmetric orbit (or covering image of a symmetric orbit)

⌃ (see Section 3) within M� has induced metric hµ⌫ satisfying gµ⌫ = hµ⌫ + tµt⌫ , where tµ

is orthogonal to ⌃ and to nµ and tµtµ = 1. The extrinsic curvature (second fundamental

form) of this slice within M� is defined as Aµ⌫ := h ↵
µ r↵t⌫ , satisfying tµAµ⌫ = 0 and with

trace (mean curvature) H := hµ⌫Aµ⌫ . The Ricci tensor and Ricci scalar (scalar curvature)

associated with the induced metric hµ⌫ on a 2-dimensional slices are denoted by (2)Rµ⌫ and
(2)R respectively.

We denote by the capital or lower case letters Ci, and Di, with i = 1, 2, 3, . . ., non-negative

constants that depend only on the intrinsic and extrinsic properties of the initial 3-manifold

of the flow: M0. We refer to such constant as universal.
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–Consider (     reabsorbed in stress tensor)          

–From Gauss-Codazzi

– .       we have 

–If a surface has extremal volume, the volume is stationary wrt any variations. Since

–Then, if there exist an extremal surface, on that surface we must have,
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A de Sitter no-hair Theorem
for Cosmologies

 with isometry group forming 2-dimensional orbits
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–Fourth Assumption: there is a group         which acts on             and such that the 
induced action on            is by isometries, and such that the orbits under       are closed 
surfaces.

–In reality,         acts on the universal cover of

–Homogenous anisotropic surfaces

Hypothesis
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Theorem

If the 2-surfaces have non-positive Euler characteristic (or 
in the case of 2-spheres, if the initial 2-spheres are large 
enough) and also if the initial spatial slice is expanding 
everywhere, then, asymptotically, the spacetime becomes  
physically indistinguishable from de Sitter space on 
arbitrarily large regions of spacetime. This holds true 
notwithstanding the presence of initial arbitrarily-large 
density fluctuations and potential singularities. 

with Creminelli, Hershkovits, Vasy Advances in Math. 2023



–             is the orthonormal vector to         : 

–  Spatial metric          :

–  Extrinsic curvature 

–how much the family of geodesics induced by           deviates

–Notice                                     : rate of growth of volume
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�2 := �µ⌫�µ⌫ ; notice that �2
� 0, since �µ⌫ is a tensor projected on the spatial hypersurfaces.

The Ricci tensor and Ricci scalar (scalar curvature) associated with the induced metric gµ⌫
on the 3-dimensional slices are denoted, respectively, by (3)Rµ⌫ and (3)R.
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of the flow: M0. We refer to such constant as universal.
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Method:
Mean Curvature Flow



–We probe the geometry of the manifold, solution to Einstein equations, using mean 
curvature flow:

–We reconstruct the spacetime geometry from the one of the flow surfaces.

Mean Curvature Flow

Figure 1: A depiction of Mean Curvature Flow. The new surface has larger or equal volume than

the previous one.

x), and the global spacetime, M0 ⇥ [�in,�max) ! M (3+1). We take �in = 0. The evolution

under the change of � is given by (see for instance [40])

d

d�
yµ(x,�) = Knµ(y↵) , (3)

where nµ is the future-oriented vector orthonormal to the surface of constant �. We denote

by M� the geometric image of y(·,�).

Using the first variation of area formula

Ln log
p

h = K , (4)

one gets the variation of the volume element
p
h under the flow: d

d�

p
h = K2

p
h. Therefore

the total spatial volume V (�) :=
R
M�

d4x
p
h satisfies

Ln log
p

h = K , )
dV

d�
=

Z

M�

d4x
p

hK2
� 0 . (5)

Hence after the deformation, the new surface has either strictly larger or equal volume

(see Fig. 1). MCF has been very much studied in the context of Riemannian manifolds, but

there is quite a large literature also for the Lorentzian (or semi-Riemannian) one, see [40, 14].

We will assume that M (3+1) satisfies Einstein equations, and we will use MCF to probe

the geometry of M (3+1). This is possible because the flow is endowed by many regularity

properties as we review below. Importantly, in the Lorentzian cosmological context, the flow

is globally graphical, which is rarely a natural assumption in the Riemannian setting.

6

K > 0

K < 0

K > 0

Figure 1: Pictorial depiction of Mean Curvature Flow. The new surface has larger or equal volume

than the previous one. Figure from [3].

(With our sign convention K > 0 corresponds to expansion.) We also define �2
⌘ �µ⌫�µ⌫ ;

notice that �2
� 0, since �µ⌫ is a tensor projected on the spatial hypersurfaces.

We will use the MCF of codimension-one spacelike surfaces in Lorentzian manifolds. This

is defined as the deformation of a slice as follows: yµ(x, �) is, at each �, a mapping between

the initial spatial manifold M0, (which is parametrized by x) and the global spacetime, M0 ⇥

[0, �0) ! Mn+1. The evolution under the change of � is given by (see for instance [14])

d

d�
yµ(x, �) = Knµ(y↵) , (1)

where nµ is the future-oriented vector orthonormal to the surface of constant �.

Using the first variation of area formula

Ln log
p

h = K , (2)

one gets the variation of
p

h under the flow: d
d�

p
h = K2

p
h. Therefore the total spatial

volume V ⌘
R
Mt

dnx
p

h satisfies

dV

d�
=

Z
dnx

p

h K2
� 0 , (3)

where � is the a�ne parameter of the deformation. Hence after the deformation, the new

surface has either strictly larger or equal volume (see Fig. 1). MCF has been very much

studied in the context of Riemannian manifolds, but there is quite a large literature also for

the Lorentzian (or semi-Riemannian) one, see [11].

The use of MCF is particularly useful in our context because of the following two proper-

ties. First, in the Lorentzian case, this flow is endowed by many regularity properties [11], as

3



–Important facts:

–The flow stays regular, and so exists, at all times 
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–Important facts:

–Stays away from singularities

–as there spatial volume decreases
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–Important facts:

–Stays away from singularities

–as there spatial volume decreases

–e.g. barriers in Swartzschild and Kerr
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–Important facts:

–The flow stays regular, and so exists, at all times 

–The maximum of the extrinsic curvature on a slice,           , decays exponentially 
towards        :

–               at all times

– Simple application of maximum principle

Mean Curvature Flow

with Creminelli, Vasy, Comm Math Phys 2020

The evolution of K under MCF reads

0 =
dK

d�
��K +

1

3
K3 + (�2 + Ric(n, n))K , (6)

where � is the Laplacian operator on the three dimensional evolving surface, M�, where we

remind that �2 is the norm squared of the traceless part of the second fundamental form, and

where Ric is the Ricci tensor (See [40, Proposition 3.3]). Substituting (n, n) into the Einstein

equation (1), we get

Ric(n, n) +
1

2
R = 8⇡GN(T (n, n) + ⇤) , (7)

while tracing (1) yields

�R = 8⇡GN(T � 4⇤) , (8)

where T is the trace of Tµ⌫ . Combining (7) with (8) gives

Ric(n, n) = �8⇡GN⇤+ 8⇡GN

✓
T (n, n)�

1

2
Tg(n, n)

◆
, (9)

which, after substituting into (6) gives

dK

d�
��K +

1

3
K

�
K2

�K2

⇤

�
+ �2K +R(m)

µ⌫ nµn⌫K = 0 , (10)

where

K2

⇤
:= 24⇡GN⇤ > 0 , (11)

and

R(m)

µ⌫ := 8⇡GN

⇣
Tµ⌫ �

gµ⌫
2

T
⌘

. (12)

The SEC gives

R(m)

µ⌫ nµn⌫
� 0 . (13)

Two properties of the evolution under MCF are worthwhile mentioning. First, if a surface

is spacelike, it remains so: in fact the local volume form is non-decreasing under MCF, but

it would vanish if the surface became null anywhere (see for example [18]). Second, it also

preserves the property that K > 0 everywhere (see e.g. [14], Proposition 2.7.1). Intuitively,

this is because the flow stops in any region where K approaches zero.

Our stated assumptions were used in [20] to prove the following useful statements about

the maximum of K and the existence of the flow. We reproduce them here for convenience,

referring to [20] for their proofs.

Theorem 1 (Bound on the Maximum of K). [20] Let M� be smooth compact spacelike

hypersurfaces satisfying the MCF equations, in an interval [0,�1], inside the smooth (3 + 1)-

dimensional Lorentzian manifold M (3+1)
satisfying (1) and SEC. Suppose also there exists a

point (x,�), with 0  �  �1, such that K(x,�) > K⇤, then we have

Km(�1)  K⇤ + e�
2
3K

2
⇤�1(Km(0)�K⇤)  K⇤

⇣
1 + C1e

� 2
3K

2
⇤�1

⌘
. (14)

with C1 = max(Km(0)/K⇤ � 1, 0). So the maximum, if larger than K⇤, decays exponentially

fast towards K⇤ with a rate given by the cosmological constant.
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level sets Sc = {t̃ = c}, with c > c0, have mean curvature K̃ < �c. 5 We shall say that a

Cosmology has potential singularities only of the crushing kind if there is an open set N such

that, outside N , the inverse of the lapse of the t foliation, N�1, is bounded, and such that

N contains a Cauchy slice and admits a future crushing function t̃ and, for any given c, in

{t̃  c}, N�1 is bounded.

In physical terms, this N corresponds to a subset of the interior of black holes, and we are

requiring that any possible pathology takes place only for t̃ ! 1.

Under these assumptions, we will prove the following:

Theorem 1 The spatial volume goes to infinity. At late times, i.e. for large values of the

MCF a�ne parameter �, the spacetime converges, on average, to de Sitter space; and there

are arbitrarily large regions of space-time that are physically indistinguishable from de Sitter

space.

Proof of the theorem

Existence of the flow: We first establish the existence of MCF for arbitrary flow parameter

�.

The MCF evolution of K (see for example [16]) is given by 6

dK

d�
� �K +

1

n
K

�
K2

� K2
⇤

�
+ �2K + R(m)

µ⌫ nµn⌫K = 0 , (9)

)
dK

d�
� �K +

1

n
K

�
K2

� K2
⇤

�
+ �2K  0 ,

5For example in a Schwarzschild-de Sitter spacetime in the standard coordinates, one could take t̃ to be a
function of r for r close to 0, so the level sets Sc would be r = const.

6One can get this equation similarly to the derivation of the Raychauduri equation, bearing in mind that
we are not following geodesics orthogonal to the surface.

dK

d�
=Kn↵

r↵(rµn
µ) = Kn↵

rµr↵n
µ

� R µ
↵µ⇢ n⇢n↵K = Krµ(n

↵
r↵n

µ) � Krµn
↵
r↵n

µ
� R↵⇢n

↵n⇢K =

=Krµ(n
↵
r↵n

µ) � KKµ⌫K
µ⌫

� R↵⇢n
↵n⇢K .

(6)

Imposing that nµ remain perpendicular to the surface one gets

Kn↵
r↵n

µ = hµ⌫
r⌫K . (7)

Therefore

Krµ(n
↵
r↵n

µ) = rµ(h
µ⌫

r⌫K) � rµKn↵
r↵n

µ = �K � rµ(h
↵⌫

r⌫K)nµn↵ � rµKn↵
r↵n

µ = �K , (8)

where in the last step, to obtain the Laplacian on the surface, we separated the covariant derivative in the
components parallel and orthogonal to the surface. Plugging this expression in eq. (6) one obtains eq. (9)
after separating the contribution of the cosmological constant and the traceless part of Kµ⌫ .

6

K � 0

S ⇠ e
� 1

3K
2
⇤� (1)

n (2)

O(1) (3)

. . . (4)

⇤ > 0 (5)

distance = a⇥ time2 (6)

sin(✓i) = nr sin(✓r) (7)

(Rµ⌫⇢�)2n⇤2n
C

⇤4n
. (Rµ⌫⇢�)2n

⇤2n
R

(8)

�  0 (9)

⇤R ! 0 (10)
d

d�
= K

d

dt
(11)

n
µ
n
⌫ 8⇡G Tµ⌫ = Gµ⌫n

µ
n
⌫ (12)Z

d
4
x
p
�g Rµ⌫⇢�R̃

µ⌫⇢� (13)
Z

S

p

h
(2)
R = 0 (14)

H|
S
= 0 (15)Z

p

h
(2)
R = 0 (16)

K
2 (17)

K ! K⇤ & �µ⌫ ! 0 almost everywhere

) gij(t) ! gij(t0)e
2
3K⇤t & (2)

Rµ⌫ ! 0 almost everywhere

Kµ⌫ =
1

2
Khµ⌫ + �µ⌫ (18)

hK
2
i ! K

2
⇤ (19)

hK
2
i � K

2
⇤ (20)

& dV/d� = hK
2
iV (21)

(22)
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–Growth of geometric quantities:

–from some flow-time on:

–uniformity of expansion rate close to dS:

Steps of proof: (1)
Notice that the additional requirement in the case of the sphere depends exponentially on

the initial conditions. This is di↵erent from what happens in the case of complete homogeneity

where, for Bianchi-IX universes, one has to impose a lower bound on (3)R [24]. This bound

however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a

point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(�) the

length, at time �, of any geodesic � that is parallel to the z-direction, from an initial slice to

itself. Additionally, denote by V (�) the volume of M� at time �.

Theorem 5. Under the conditions of Theorem 4, for every � > 0, there exists �0,2��0,1 such

that for every � > �0,2

(1 + �)�1


L(�)

L(�0,2)e
1
3K

2
⇤(���0,2)

 1 + � . (66)

and

(1 + �)�1


V (�)

V (�0,2)eK
2
⇤(���0,2)

 1 + � . (67)

Proof. Re-arranging (41), we obtain

(3)R = �Aµ⌫A
µ⌫

�H2 + (2)R� 2H 0 . (68)

Let us integrate (67) along all the z-directed geodesic. By the periodicity, the term in H 0

does not contribute. Therefore, using (44), we obtain

Z L(�)

0

dz (3)R 

Z L(�)

0

dz (2)R 

Z L(�)

0

dz
2 · 4⇡�0

Smin(�0,1)e
2
3K

2
⇤(���0,1)

= K2

⇤
C5e

� 2
3K

2
⇤�L(�) (69)

where

C5 :=
8⇡�0

K2

⇤
Smin(�0,1)e�

2
3K

2
⇤�0,1

, (70)

and where we used Theorem 4, since � > �0,1, given that for this Theorem we are assuming

� > �0,2��0,1. In light of (25), we therefore have that

Z L(�)

0

dz

✓
2

3

�
K2

⇤
�K2

�
+ �2

◆
 K2

⇤
C5 e

� 2
3K

2
⇤�L(�) . (71)

This implies that, using Theorem 1:

Z L(�)

0

dz �2
 K2

⇤
C5e

� 2
3K

2
⇤�L(�) +

Z L(�)

0

dz
2

3

�
K2

�K2

⇤

�
 K2

⇤
(C5 + C2) e

� 2
3K

2
⇤�L(�) .

(72)

Using again Theorem 1, we therefore get that

Z L(�)

0

dz

✓
2

3
|K2

⇤
�K2

|+ �2

◆
 K2

⇤
C6e

� 2
3K

2
⇤�L(�) , (73)
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Integrating the ordinary di↵erential inequalities (80), and defining �00
0,2 = max(�0,1, �̄00

0,2), with

�̄00
0,2 such that

Z 1

�̄00
0,2

d�

✓
3

2
K2

⇤
C6e

� 2
3K

2
⇤�

◆
 log(1 + �) , (83)

we obtain

(1 + �)�1


V (�)

V (�00
0,2)e

K2
⇤(���00

0,2)
 1 + � . (84)

Choosing �0,2 = max(�0
0,2,�

00
0,2), we obtain the desired result.

Lemma 2. There exists some C7 such that

Z

M�

dV
�
|K2

⇤
�K2

|+ �2
�


1

K⇤

C7 e
1
3K

2
⇤(���0,2) (85)

Proof. The desired result is obtained by combining (79) with (66), with C7 = 3

2
C6(1 +

�)K3

⇤
V (�0,2)e�

2
3K

2
⇤�0,2 .

Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow

as to be �0,2, so from now on �0,2 = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).

In particular, we have, for every � > 0

1

2


V (�)

V (0)eK
2
⇤�

 2 , (86)

1

2


Smin(�)

Smin(0)e
2
3K

2
⇤�

 2 , (87)

and Z

M�

dV
�
|K2

⇤
�K2

|+ �2
�


1

K⇤

C7 e
1
3K

2
⇤� . (88)

6 Spatial proximity

In this section we focus on the spatial part of the metric, i.e. the induced metric on the

hypersurfaces M� at fixed �. One can define a comparison metric

g := g(�0)e
2
3K

2
⇤(���0). (89)

This corresponds to evolving in �, starting from �0, the spatial metric of M�0 , with the same

rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at

constant � converges pointwise, for large �0, to this comparison metric. At the end of this

section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the

flat slices of de Sitter space, which approximates g over expanding balls.

20

(for the surface, see also Mirbabayi 2018 )

Proof. First, we show that g is Lipschitz. For every t, let xt be a point such that g(t) = f(xt, t).

Then for every t, s 2 [a, b], we have

g(s)� g(t)  f(xt, s)� f(xt, t) =

Z s

t

dt0
@f

@t
(xt, t

0)  C3|t� s|, (30)

where C3 = max(x1,t1)2K⇥[a,b]
@f
@t (x1, t1). Similarly, g(t) � g(s)  C3|t � s|, so g is indeed

Lipschitz, hence di↵erentiable almost everywhere and obeying the fundamental theorem of

calculus.

Let t0 be a point of di↵erentiability of g. In particular

lim
t&t0

g(t)� g(t0)

t� t0
= g0(t0) = lim

t%t0

g(t0)� g(t)

t0 � t
. (31)

For t < t0, we have that

g(t0)� g(t) � f(xt0 , t0)� f(xt0 , t), (32)

so dividing both sides by t0 � t and taking the limit as t % t0, we obtain

g0(t0) �
@f

@t

����
(x0,t0)

. (33)

Similarly, for t > t0, we have

g(t)� g(t0)  f(xt0 , t)� f(xt0 , t0) , (34)

so dividing both sides by t� t0 and taking the limit as t & t0 we also get

g0(t0) 
@f

@t

����
(x0,t0)

. (35)

This proves the claim.

We can now prove the following theorem on the area growth of the minimal orbit surface:

Theorem 4. Denote by Smin(�) the minimal area of a z-cross section and � its Euler char-

acteristic. Then if either �  0, or, if � = 2, if also Smin(0) � Slower, then there exists �0,1

such that for all �0,1 < �1 < �2:

(1 + �)�1


Smin(�2)

Smin(�1)e
2
3K

2
⇤(�2��1)

 1 + � , (36)

where

Slower =
8⇡

K2

⇤

1
⇣p

(1 + C1)2 + 2/9� (1 + C1)
⌘2

(9C4)
3C4�4/3 , (37)

with C1 = max(Km(0)/K⇤ � 1, 0) as in Theorem 1 and C4 = 4p
3

p
C1(C1 + 2)(C1 + 1) +

4

3
C1(C1 + 2).

14



–Closeness to exponentially expanding spatial slices:

–Define

• i.e.: the spatial metric at some time, then let it grow as in dS

–from some flow-time on:

• pointwise

Steps of proof: (2)

Integrating the ordinary di↵erential inequalities (80), and defining �00
0,2 = max(�0,1, �̄00

0,2), with

�̄00
0,2 such that

Z 1

�̄00
0,2

d�

✓
3

2
K2

⇤
C6e

� 2
3K

2
⇤�

◆
 log(1 + �) , (83)

we obtain

(1 + �)�1


V (�)

V (�00
0,2)e

K2
⇤(���00

0,2)
 1 + � . (84)

Choosing �0,2 = max(�0
0,2,�

00
0,2), we obtain the desired result.

Lemma 2. There exists some C7 such that

Z

M�

dV
�
|K2

⇤
�K2

|+ �2
�


1

K⇤

C7 e
1
3K

2
⇤(���0,2) (85)

Proof. The desired result is obtained by combining (79) with (66), with C7 = 3

2
C6(1 +

�)K3

⇤
V (�0,2)e�

2
3K

2
⇤�0,2 .

Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow

as to be �0,2, so from now on �0,2 = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).

In particular, we have, for every � > 0

1

2


V (�)

V (0)eK
2
⇤�

 2 , (86)

1

2


Smin(�)

Smin(0)e
2
3K

2
⇤�

 2 , (87)

and Z

M�

dV
�
|K2

⇤
�K2

|+ �2
�


1

K⇤

C7 e
1
3K

2
⇤� . (88)

6 Spatial proximity

In this section we focus on the spatial part of the metric, i.e. the induced metric on the

hypersurfaces M� at fixed �. One can define a comparison metric

g := g(�0)e
2
3K

2
⇤(���0). (89)

This corresponds to evolving in �, starting from �0, the spatial metric of M�0 , with the same

rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at

constant � converges pointwise, for large �0, to this comparison metric. At the end of this

section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the

flat slices of de Sitter space, which approximates g over expanding balls.
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where for simplicity in the second step we assumed C9 > 0 (6) and we used that
p
ab 

(a+ b)/2, with a > 0, b > 0, and where C 0
10

:= 3

2
C2 +

1

2
C9.

Thus,

log

✓
Ẽ +

C9

2C 0
10
K3

⇤

◆0

 K2

⇤
C 0

10
e�

1
3K

2
⇤�e

1
3K

2
⇤�0 , (121)

which, together with Ẽ(�0) = 0, integrates to

log

✓
Ẽ +

C9

2C 0
10
K3

⇤

◆
 3C 0

10
� log

�
2C 0

10
K3

⇤
/C9

�
(122)

for all �. Thus

Ẽ(�) 
C10

K3

⇤

:=
C9e3C

0
10

2C 0
10
K3

⇤

(123)

which is equivalent to (118).

6.3 Unconditional pointwise proximity to exponentially expanding

slices

In this Section we put together the results on the z-dependence of the spatial metric obtained

in Section 6.1 with the results on the L2-closeness of Section 6.2 in order to prove the pointwise

convergence of the metric to the exponentially expanding comparison metric (88).

Theorem 6. There exists some �⇤ < 1 and a universal constant C11 < 1 such that for

every �0 > �⇤, defining, as before, g(�) as in (88), we have

||g(�)� g(�)||g  C11e
� 1

6K
2
⇤�0 , (124)

pointwise for every � > �0.

Proof. Let �⇤ = �/4, and define �⇤ so that

2
C10

K3

⇤

e�
2
3K

2
⇤�⇤ =

�2⇤⇢(�⇤)

4
V (0) , (125)

where C10 is the constant that appears in eq. (118) and ⇢(�) is in (105). Let �0 > �⇤, and

define � to be the solution of

2
C10

K3

⇤

e�
2
3K

2
⇤�0 =

�2⇢(�)

4
V (0) . (126)

Notice that since � is a monotonically decreasing function of �0, we automatically have that

for �0 > �⇤, � < �/4.

Eq. (118) and (85) imply that

6If C9 = 0, the first inequality of eq. (119) implies Ẽ(�) = 0 so that the Lemma holds with C10 = 0.
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–Closeness to dS spatial slices over exponentially expanding Balls:

–Define the spatial slices of dS:

–from some flow-time on:

Steps of proof: (3)

E(�) 
�2⇢(�)

4
V (�) , (127)

as long as

||g(�0)� g(�0)||g(�0)  � for every �0
2 [�0,�] . (128)

Recall also that for �0 = �0, ||g(�0) � g(�0)||g(�0) = 0, and note moreover that this norm is a

continuous function of �0.

Now, suppose for the sake of contradiction that there exists some �00 > �0 such that

max
�
||g(�00)� g(�00)||g(�00)

�
� 4�. (129)

Let � be the infimum of the �00, and notice that � > �0. Let zbad be a point where this

maximum is obtained at �, so that at zbad the following holds

||g(�)� g(�)||g(�) = 4� . (130)

In particular, we have that ||g(�)�g(�)||g(�)  4� < � for every z. Note that (127) is satisfied

up to time �, so in particular, (126) is valid at time �. Now, applying (99) twice, at flow

times �0 and �, starting at zbad, we see that ||g(�) � g(�)||g(�) � � for every z in M
zbad,�
� .

Thus

E(�) �

Z

Mzbad,�
�

||g(�)� g(�)||2g(�) � �2Vol(Mzbad,�
� ) � �2⇢(�)V (�) , (131)

which contradicts (126). Therefore, there cannot exist such a �, and so ||g(�)�g(�)||g(�) < 4�

always. The dependence of � on �0 can be read from (125) and (105) by Taylor expansion

� ⇠ e�
1
6K

2
⇤�0 . (132)

This gives the final result (123).

In the following we are going to often assume that the distance of eq. (123) is small, say

< 1

100
, by imposing �0 > 6K�2

⇤
log(100C11).

6.4 Proximity to de Sitter slices over exponentially expanding balls

In this section we want to prove the pointwise convergence over expanding balls of the spatial

metric to the spatial metric of de Sitter space in flat slicing:

gdS(�) := e
2
3K

2
⇤(���0)gEuc , (133)

with gEuc the flat Eucliden 3d metric. The idea is to prove that the spatial metric g(�0)

for large �0 becomes approximately flat since the surface orbits have larger and larger area
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Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
g(�̇, �̇)<

p
2
p
g(�̇, �̇)  2K⇤ . (177)

This and (176) yield
���Lds24 [�]� L

ds2
g(4) [�]

��� 
C13

K⇤

e�
1
18K

2
⇤�0 + 2

p
C11K⇤e

� 1
12K

2
⇤�0 (�1 � �0) . (178)

In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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Let us set

� =
1

10
e�

1
12K

2
⇤�0 . (140)

Then for �0 >
12

5K2
⇤
log (40C2

Sec
), we can ensure that 4C2
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1
2K

2
⇤�0 < �, so that:

1� � 
g(W,W )

g⌃
Euc

(W,W )
 1 + � . (141)

Now, let g be the true metric on M⌃ and gEuc be the Euclidean product metric gEuc :=

dz2 + g⌃
Euc

. Then (141), (100), (101) and (137) imply that g and gEuc are a factor of (1 + �)

from one another over an interval (in the z-direction) of length d
�
2
�0
. Therefore, taking

�00
⇤⇤ = max
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· 36 · 102
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C8
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, (142)

we get that for every �0>�00
⇤⇤, for every tangent vector W 2 TqM�0 at a point q 2 M�0 \

B(M�,g(�))(p, 5

3K⇤
e

1
12K

2
⇤�0), we have

1� � 
g|q(W,W )

gEuc|q(W,W )
 1 + � . (143)

The second factor on the r.h.s. in (142) was imposed just above (141); the last factor in (142)

comes from imposing that the distance d
�
2
�0

in (101) is larger than the radius of the ball above:
5

3K⇤
e

1
12K

2
⇤�0 .

We can now prove the convergence to the de Sitter metric (133). We define

�⇤⇤ = max

✓
�00
⇤⇤,

12 log(10C11)

K2

⇤

◆
, (144)

(the second condition guarantees that the error of Theorem 6, C11 exp(�1/6·K2

⇤
�0) is smaller

than the � defined in eq. (140)) we have

Theorem 7. For every �0 > �⇤⇤, we have

||g(�)� gdS(�)||g(�)<16e�
1
12K

2
⇤�0 , (145)

pointwise for every � > �0 on B(M�,g(�))
⇣
p�,

1

K⇤
e

1
12K

2
⇤�0 · e

1
3K

2
⇤(���0)

⌘
. Here p� results from

following p along the flow.

Theorem 8. For every �0 > �⇤⇤, we have

||g(�)� gdS(�)||g(�)<e�
1
12K

2
⇤�0 ,
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⌘
. Here p� results from following p along

the flow.
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The second factor on the r.h.s. in (142) was imposed just above (141); the last factor in (142)

comes from imposing that the distance d
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2
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in (101) is larger than the radius of the ball above:
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(the second condition guarantees that the error of Theorem 6, C11 exp(�1/6·K2
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�0) is smaller

than the � defined in eq. (140)) we have

Theorem 7. For every �0 > �⇤⇤, we have

||g(�)� gdS(�)||g(�)<16e�
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pointwise for every � > �0 on B(M�,g(�))
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Here p� results from following p along the flow.
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–Spacetime Closeness to dS over exp. growing Balls:

–The flow defines a natural 4-metric

• foliates the whole spacetimes (so there are no singularities, geodesic 
completeness)

–Define the dS metric

–Take any future oriented timelike or null curve

–from some flow-time on:

Steps of proof: (4)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
g(�̇, �̇)<

p
2
p
g(�̇, �̇)  2K⇤ . (177)

This and (176) yield
���Lds24 [�]� L

ds2
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12K

2
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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Denoting by Gi the complement of the Bi, i.e. the set of flow times with good gradient

bounds: Gi :=
1

K2
⇤
[i, i+ 1)� Bi, we have that

Z
dz |rK(�, z)|2  C12 K

3

⇤
e�

2
9 i, for every � 2 Gi (158)

Let us denote the total set of flow times with good gradient bound as G :=
S1

i=0
Gi.

We now claim the following Lemma about the spatial uniformity of K at times when the

gradient bounds are good:

Lemma 7. It exists a flow time �0,3 such that, for � > �0,3 � 0, in those flow times with

good gradient bounds, K is close to K⇤, i.e.:
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p
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Proof. By Cauchy-Schwartz,
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(160)

 (z2 � z1)
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�1/2
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1
9 i ,

where in the last inequality, we have used the fact that � 2 Gi. Thus, if there is a point, z1,

where (159) is violated, then

|K �K⇤| � K⇤

p
C12 e

� 1
9 i, (161)

on the interval [z1, z1 + 1/K⇤]. By using that K +K⇤ � K⇤, this gives
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which, together with (154) and the fact that K2
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� 2 [i, i+ 1) imply
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yielding the inequality i  9
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. Thus, taking
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, (164)

there cannot be such z1 for � > �0,3, establishing (159).

As mentioned, our strategy now is to study the spacetime metric using the MCF foliation.

Given a point p 2 M�, the metric of the four-dimensional spacetime at p is given by

ds2
4
= g(4)µ⌫ dx

µdx⌫ = �K2d�2 + gijdx
idxj , (165)
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where in the last inequality, we have used (177) (which requires both inequalities (179)).

Therefore, for every �0
2 [�0,�1], letting µ�0

be the curve obtained by following �(�) by MCF

forward to M�0 for each � 2 [�0,�0], we get
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(182)

where in the last passage we used (181). Since in a given flow time slice, g and g lengths are

close to one another (by Theorem 6, which requires both inequalities (179)), we get that

Lg[µ�0
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Since µ�0
is a curve in M�0 connecting p�0 with �(�0) of length 
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follows.

Now, let � and �0 be as in the above lemma, and assume further that
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where �⇤⇤ is from Theorem 8, �0 > �0,4 guarantees the validity of the metric (165) over large

spacetime regions, see (168) and �0 �
12 log(12)

K2
⇤

ensures that the balls of Lemma 8 are contained

in the balls of applicability of Theorem 8. Therefore, the Lemma above and Theorem 8 imply

that

||g(�)� gdS(�)||g(�)  16e�
1
12K

2
⇤�0 (185)

along �, where gdS is given by (133), defined using the point p = �(�0). Setting the space-time

honest de Sitter metric,

ds2
dS

:= g
(4)

dS
:= �K2

⇤
d�2 + (gdS)ijdx

idxj. (186)

Arguing as in (176), (178) and (177), we get that for every future-pointing timelike or null
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We therefore conclude that the length of any future-oriented, timelike or null curve between

two points converges exponentially fast to the same quantity evaluated with the de Sitter

metric, as we take the lowest time of the two points, �0, larger and larger.
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spacetime regions, see (168) and �0 �
12 log(12)
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ensures that the balls of Lemma 8 are contained

in the balls of applicability of Theorem 8. Therefore, the Lemma above and Theorem 8 imply

that
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along �, where gdS is given by (133), defined using the point p = �(�0). Setting the space-time

honest de Sitter metric,

ds2
dS

:= g
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Arguing as in (176), (178) and (177), we get that for every future-pointing timelike or null

curve � : [a, b] ! M (3+1) with �0 := �(�(a)) � max
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We therefore conclude that the length of any future-oriented, timelike or null curve between

two points converges exponentially fast to the same quantity evaluated with the de Sitter

metric, as we take the lowest time of the two points, �0, larger and larger.
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–Dilution of matter:

–from some flow-time on

Steps of proof: (5)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
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p
2
p
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This and (176) yield
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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8 Dilution of Matter

We now show that the stress tensor goes to zero almost everywhere. We can bound the

integral over z of |Tµ⌫nµn⌫
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where in the last step we used the bounds (69) and (73) together with Theorem 5. We defined

C14 := (C5 + C6)(1 + �)K⇤L(0).

Because of the DEC, Tµ⌫nµn⌫ is at least as large as the absolute value of any other

component of the stress tensor in an orthonormal frame where nµ is the timelike vector 8.
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Since, by the symmetries of the problem, Tµ⌫ is uniform on the slices at constant z, we see
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Notice that, by Einstein’s equations, this means that a similar bound applies to Rµ⌫ . In
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Let us write Rµ⌫ as Rµ⌫ = RdS,µ⌫ + �Rµ⌫ , where RdS,µ⌫ = 1

3
K2

⇤
gµ⌫ is the Ricci tensor of de

Sitter space with cosmological constant ⇤. We obtain
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We can now use the bound (189) to write

Z
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It is hard to imagine that one can achieve a control on Tµ⌫ which is better than this,

without additional assumptions on the stress tensor and using arguments similar to the ones

presented in [20]. In particular one cannot hope for a pointwise convergence of the stress

8This is actually an equivalent definition of the DEC [46] as it is straightforward to verify.
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–Physical equivalence to dS over exp. growing Balls

–Consider an observer

–equivalence of lengths         

»         same geodesics

»          same horizon as in dS

–Observer has access to matter only from finite volume. All times, in this volume:         

–available energy-momentum is below any threshold: it feels as dS

Steps of proof: (6)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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9 Summary and Physical Equivalence to de Sitter

Summary: We have considered 3+1 dimensional cosmologies satisfying the Einstein equa-

tions with a positive cosmological constant and matter satisfying the dominant and the strong

energy conditions. We have assumed that the only potential singularities are of the crushing

kind, and that the spatial slices have homogeneous but potentially anisotropic 2-surfaces.

We used the mean curvature flow to probe the geometry: spacetime is foliated by the mean

curvature flow surfaces and the flow parameter runs orthogonal to them. We proved that the

spatial part of the resulting metric converges pointwise to the one of de Sitter space in flat

slicing on balls whose radius becomes arbitrarily large, growing as e
1
3K⇤�, as the flow time �

goes arbitrarily large. The lapse function converges to the one of de Sitter almost everywhere.

The gradient of the lapse function converges to zero almost everywhere only once averaged

over an arbitrarily small, but non-vanishing, time. We have then shown that these results

imply that the length of any future-oriented, timelike or null curve between two points at

late enough time converges exponentially to the same quantity computed with the de Sitter

metric. We have also shown that all components of the stress tensor go to zero almost every-

where. Let us now explain in which sense our findings imply physical equivalence to de Sitter

space at late enough times.

Physical Equivalence to de Sitter Space: Let us start by discussing the role of the

residual matter, which, by (189), does not necessarily go to zero pointwise. However, the fact

that future-oriented null geodesics, at late enough times, behave as in de Sitter space tells

us that at late times there is a cosmological horizon approaching the one of de Sitter space.

Therefore, fixing a late enough time �2, an observer will be able to gather information in the

future only from points that, at �2, are contained in a ball, Bc(�2) ⇢ M�2 , of radius 4 ·3/K⇤;

the de Sitter horizon is 3/K⇤. (The extra factor of 4 is included to account for the di↵erence

between the actual size of the horizon and the one of de Sitter space and also for the motion of

the observer. These corrections decay exponentially in �2, and we are taking �2 late enough.)

At any time � � �2, the integral on M� \ y�(y
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�2
(Bc(�2))) of any component of the stress
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) (195)

where we used (189) at time �. We therefore see that the overall energy and momentum

contained at any time � � �2 in the ball of points that are causally connected to the center

goes to zero as we send �2 ! +1. Since any experiment has some finite energy or momentum

threshold below which no measurement can be done, we conclude that the residual matter

content is equivalent to vacuum for all physical purposes.
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–Growth of geometric quantities:

–from some flow-time on:

–uniformity of expansion rate:

Steps of proof: (1)
Notice that the additional requirement in the case of the sphere depends exponentially on

the initial conditions. This is di↵erent from what happens in the case of complete homogeneity

where, for Bianchi-IX universes, one has to impose a lower bound on (3)R [24]. This bound

however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a

point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(�) the

length, at time �, of any geodesic � that is parallel to the z-direction, from an initial slice to

itself. Additionally, denote by V (�) the volume of M� at time �.

Theorem 5. Under the conditions of Theorem 4, for every � > 0, there exists �0,2��0,1 such
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Proof. Re-arranging (41), we obtain

(3)R = �Aµ⌫A
µ⌫

�H2 + (2)R� 2H 0 . (68)

Let us integrate (67) along all the z-directed geodesic. By the periodicity, the term in H 0
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and where we used Theorem 4, since � > �0,1, given that for this Theorem we are assuming

� > �0,2��0,1. In light of (25), we therefore have that
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This implies that, using Theorem 1:
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Using again Theorem 1, we therefore get that
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Integrating the ordinary di↵erential inequalities (80), and defining �00
0,2 = max(�0,1, �̄00
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we obtain
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0,2), we obtain the desired result.
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Proof. The desired result is obtained by combining (79) with (66), with C7 = 3
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Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow

as to be �0,2, so from now on �0,2 = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).
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6 Spatial proximity

In this section we focus on the spatial part of the metric, i.e. the induced metric on the

hypersurfaces M� at fixed �. One can define a comparison metric

g := g(�0)e
2
3K

2
⇤(���0). (89)

This corresponds to evolving in �, starting from �0, the spatial metric of M�0 , with the same

rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at

constant � converges pointwise, for large �0, to this comparison metric. At the end of this

section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the

flat slices of de Sitter space, which approximates g over expanding balls.
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Proof. First, we show that g is Lipschitz. For every t, let xt be a point such that g(t) = f(xt, t).

Then for every t, s 2 [a, b], we have
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Z s
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dt0
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where C3 = max(x1,t1)2K⇥[a,b]
@f
@t (x1, t1). Similarly, g(t) � g(s)  C3|t � s|, so g is indeed

Lipschitz, hence di↵erentiable almost everywhere and obeying the fundamental theorem of

calculus.
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This proves the claim.

We can now prove the following theorem on the area growth of the minimal orbit surface:
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with C1 = max(Km(0)/K⇤ � 1, 0) as in Theorem 1 and C4 = 4p
3

p
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3
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or in coordinate form:
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where C2 =
2

3
C1(2 + C1) and C1 = max(Km(0)/K⇤ � 1, 0), as in Theorem 1.

Growth of geometric quantities. We are now going to establish the growth of some

geometric quantities defined along the mean curvature flow hypersurfaces M�. Fix some

time � � 0, M�, and consider the foliation of M� by the orbits of G (or more generally, by

the projections of the orbits of G̃). By our two-sidedness assumption, there exists a global

unit normal vector E to this foliation. Let z be the parameter along the flow lines of E, thus

it is a signed distance function; and, due to the isometries of G (or G̃), the metric on M� has

the warped product form

g = dz2 + hz , (27)

where hz is a two-dimensional metric of constant curvature. By passing to a double cover, we

can assume without loss of generality that the orbit surfaces ⌃ are orientable. Thus, each such

orbit is a two-dimensional orientable surface, with Euler characteristic � = 2, 0,�2,�4, . . ..

We will start by proving that the minimal area of a surface orbit contained in M�, which

we denote by Smin(�), grows as two-dimensional spatial slices of de Sitter space in the FLRW

slicing. In order to study the time evolution of Smin(�), we would like to find a di↵erential

equation for Smin(�) and solve for it. However, since the area of the minimal surface can

be non-di↵erentiable as the flow evolves, it is unclear that this can be done. Therefore,

we first need to show that Smin(�) has well defined derivatives almost everywhere and that

the fundamental theorem of calculus applies to them. We do this by proving that they

are Lipschitz. This is true because of the following standard lemma which applies to all

minimizers:

Lemma 1 (Hamilton’s trick (c.f [44] Lemma 2.1.3)). Let f : K ⇥ [a, b] ! R be a smooth

function with K being compact, and set g to be the minimizer of f on K:

g(t) = min
x2K

f(x, t). (28)

Then g is a Lipschitz function, and thus, di↵erentiable almost everywhere and obeying the

fundamental theorem of calculus. Moreover, if t0 is a point of di↵erentiability of g, and if x0

is such that f(x0, t0) = g(t0) then

g0(t0) =
@f

@t

����
(x0,t0)

. (29)
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Proof. Recall that the function Smin(�) are (locally) Lipschitz functions, and hence di↵eren-

tiable almost everywhere. Also, recall that at di↵erentiable times � for Smin the derivative

will be identical to the derivative of the area of the section where the minimum is obtained

(see Lemma 1).

By the Riccati equation (primes indicate derivatives w.r.t. z)

H 0 + Aµ⌫A
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(3)Rzz . (38)

Now, the traced Gauss equations imply
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2
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Combining (38) and (40), we obtain
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� 0, so (41)

gives
(3)R = (2)R� Aµ⌫A

µ⌫
�H2
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on such a slice. Notice that by our isometries, if S(z,�) is the area of a fixed z surface at

time �:

(2)R(z,�)
4⇡�0

S(z,�)


4⇡�0

Smin(�)
, (44)

where �0 is 2 if ⌃̃ is the sphere and 0 otherwise. Eq. (43) and Theorem 1 imply that,

considering either cases in which K  K⇤ or K > K⇤, we have
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The evolution equation for the metric under MCF (see [40, Prop. 3.1]) is
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where ES,ij =
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)gij+2K�ij. We want now to bound this equation using the previous

inequalities. Note that, using a more abstract notation, we can write, with no summation

over repeated indexes,
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(see Lemma 1).
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so

�
(3)Rzz =

(2)R�
(3)R + Aµ⌫Aµ⌫

�H2

2
. (40)

Combining (38) and (40), we obtain
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where in the last step we used that, for two unit vectors n̂1 and n̂2,
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where we used that
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tiable almost everywhere. Also, recall that at di↵erentiable times � for Smin the derivative

will be identical to the derivative of the area of the section where the minimum is obtained

(see Lemma 1).
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and there exists a time �0
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tiable almost everywhere. Also, recall that at di↵erentiable times � for Smin the derivative

will be identical to the derivative of the area of the section where the minimum is obtained

(see Lemma 1).
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–Now with traverse length:
Steps of proof: (1)

Notice that the additional requirement in the case of the sphere depends exponentially on

the initial conditions. This is di↵erent from what happens in the case of complete homogeneity

where, for Bianchi-IX universes, one has to impose a lower bound on (3)R [24]. This bound

however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a

point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(�) the

length, at time �, of any geodesic � that is parallel to the z-direction, from an initial slice to

itself. Additionally, denote by V (�) the volume of M� at time �.
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–and one proceeds as before (and similarly for the volume)
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Here, we have used (73) and, for the term K�zz, we have used Theorem 1, the Cauchy-

Schwartz inequality for
R
dz |�zz| and eq. (72). Integrating the ordinary di↵erential in-
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One can work quite similarly for the volume. Explicitly, we can write
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Notice that equations (69), (71), (72), (73), and their derivation hold verbatim if we replace
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–Growth of geometric quantities:

–from some flow-time on:

–uniformity of expansion rate:

Steps of proof: (1)
Notice that the additional requirement in the case of the sphere depends exponentially on

the initial conditions. This is di↵erent from what happens in the case of complete homogeneity

where, for Bianchi-IX universes, one has to impose a lower bound on (3)R [24]. This bound

however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a

point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(�) the

length, at time �, of any geodesic � that is parallel to the z-direction, from an initial slice to

itself. Additionally, denote by V (�) the volume of M� at time �.
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Proof. Re-arranging (41), we obtain
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does not contribute. Therefore, using (44), we obtain

Z L(�)

0

dz (3)R 

Z L(�)

0

dz (2)R 

Z L(�)

0

dz
2 · 4⇡�0

Smin(�0,1)e
2
3K

2
⇤(���0,1)

= K2

⇤
C5e

� 2
3K

2
⇤�L(�) (69)

where

C5 :=
8⇡�0

K2

⇤
Smin(�0,1)e�

2
3K

2
⇤�0,1

, (70)

and where we used Theorem 4, since � > �0,1, given that for this Theorem we are assuming
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Using again Theorem 1, we therefore get that
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Integrating the ordinary di↵erential inequalities (80), and defining �00
0,2 = max(�0,1, �̄00

0,2), with

�̄00
0,2 such that

Z 1
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� 2
3K

2
⇤�

◆
 log(1 + �) , (83)

we obtain
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Choosing �0,2 = max(�0
0,2,�

00
0,2), we obtain the desired result.

Lemma 2. There exists some C7 such that
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K⇤

C7 e
1
3K
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⇤(���0,2) (85)

Proof. The desired result is obtained by combining (79) with (66), with C7 = 3
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C6(1 +

�)K3
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V (�0,2)e�

2
3K

2
⇤�0,2 .

Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow

as to be �0,2, so from now on �0,2 = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).

In particular, we have, for every � > 0

1

2


V (�)

V (0)eK
2
⇤�

 2 , (86)
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and Z
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C7 e
1
3K

2
⇤� . (88)

6 Spatial proximity

In this section we focus on the spatial part of the metric, i.e. the induced metric on the

hypersurfaces M� at fixed �. One can define a comparison metric

g := g(�0)e
2
3K

2
⇤(���0). (89)

This corresponds to evolving in �, starting from �0, the spatial metric of M�0 , with the same

rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at

constant � converges pointwise, for large �0, to this comparison metric. At the end of this

section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the

flat slices of de Sitter space, which approximates g over expanding balls.

20

(for the surface, see also Mirbabayi 2018 )

Proof. First, we show that g is Lipschitz. For every t, let xt be a point such that g(t) = f(xt, t).

Then for every t, s 2 [a, b], we have

g(s)� g(t)  f(xt, s)� f(xt, t) =

Z s

t

dt0
@f

@t
(xt, t

0)  C3|t� s|, (30)

where C3 = max(x1,t1)2K⇥[a,b]
@f
@t (x1, t1). Similarly, g(t) � g(s)  C3|t � s|, so g is indeed

Lipschitz, hence di↵erentiable almost everywhere and obeying the fundamental theorem of

calculus.

Let t0 be a point of di↵erentiability of g. In particular

lim
t&t0

g(t)� g(t0)

t� t0
= g0(t0) = lim

t%t0

g(t0)� g(t)

t0 � t
. (31)

For t < t0, we have that

g(t0)� g(t) � f(xt0 , t0)� f(xt0 , t), (32)

so dividing both sides by t0 � t and taking the limit as t % t0, we obtain

g0(t0) �
@f
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����
(x0,t0)

. (33)

Similarly, for t > t0, we have

g(t)� g(t0)  f(xt0 , t)� f(xt0 , t0) , (34)

so dividing both sides by t� t0 and taking the limit as t & t0 we also get

g0(t0) 
@f
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����
(x0,t0)

. (35)

This proves the claim.

We can now prove the following theorem on the area growth of the minimal orbit surface:

Theorem 4. Denote by Smin(�) the minimal area of a z-cross section and � its Euler char-

acteristic. Then if either �  0, or, if � = 2, if also Smin(0) � Slower, then there exists �0,1

such that for all �0,1 < �1 < �2:
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(1 + C1)2 + 2/9� (1 + C1)
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(9C4)
3C4�4/3 , (37)

with C1 = max(Km(0)/K⇤ � 1, 0) as in Theorem 1 and C4 = 4p
3

p
C1(C1 + 2)(C1 + 1) +

4

3
C1(C1 + 2).
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–Closeness to exponentially expanding spatial slices:

–Define

• the spatial metric at some time, then let it grow as in dS

–from some flow-time on:

• pointwise

–The idea is to notice that, from some time on, the expansion rate is the one of dS.

• however, this proof is quite subtle.

Steps of proof: (2)
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where for simplicity in the second step we assumed C9 > 0 (6) and we used that
p
ab 

(a+ b)/2, with a > 0, b > 0, and where C 0
10

:= 3

2
C2 +

1

2
C9.

Thus,
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which, together with Ẽ(�0) = 0, integrates to

log

✓
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for all �. Thus

Ẽ(�) 
C10

K3

⇤

:=
C9e3C

0
10

2C 0
10
K3

⇤

(123)

which is equivalent to (118).

6.3 Unconditional pointwise proximity to exponentially expanding

slices

In this Section we put together the results on the z-dependence of the spatial metric obtained

in Section 6.1 with the results on the L2-closeness of Section 6.2 in order to prove the pointwise

convergence of the metric to the exponentially expanding comparison metric (88).

Theorem 6. There exists some �⇤ < 1 and a universal constant C11 < 1 such that for

every �0 > �⇤, defining, as before, g(�) as in (88), we have

||g(�)� g(�)||g  C11e
� 1

6K
2
⇤�0 , (124)

pointwise for every � > �0.

Proof. Let �⇤ = �/4, and define �⇤ so that
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�2⇤⇢(�⇤)

4
V (0) , (125)

where C10 is the constant that appears in eq. (118) and ⇢(�) is in (105). Let �0 > �⇤, and

define � to be the solution of

2
C10

K3

⇤

e�
2
3K

2
⇤�0 =

�2⇢(�)

4
V (0) . (126)

Notice that since � is a monotonically decreasing function of �0, we automatically have that

for �0 > �⇤, � < �/4.

Eq. (118) and (85) imply that

6If C9 = 0, the first inequality of eq. (119) implies Ẽ(�) = 0 so that the Lemma holds with C10 = 0.
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• First we show that the metric becomes less and less                                                                          
dependent on     .

• In fact, notice that 

• .

• Integrate above

• So we see that the extrinsic curvature is small. Therefore, with 

• Therefore there is a long distance over which the metric changes by less than

Steps of proof: (2)
6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):

L@zgµ⌫ = 2Aµ⌫ . (90)

Now, using eq. (41), the pointwise bounds (2)R given by (44) and (87) and the one on (3)R in

eq. (??), we get
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This implies the following pointwise bound of |H|:

Claim 1.

|H| 
2
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3
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� 1
3K

2
⇤� := "� . (92)

Proof. At the minimum and maximum points of H, H 0 = 0 and (92) follows from (91) there.

If (92) holds at the minimum and the maximum, it holds at any point.

Integrating (91), and using the pointwise bound (92), we also get
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2
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which, using Cauchy-Schwartz, implies
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Observe that (90) implies that, taking any product co-ordinate system on M� (i.e., a

co-ordinate of the form (↵, �, z), where z is as above and @↵, @� are tangent to each surface

orbit)
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Thus, for every product co-ordinate system on M�, (97) and (94) imply that as long as
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Note that for � su�ciently small, this is compatible with the assumption (98) which was

previously employed.

Claim 2. For every � there exists some 1 � ⇢ = ⇢(�) > 0 such that for every � > 0, each
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6.2 Conditional L2
closeness to exponentially expanding slices

For technical reasons, it will be important in the following to define norms with respect to the

comparison metric g defined in (89), instead of the actual metric g. In this Section, we are

going to deduce results under the condition the two metrics are a priori close to each other.

We are going to relax this assumption in the following Section. To compare norms defined

with respect to the two di↵erent metrics we will need the following lemma.
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):

L@zgµ⌫ = 2Aµ⌫ . (89)

Now, using eq. (41), the pointwise bounds (2)R given by (44) and (86) and the one on (3)R in
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• New we show that the expansion rate converges                                                                                   
in some average to the dS one.

• Recollect

• Define

• Notice

• Evolution:

• Estimate all terms:

• ….                                                               , as good as could be.

–some of these terms require conditional proximity to the reference metric. 

• Putting this with the fact that the metric is quasi constant in      , leads unconditionally:

Steps of proof: (2)

Lemma 3. There exists a 1 > �0 > 0 with the following property. Suppose 0 < �  �0 and

||g � g||g  � . (107)

Then, for any 2-tensor T , there exists a universal constant D3 such that
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Proof. Choose coordinates at a point such that gij = �ij, i.e. orthogonal at the point. Then

the condition (107) implies that gij = �ij + "ij where |"ij|  �. By the inversion formula for

3⇥ 3 matrices, gij = �ij + "̃ij where |"̃ij|  D1� (for su�ciently small �). Thus,

||T ||2g = gijgklTikTjl = �ij�klTikTjl + "ijklTikTjl , (109)

where |"ijkl|  D2�. Now, the first term in the right hand side is (by definition, and by our

choice of co-ordinates) ||T ||2g. Moreover, again by definition

|Tik|
2
 ||T ||2g , (110)

as this is one of the terms appearing in the sum (again, by our choice of co-ordinates). Thus
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g , (111)

from which, using (109), we obtain (108).

Lemma 4. Let �0 be as in Lemma 3, and let 0 < �  �0. There exists a positive constant C9

with the following significance: let �0 > 0 be some time and g defined in eq. (89) and set, for

each � > �0
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Proof. We have (we suppress the dependence on � in g and g),
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To get to the final inequality, we bound the first two terms on the RHS separately 5. For the

first one, we use Theorem 1 (C2 is defined in (??)):
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5Notice that if we had defined the norms with respect to the metric g instead of g, this equation would
contain terms involving the �-derivative of g that would be di�cult to control. This is the reason of choosing
norms with respect to g.
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Integrating the ordinary di↵erential inequalities (80), and defining �00
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Proof. The desired result is obtained by combining (79) with (66), with C7 = 3
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Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow

as to be �0,2, so from now on �0,2 = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).

In particular, we have, for every � > 0
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6 Spatial proximity

In this section we focus on the spatial part of the metric, i.e. the induced metric on the

hypersurfaces M� at fixed �. One can define a comparison metric

g := g(�0)e
2
3K

2
⇤(���0). (89)

This corresponds to evolving in �, starting from �0, the spatial metric of M�0 , with the same

rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at

constant � converges pointwise, for large �0, to this comparison metric. At the end of this

section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the

flat slices of de Sitter space, which approximates g over expanding balls.
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contain terms involving the �-derivative of g that would be di�cult to control. This is the reason of choosing
norms with respect to g.
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Lemma 3. There exists a 1 > �0 > 0 with the following property. Suppose 0 < �  �0 and

||g � g||g  � . (107)

Then, for any 2-tensor T , there exists a universal constant D3 such that

(1�D3�) ||T ||g  ||T ||g  (1 +D3�) ||T ||g . (108)

Proof. Choose coordinates at a point such that gij = �ij, i.e. orthogonal at the point. Then

the condition (107) implies that gij = �ij + "ij where |"ij|  �. By the inversion formula for

3⇥ 3 matrices, gij = �ij + "̃ij where |"̃ij|  D1� (for su�ciently small �). Thus,

||T ||2g = gijgklTikTjl = �ij�klTikTjl + "ijklTikTjl , (109)

where |"ijkl|  D2�. Now, the first term in the right hand side is (by definition, and by our

choice of co-ordinates) ||T ||2g. Moreover, again by definition

|Tik|
2
 ||T ||2g , (110)

as this is one of the terms appearing in the sum (again, by our choice of co-ordinates). Thus

|"ijklTikTjl|  D3�||T ||
2

g , (111)

from which, using (109), we obtain (108).

Lemma 4. Let �0 be as in Lemma 3, and let 0 < �  �0. There exists a positive constant C9

with the following significance: let �0 > 0 be some time and g defined in eq. (89) and set, for

each � > �0

E(�) :=

Z

M�

||g(�)� g(�)||2g(�)dVg(�) . (112)

Then, for every � such that ||g(�)� g(�)||g(�)  �, we have that
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Proof.

E(�0) = 0 (114)

We have (we suppress the dependence on � in g and g),
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⇤
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To get to the final inequality, we bound the first two terms on the RHS separately 5. For the

first one, we use Theorem 1 (C2 is defined in (??)):
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5Notice that if we had defined the norms with respect to the metric g instead of g, this equation would
contain terms involving the �-derivative of g that would be di�cult to control. This is the reason of choosing
norms with respect to g.
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For the second one, writing Kij =
K
3
gij + �ij, we first write
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(117)

The first term on the right-hand side of (117) can be bounded as
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where in the second step we used the bound (14), in the third the Cauchy-Schwartz inequality

(both on the integral and on the scalar product with respect to the metric g) and Lemma 3; in

the last step we used the inequality (K �K⇤)2  |K2
�K2

⇤
|, for K � 0, and the bound (88).

The second term on the right-hand side of (117) is bounded by
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where we used the bound (14), the Cauchy-Schwartz inequality, the bound (88) and the

inequality ||�ij||L2
g
 (1 +D3�) ||�ij||L2

g
by Lemma 3.

Assuming that � � �0 and ||g(�) � g(�)||g(�)  � one can put together (116), (118) and

(119) to get the final inequality (113) with a suitable constant C9 that can be expressed in

terms of the constant that appear (118) and (119).

Lemma 5. Let �0 be as in Lemma 3, and let 0 < �  �0. There exists a universal constant

C10 < 1 with the following significance: let �0 > 0 be some time. Define g and E as in

equations (89), (112). Let � > �0 be such that for every �0
2 [�0,�] we have that ||g(�0) �

g(�0)||g(�0) < �. Then
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Proof. Making the substitution Ẽ(�) = e
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⇤�E(�), the inequality (113) becomes
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where in the second step we used the bound (14), in the third the Cauchy-Schwartz inequality

(both on the integral and on the scalar product with respect to the metric g) and Lemma 3; in

the last step we used the inequality (K �K⇤)2  |K2
�K2

⇤
|, for K � 0, and the bound (88).

The second term on the right-hand side of (117) is bounded by
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where we used the bound (14), the Cauchy-Schwartz inequality, the bound (88) and the

inequality ||�ij||L2
g
 (1 +D3�) ||�ij||L2

g
by Lemma 3.

Assuming that � � �0 and ||g(�) � g(�)||g(�)  � one can put together (116), (118) and

(119) to get the final inequality (113) with a suitable constant C9 that can be expressed in

terms of the constant that appear (118) and (119).

Lemma 5. Let �0 be as in Lemma 3, and let 0 < �  �0. There exists a universal constant

C10 < 1 with the following significance: let �0 > 0 be some time. Define g and E as in

equations (89), (112). Let � > �0 be such that for every �0
2 [�0,�] we have that

||g(�0)� g(�0)||g(�0) < �

. Then
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Proof. Making the substitution Ẽ(�) = e
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⇤�E(�), the inequality (113) becomes
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where for simplicity in the second step we assumed C9 > 0 (6) and we used that
p
ab 

(a+ b)/2, with a > 0, b > 0, and where C 0
10

:= 3

2
C2 +

1

2
C9.

Thus,
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2
⇤�0 , (122)

which, together with Ẽ(�0) = 0, integrates to

log
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2C 0
10
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for all �. Thus

Ẽ(�) 
C10

K3

⇤

:=
C9e3C

0
10

2C 0
10
K3

⇤

(124)

which is equivalent to (120).

6.3 Unconditional pointwise proximity to exponentially expanding

slices

In this Section we put together the results on the z-dependence of the spatial metric obtained

in Section 6.1 with the results on the L2-closeness of Section 6.2 in order to prove the pointwise

convergence of the metric to the exponentially expanding comparison metric (89).

Theorem 6. There exists some �⇤ < 1 and a universal constant C11 < 1 such that for

every �0 > �⇤, defining, as before, g(�) as in (89), we have

) ||g(�)� g(�)||g  C11e
� 1

6K
2
⇤�0 , (125)

pointwise for every � > �0.

Proof. Let �⇤ = �/4, and define �⇤ so that

2
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2
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2
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�2⇤⇢(�⇤)

4
V (0) , (126)

where C10 is the constant that appears in eq. (120) and ⇢(�) is in (106). Let �0 > �⇤, and

define � to be the solution of

2
C10

K3

⇤

e�
2
3K

2
⇤�0 =

�2⇢(�)

4
V (0) . (127)

Notice that since � is a monotonically decreasing function of �0, we automatically have that

for �0 > �⇤, � < �/4.

Eq. (120) and (86) imply that

6If C9 = 0, the first inequality of eq. (121) implies Ẽ(�) = 0 so that the Lemma holds with C10 = 0.
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):

L@zgµ⌫ = 2Aµ⌫ . (90)

Now, using eq. (41), the pointwise bounds (2)R given by (44) and (87) and the one on (3)R in

eq. (??), we get

H 0 +
H2 + Aµ⌫Aµ⌫

2
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2
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2
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2
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2
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2
3K

2
⇤� . (91)

This implies the following pointwise bound of |H|:

Claim 1.

|H| 
2
p
3

p
C8K⇤e

� 1
3K

2
⇤� := "� . (92)

Proof. At the minimum and maximum points of H, H 0 = 0 and (92) follows from (91) there.

If (92) holds at the minimum and the maximum, it holds at any point.

Integrating (91), and using the pointwise bound (92), we also get

Z z

0

Aµ⌫A
µ⌫


3

2
"2�z + 4"� , (93)

which, using Cauchy-Schwartz, implies

Z z

0

|A| 

r
3

2
"2�z

2 + 4"�z . (94)

Observe that (90) implies that, taking any product co-ordinate system on M� (i.e., a

co-ordinate of the form (↵, �, z), where z is as above and @↵, @� are tangent to each surface

orbit)

@zg↵↵ = 2A(@↵, @↵) = 2A

✓
@↵

||@↵||
,

@↵
||@↵||
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◆
· g↵↵ . (95)

As @↵
||@↵|| is a unit vector ����A

✓
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||@↵||
,

@↵
||@↵||

◆����  |A| , (96)

so using this and (95),

|@zg↵↵|  2|A|g↵↵ . (97)

Thus, for every product co-ordinate system on M�, (97) and (94) imply that as long as

"�(z2 � z1) 
8

3
(98)
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–Closeness to dS spatial slices over exponentially expanding Balls:

–Define the spatial slices of dS:

–from some flow-time on:

Steps of proof: (3)

E(�) 
�2⇢(�)

4
V (�) , (127)

as long as

||g(�0)� g(�0)||g(�0)  � for every �0
2 [�0,�] . (128)

Recall also that for �0 = �0, ||g(�0) � g(�0)||g(�0) = 0, and note moreover that this norm is a

continuous function of �0.

Now, suppose for the sake of contradiction that there exists some �00 > �0 such that

max
�
||g(�00)� g(�00)||g(�00)

�
� 4�. (129)

Let � be the infimum of the �00, and notice that � > �0. Let zbad be a point where this

maximum is obtained at �, so that at zbad the following holds

||g(�)� g(�)||g(�) = 4� . (130)

In particular, we have that ||g(�)�g(�)||g(�)  4� < � for every z. Note that (127) is satisfied

up to time �, so in particular, (126) is valid at time �. Now, applying (99) twice, at flow

times �0 and �, starting at zbad, we see that ||g(�) � g(�)||g(�) � � for every z in M
zbad,�
� .

Thus

E(�) �

Z

Mzbad,�
�

||g(�)� g(�)||2g(�) � �2Vol(Mzbad,�
� ) � �2⇢(�)V (�) , (131)

which contradicts (126). Therefore, there cannot exist such a �, and so ||g(�)�g(�)||g(�) < 4�

always. The dependence of � on �0 can be read from (125) and (105) by Taylor expansion

� ⇠ e�
1
6K

2
⇤�0 . (132)

This gives the final result (123).

In the following we are going to often assume that the distance of eq. (123) is small, say

< 1

100
, by imposing �0 > 6K�2

⇤
log(100C11).

6.4 Proximity to de Sitter slices over exponentially expanding balls

In this section we want to prove the pointwise convergence over expanding balls of the spatial

metric to the spatial metric of de Sitter space in flat slicing:

gdS(�) := e
2
3K

2
⇤(���0)gEuc , (133)

with gEuc the flat Eucliden 3d metric. The idea is to prove that the spatial metric g(�0)

for large �0 becomes approximately flat since the surface orbits have larger and larger area
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Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
g(�̇, �̇)<

p
2
p
g(�̇, �̇)  2K⇤ . (177)

This and (176) yield
���Lds24 [�]� L

ds2
g(4) [�]
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1
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2
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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Now, let g be the true metric on M⌃ and gEuc be the Euclidean product metric gEuc :=

dz2 + g⌃
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. Then (141), (100), (101) and (137) imply that g and gEuc are a factor of (1 + �)
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we get that for every �0>�00
⇤⇤, for every tangent vector W 2 TqM�0 at a point q 2 M�0 \

B(M�,g(�))(p, 5
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The second factor on the r.h.s. in (142) was imposed just above (141); the last factor in (142)

comes from imposing that the distance d
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in (101) is larger than the radius of the ball above:
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We can now prove the convergence to the de Sitter metric (133). We define
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(the second condition guarantees that the error of Theorem 6, C11 exp(�1/6·K2

⇤
�0) is smaller

than the � defined in eq. (140)) we have

Theorem 7. For every �0 > �⇤⇤, we have
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. Here p� results from

following p along the flow.

Theorem 8. For every �0 > �⇤⇤, we have
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The second factor on the r.h.s. in (142) was imposed just above (141); the last factor in (142)

comes from imposing that the distance d
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than the � defined in eq. (140)) we have
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–Intuitive: the metric takes the form:

–Each 2-slice is expanding, so it gets flatter. Then also it is slowly varying in     .

–Furthermore, the growth is pointwise the same (by the former theorem), so, once they 
are close, they remain close.

–       Closeness to dS spatial slices over exponentially expanding Balls:

–Define the spatial slices of dS

Steps of proof: (3)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
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p
2
p
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This and (176) yield
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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or in coordinate form:

Gµ⌫n
µn⌫ = 8⇡GNTµ⌫n

µn⌫ , (25)

)
(3)R +

2

3
K2

� �2 =
2

3
K2

⇤
+ 16⇡GNTµ⌫n

µn⌫ , (26)

)
(3)R +

2

3
K2

� �2
�

2

3
K2

⇤
,

)
(3)R � �C2K

2

⇤
e�

2
3K

2
⇤� ,

where C2 =
2

3
C1(2 + C1) and C1 = max(Km(0)/K⇤ � 1, 0), as in Theorem 1.

Growth of geometric quantities. We are now going to establish the growth of some

geometric quantities defined along the mean curvature flow hypersurfaces M�. Fix some

time � � 0, M�, and consider the foliation of M� by the orbits of G (or more generally, by

the projections of the orbits of G̃). By our two-sidedness assumption, there exists a global

unit normal vector E to this foliation. Let z be the parameter along the flow lines of E, thus

it is a signed distance function; and, due to the isometries of G (or G̃), the metric on M� has

the warped product form

g = dz2 + hz , (27)

where hz is a two-dimensional metric of constant curvature. By passing to a double cover, we

can assume without loss of generality that the orbit surfaces ⌃ are orientable. Thus, each such

orbit is a two-dimensional orientable surface, with Euler characteristic � = 2, 0,�2,�4, . . ..

We will start by proving that the minimal area of a surface orbit contained in M�, which

we denote by Smin(�), grows as two-dimensional spatial slices of de Sitter space in the FLRW

slicing. In order to study the time evolution of Smin(�), we would like to find a di↵erential

equation for Smin(�) and solve for it. However, since the area of the minimal surface can

be non-di↵erentiable as the flow evolves, it is unclear that this can be done. Therefore,

we first need to show that Smin(�) has well defined derivatives almost everywhere and that

the fundamental theorem of calculus applies to them. We do this by proving that they

are Lipschitz. This is true because of the following standard lemma which applies to all

minimizers:

Lemma 1 (Hamilton’s trick (c.f [44] Lemma 2.1.3)). Let f : K ⇥ [a, b] ! R be a smooth

function with K being compact, and set g to be the minimizer of f on K:

g(t) = min
x2K

f(x, t). (28)

Then g is a Lipschitz function, and thus, di↵erentiable almost everywhere and obeying the

fundamental theorem of calculus. Moreover, if t0 is a point of di↵erentiability of g, and if x0

is such that f(x0, t0) = g(t0) then

g0(t0) =
@f

@t

����
(x0,t0)

. (29)
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):

L@zgµ⌫ = 2Aµ⌫ . (90)

Now, using eq. (41), the pointwise bounds (2)R given by (44) and (87) and the one on (3)R in

eq. (??), we get

H 0 +
H2 + Aµ⌫Aµ⌫

2


✓
4⇡�0

Smin(0)
+

C2K2

⇤

2

◆
e�

2
3K

2
⇤� := C8K

2

⇤
e�

2
3K

2
⇤� . (91)

This implies the following pointwise bound of |H|:

Claim 1.

|H| 
2
p
3

p
C8K⇤e

� 1
3K

2
⇤� := "� . (92)

Proof. At the minimum and maximum points of H, H 0 = 0 and (92) follows from (91) there.

If (92) holds at the minimum and the maximum, it holds at any point.

Integrating (91), and using the pointwise bound (92), we also get

Z z

0

Aµ⌫A
µ⌫


3

2
"2�z + 4"� , (93)

which, using Cauchy-Schwartz, implies

Z z

0

|A| 

r
3

2
"2�z

2 + 4"�z . (94)

Observe that (90) implies that, taking any product co-ordinate system on M� (i.e., a

co-ordinate of the form (↵, �, z), where z is as above and @↵, @� are tangent to each surface

orbit)

@zg↵↵ = 2A(@↵, @↵) = 2A

✓
@↵

||@↵||
,

@↵
||@↵||

◆
||@↵||

2 = 2A

✓
@↵

||@↵||
,

@↵
||@↵||

◆
· g↵↵ . (95)

As @↵
||@↵|| is a unit vector ����A

✓
@↵

||@↵||
,

@↵
||@↵||

◆����  |A| , (96)

so using this and (95),

|@zg↵↵|  2|A|g↵↵ . (97)

Thus, for every product co-ordinate system on M�, (97) and (94) imply that as long as

"�(z2 � z1) 
8

3
(98)
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Notice that the additional requirement in the case of the sphere depends exponentially on

the initial conditions. This is di↵erent from what happens in the case of complete homogeneity

where, for Bianchi-IX universes, one has to impose a lower bound on (3)R [24]. This bound

however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a

point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(�) the

length, at time �, of any geodesic � that is parallel to the z-direction, from an initial slice to

itself. Additionally, denote by V (�) the volume of M� at time �.

Theorem 5. Under the conditions of Theorem 4, for every � > 0, there exists �0,2��0,1 such

that for every � > �0,2

(1 + �)�1


L(�)

L(�0,2)e
1
3K

2
⇤(���0,2)

 1 + � . (66)

and

(1 + �)�1


V (�)

V (�0,2)eK
2
⇤(���0,2)

 1 + � . (67)

Proof. Re-arranging (41), we obtain

(3)R = �Aµ⌫A
µ⌫

�H2 + (2)R� 2H 0 . (68)

Let us integrate (68) along all the z-directed geodesic. By the periodicity, the term in H 0

does not contribute. Therefore, using (44), we obtain

)

Z L(�)

0

dz (3)R 

Z L(�)

0

dz (2)R 

Z L(�)

0

dz
2 · 4⇡�0

Smin(�0,1)e
2
3K

2
⇤(���0,1)

= K2

⇤
C5e

� 2
3K

2
⇤�L(�)

(69)

where

C5 :=
8⇡�0

K2

⇤
Smin(�0,1)e�

2
3K

2
⇤�0,1

, (70)

and where we used Theorem 4, since � > �0,1, given that for this Theorem we are assuming

� > �0,2��0,1. In light of (??), we therefore have that

Z L(�)

0

dz

✓
2

3

�
K2

⇤
�K2

�
+ �2

◆
 K2

⇤
C5 e

� 2
3K

2
⇤�L(�) . (71)

This implies that, using Theorem 1:

Z L(�)

0

dz �2
 K2

⇤
C5e

� 2
3K

2
⇤�L(�) +

Z L(�)

0

dz
2

3

�
K2

�K2

⇤

�
 K2

⇤
(C5 + C2) e

� 2
3K

2
⇤�L(�) .

(72)

) (73)
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6.4 Proximity to de Sitter slices over exponentially expanding balls

In this section we want to prove the pointwise convergence over expanding balls of the spatial

metric to the spatial metric of de Sitter space in flat slicing:

gdS(�) := e
2
3K

2
⇤(���0)gEuc , (135)

with gEuc the flat Eucliden 3d metric. The idea is to prove that the spatial metric g(�0)

for large �0 becomes approximately flat since the surface orbits have larger and larger area

and at the same time the metric becomes independent of the orthogonal direction z. The

exponential growth factor in � is then fixed using the results in the previous section.

Let ⇢1 be the shortest length of a non-contractible loop in one of the surface orbits con-

tained in M�⇤ (set ⇢1 = 1/K⇤ if ⌃ is a sphere). By Theorem 6 at �⇤ the metric g and g

di↵er by < �/4 < 1/4, so that every curve in a surface orbit in M�0 , �0 > �⇤, of length

<1

2
⇢1e

1
3K

2
⇤(�0��⇤), is contractible. Recalling that � is the Euler characteristic of the orbit

surfaces, from (87) we further know that each orbit surface has sectional curvature

|Sec|  C2

Sec
K2

⇤
e�

2
3K

2
⇤�0 , (136)

where

CSec :=

s
4⇡|�|

Smin(0)K2

⇤

. (137)

If we consider the standard forms of the metric in polar coordinates for 2-sphere, 2-plane

and 2-hyperboloid (for the sphere, for instance, this is dr2 + sin
2
(Sec

1/2·r)
Sec

d✓2), it is useful to

notice that, for K⇤r  2e
1
12K

2
⇤�0 and choosing �0 �

4

K2
⇤
log(2CSec), we can use that, for

0  t  1,
��� sin

2
(t)

t2 � 1
���  t2, and

��� sinh
2
(t)

t2 � 1
���  t2, to write:

������

sin2

⇣
CSece�

1
3K

2
⇤�0K⇤r

⌘

C2

Sec
e�

2
3K

2
⇤�0K2

⇤
r2

� 1

������
4C2

Sec
e�

1
2K

2
⇤�0 . (138)

The same bound holds if we replace sin by sinh. It is now useful to impose �0 � �0
⇤⇤, where

�0
⇤⇤ is given by

�0
⇤⇤ = max

0

@�⇤,
4

K2

⇤

log(2CSec),
4 log

⇣
20

3⇢1K⇤

⌘
+ 4

3
K2

⇤
�⇤

K2

⇤

1

A . (139)

The first term on the r.h.s. was imposed above (135) to set a maximum length for the

contractible curves; the second term on the r.h.s. was imposed above (137) to ensure that

the argument of the Sine on the l.h.s of (137) is at most equal to one; the third condition

ensures that for every �0 � �0
⇤⇤, and every point p 2 M�0 , if p 2 ⌃ for some orbit surface ⌃,

then exp⌃

p maps the 2-dimensional Euclidean ball B2(0,
5

3K⇤
e

1
12K

2
⇤�0) di↵eomorphically to the

intrinsic ball in ⌃, B⌃(p, 5

3K⇤
e

1
12K

2
⇤�0) (in fact, the first term on the r.h.s. of (138) ensures that
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–Spacetime Closeness to dS over exp. growing Balls:

–The flow defines a natural 4-metric

• foliates the whole spacetimes (so there are no singularities, geodesic 
completeness)

–Define the dS metric

–Take any future oriented timelike or null curve

–from some flow-time on:

Steps of proof: (4)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
g(�̇, �̇)<
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g(�̇, �̇)  2K⇤ . (177)

This and (176) yield
���Lds24 [�]� L

ds2
g(4) [�]

��� 
C13

K⇤

e�
1
18K
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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Denoting by Gi the complement of the Bi, i.e. the set of flow times with good gradient

bounds: Gi :=
1

K2
⇤
[i, i+ 1)� Bi, we have that

Z
dz |rK(�, z)|2  C12 K

3

⇤
e�

2
9 i, for every � 2 Gi (158)

Let us denote the total set of flow times with good gradient bound as G :=
S1

i=0
Gi.

We now claim the following Lemma about the spatial uniformity of K at times when the

gradient bounds are good:

Lemma 7. It exists a flow time �0,3 such that, for � > �0,3 � 0, in those flow times with

good gradient bounds, K is close to K⇤, i.e.:
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where in the last inequality, we have used the fact that � 2 Gi. Thus, if there is a point, z1,

where (159) is violated, then
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on the interval [z1, z1 + 1/K⇤]. By using that K +K⇤ � K⇤, this gives
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there cannot be such z1 for � > �0,3, establishing (159).

As mentioned, our strategy now is to study the spacetime metric using the MCF foliation.

Given a point p 2 M�, the metric of the four-dimensional spacetime at p is given by

ds2
4
= g(4)µ⌫ dx

µdx⌫ = �K2d�2 + gijdx
idxj , (165)
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where in the last inequality, we have used (177) (which requires both inequalities (179)).

Therefore, for every �0
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where in the last passage we used (181). Since in a given flow time slice, g and g lengths are

close to one another (by Theorem 6, which requires both inequalities (179)), we get that
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12

K⇤
e

1
3K

2
⇤(�

0��0), the result

follows.
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where �⇤⇤ is from Theorem 8, �0 > �0,4 guarantees the validity of the metric (165) over large

spacetime regions, see (168) and �0 �
12 log(12)

K2
⇤

ensures that the balls of Lemma 8 are contained

in the balls of applicability of Theorem 8. Therefore, the Lemma above and Theorem 8 imply

that

||g(�)� gdS(�)||g(�)  16e�
1
12K

2
⇤�0 (185)

along �, where gdS is given by (133), defined using the point p = �(�0). Setting the space-time

honest de Sitter metric,

ds2
dS

:= g
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d�2 + (gdS)ijdx

idxj. (186)

Arguing as in (176), (178) and (177), we get that for every future-pointing timelike or null

curve � : [a, b] ! M (3+1) with �0 := �(�(a)) � max
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We therefore conclude that the length of any future-oriented, timelike or null curve between

two points converges exponentially fast to the same quantity evaluated with the de Sitter

metric, as we take the lowest time of the two points, �0, larger and larger.
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Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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Denoting by Gi the complement of the Bi, i.e. the set of flow times with good gradient

bounds: Gi :=
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We now claim the following Lemma about the spatial uniformity of K at times when the
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as we wished to show.

7 Space-time closeness

We are now ready to show that, asymptotically, the spacetime becomes close to de Sitter

space, in the sense that the length of any future-oriented, timelike or null curve between two

spacetime points approaches the one evaluated between the same points using the de Sitter

metric, once both points are taken at late enough times.

To achieve our purpose, we need to gain some additional control on the extrinsic curvature,

which we do first 7. Let us start by noticing that (10) and SEC imply:
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Proof. Using, first (151), and then (14) and (88), we compute
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where we used that K2
 2K2

⇤
for the flow times that we are considering (which follows from

(58) or (61) and our redefinition of the zero flow time). Integrating this over [�,� + 1/K2

⇤
]

gives the desired result with C 0
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=
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5
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e1/3 � 1
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+
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C7.

7 By making stronger assumptions on the geometry of M (3+1), it is possible to obtain a stronger conclusion
on this aspect, which however does not alter the physical equivalence to de Sitter space that we discuss in the
last section. It will be discussed in a future publication [45].
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on this aspect, which however does not alter the physical equivalence to de Sitter space that we discuss in the
last section. It will be discussed in a future publication [45].
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):
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This implies the following pointwise bound of |H|:
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Proof. At the minimum and maximum points of H, H 0 = 0 and (92) follows from (91) there.

If (92) holds at the minimum and the maximum, it holds at any point.

Integrating (91), and using the pointwise bound (92), we also get
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orbit)

@zg↵↵ = 2A(@↵, @↵) = 2A

✓
@↵

||@↵||
,

@↵
||@↵||

◆
||@↵||

2 = 2A

✓
@↵

||@↵||
,

@↵
||@↵||

◆
· g↵↵ . (95)

As @↵
||@↵|| is a unit vector ����A

✓
@↵

||@↵||
,

@↵
||@↵||

◆����  |A| , (96)

so using this and (95),

|@zg↵↵|  2|A|g↵↵ . (97)

Thus, for every product co-ordinate system on M�, (97) and (94) imply that as long as
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Observe that Lemma 6 and (87) imply that
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We are now going to show that this result allows us to say that K is pointwise close to

K⇤ at most of the late-enough flow times. In fact, (155) guarantees that, at most flow-times,R L(�)
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2 is small, but there can still be a small set of flow times where this quantity
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Denoting by Gi the complement of the Bi, i.e. the set of flow times with good gradient

bounds: Gi :=
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[i, i+ 1)� Bi, we have that
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Let us denote the total set of flow times with good gradient bound as G :=
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Gi.

We now claim the following Lemma about the spatial uniformity of K at times when the

gradient bounds are good:

Lemma 7. It exists a flow time �0,3 such that, for � > �0,3 � 0, in those flow times with

good gradient bounds, K is close to K⇤, i.e.:
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• Given

• Foliation of spacetime by this metric:

• so, no singularities, geodesic completeness.

• Since                   up to small quantities, or up to exponentially small time intervals 
(during which                ), and since the spatial metric is always exponentially close to 
dS on exp. growing balls          upon integration on any curve, we get the same result. 

–In particular, null curves stay in the ball (intuitive)

Steps of proof: (4)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤
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p
g(�̇, �̇)<

p
2
p
g(�̇, �̇)  2K⇤ . (177)

This and (176) yield
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).

34

Denoting by Gi the complement of the Bi, i.e. the set of flow times with good gradient
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where in the last inequality, we have used the fact that � 2 Gi. Thus, if there is a point, z1,

where (159) is violated, then
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on the interval [z1, z1 + 1/K⇤]. By using that K +K⇤ � K⇤, this gives
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there cannot be such z1 for � > �0,3, establishing (159).

As mentioned, our strategy now is to study the spacetime metric using the MCF foliation.

Given a point p 2 M�, the metric of the four-dimensional spacetime at p is given by

ds2
4
= g(4)µ⌫ dx

µdx⌫ = �K2d�2 + gijdx
idxj , (165)
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We therefore conclude that the flow reaches arbitrary large t as � ! +1, and therefore, since

the time function has lapse equal to 1, it foliates arbitrarily large regions of the spacetime.

This guarantees that the spacetime metric we constructed from (164) is valid in such regions.

Additionally, this implies that M (3+1) has no crushing singularities. Indeed, if there were

such a singularity, there exists a c > c0 such that the flow never reaches Sc as in Definition 1.

Choose c1 > c > c0 � 0 in our time function as defined below Definition 1. Let p 2 Sc,

certainly t(p) < 1. Connecting p to M0 by a timelike curve, t must grow monotonically on

this curve and bounded above by t(p). But M� intersects this curve for arbitrarily large �’s

since the flow does not reach p, contradicting that the minimum time on the flow slices grows

arbitrarily large, (167). Since we are assuming that M (3+1) has only potential singularities of

the crushing kind, this implies thatM (3+1) has no singularities, and is therefore future-directed

time-like and null geodesically complete.

Now, let � : [�0,�1] ! M (3+1) be a smooth curve in M (3+1), with �(�) 2 M�, where

�0 � max (�0,4,�⇤). Here �⇤ is from Theorem 6 and �0,4 is from the paragraph above. We

are interested in comparing the metric in (164) with the model metric
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where g is defined by (88). We can estimate the di↵erence in length of the curve � as measured

with the actual metric (164) and with the reference metric (168). Because of the Lorentzian

nature of the spacetime, we will separately bound the di↵erence of the evaluation of the

contraction of the tangent vector with the �-direction, and with the spatial direction. For the
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We therefore conclude that the flow reaches arbitrary large t as � ! +1, and therefore, since

the time function has lapse equal to 1, it foliates arbitrarily large regions of the spacetime.

This guarantees that the spacetime metric we constructed from (164) is valid in such regions.

Additionally, this implies that M (3+1) has no crushing singularities. Indeed, if there were
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We therefore conclude that the flow reaches arbitrary large t as � ! +1, and therefore, since

the time function has lapse equal to 1, it foliates arbitrarily large regions of the spacetime.

This guarantees that the spacetime metric we constructed from (165) is valid in such regions.
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the crushing kind, this implies thatM (3+1) has no singularities, and is therefore future-directed

time-like and null geodesically complete.

Now, let � : [�0,�1] ! M (3+1) be a smooth curve in M (3+1), with �(�) 2 M�, where

�0 � max (�0,4,�⇤). Here �⇤ is from Theorem 6 and �0,4 is from the paragraph above. We

are interested in comparing the metric in (165) with the model metric
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(4)
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where g is defined by (88). We can estimate the di↵erence in length of the curve � as measured

with the actual metric (165) and with the reference metric (168). Because of the Lorentzian

nature of the spacetime, we will separately bound the di↵erence of the evaluation of the

contraction of the tangent vector with the �-direction, and with the spatial direction. For the
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–Dilution of matter:

–from some flow-time on

–compatible with Israel junction condition for domain walls

Steps of proof: (5)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)

K2
⇤

)

p
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p
2
p
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This and (176) yield
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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8 Dilution of Matter

We now show that the stress tensor goes to zero almost everywhere. We can bound the

integral over z of |Tµ⌫nµn⌫
|. One can use eq. (25) and the WEC to write
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where in the last step we used the bounds (69) and (73) together with Theorem 5. We defined

C14 := (C5 + C6)(1 + �)K⇤L(0).

Because of the DEC, Tµ⌫nµn⌫ is at least as large as the absolute value of any other

component of the stress tensor in an orthonormal frame where nµ is the timelike vector 8.

We therefore define a vierbein eµa, such that g(4)µ⌫ = eµae⌫b⌘ab, with ⌘ab being the Minkowski

metric. We choose eµ0 = nµ. By DEC, we have
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Since, by the symmetries of the problem, Tµ⌫ is uniform on the slices at constant z, we see

that in almost-all of the ever-growing z-direction, GNTµ⌫ has to be at most of order K2
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Notice that, by Einstein’s equations, this means that a similar bound applies to Rµ⌫ . In

fact, we can take the Einstein equations and contract them with eµae⌫b
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Let us write Rµ⌫ as Rµ⌫ = RdS,µ⌫ + �Rµ⌫ , where RdS,µ⌫ = 1

3
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gµ⌫ is the Ricci tensor of de

Sitter space with cosmological constant ⇤. We obtain
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We can now use the bound (189) to write
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It is hard to imagine that one can achieve a control on Tµ⌫ which is better than this,

without additional assumptions on the stress tensor and using arguments similar to the ones

presented in [20]. In particular one cannot hope for a pointwise convergence of the stress

8This is actually an equivalent definition of the DEC [46] as it is straightforward to verify.
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Arguing as in (178), (180) and (179), we get that for every future-pointing timelike or null

curve � : [a, b] ! M (3+1) with �0 := �(�(a)) � max
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We therefore conclude that the length of any future-oriented, timelike or null curve between

two points converges exponentially fast to the same quantity evaluated with the de Sitter

metric, as we take the lowest time of the two points, �0, larger and larger.

8 Dilution of Matter

We now show that the stress tensor goes to zero almost everywhere. We can bound the
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where in the last step we used the bounds (69) and (73) together with Theorem 5. We defined

C14 := (C5 + C6)(1 + �)K⇤L(0).

Because of the DEC, Tµ⌫nµn⌫ is at least as large as the absolute value of any other

component of the stress tensor in an orthonormal frame where nµ is the timelike vector 8.

We therefore define a vierbein eµa, such that g(4)µ⌫ = eµae⌫b⌘ab, with ⌘ab being the Minkowski

metric. We choose eµ0 = nµ. By DEC, we have

16⇡GN

Z
dz

��Tµ⌫e
µae⌫b

��  16⇡GN

Z
dz Tµ⌫n

µn⌫
 C14K⇤e

� 1
3K

2
⇤� . (191)

Since, by the symmetries of the problem, Tµ⌫ is uniform on the slices at constant z, we see

that in almost-all of the ever-growing z-direction, GNTµ⌫ has to be at most of order K2
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Notice that, by Einstein’s equations, this means that a similar bound applies to Rµ⌫ . In

fact, we can take the Einstein equations and contract them with eµae⌫b
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Let us write Rµ⌫ as Rµ⌫ = RdS,µ⌫ + �Rµ⌫ , where RdS,µ⌫ = 1

3
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8This is actually an equivalent definition of the DEC [46] as it is straightforward to verify.
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–How come we get pointwise converg.?

–Domain wall of aliens:

– Israel junction conditions: metric continues

–Because of DES, 

–In agreement with pointwise convergence of metric and with 

Steps of proof: (5)

8 Dilution of Matter

We now show that the stress tensor goes to zero almost everywhere. We can bound the

integral over z of |Tµ⌫nµn⌫
|. One can use eq. (25) and the WEC to write
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where in the last step we used the bounds (69) and (73) together with Theorem 5. We defined

C14 := (C5 + C6)(1 + �)K⇤L(0).

Because of the DEC, Tµ⌫nµn⌫ is at least as large as the absolute value of any other

component of the stress tensor in an orthonormal frame where nµ is the timelike vector 8.

We therefore define a vierbein eµa, such that g(4)µ⌫ = eµae⌫b⌘ab, with ⌘ab being the Minkowski
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Since, by the symmetries of the problem, Tµ⌫ is uniform on the slices at constant z, we see
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fact, we can take the Einstein equations and contract them with eµae⌫b
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Let us write Rµ⌫ as Rµ⌫ = RdS,µ⌫ + �Rµ⌫ , where RdS,µ⌫ = 1
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We can now use the bound (189) to write
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It is hard to imagine that one can achieve a control on Tµ⌫ which is better than this,

without additional assumptions on the stress tensor and using arguments similar to the ones

presented in [20]. In particular one cannot hope for a pointwise convergence of the stress

8This is actually an equivalent definition of the DEC [46] as it is straightforward to verify.
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as � becomes larger and larger, the spatial metric

g of M� becomes less and less dependent on the transverse direction z. The propagation of

the metric along the level sets is given by the second fundamental form (extrinsic curvature):

L@zgµ⌫ = 2Aµ⌫ . (89)

Now, using eq. (41), the pointwise bounds (2)R given by (44) and (86) and the one on (3)R in

eq. (26), we get

H 0 +
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2
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This implies the following pointwise bound of |H|:

Claim 1.
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2
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Proof. At the minimum and maximum points of H, H 0 = 0 and (91) follows from (90) there.

If (91) holds at the minimum and the maximum, it holds at any point.

Integrating (90), and using the pointwise bound (91), we also get
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which, using Cauchy-Schwartz, implies
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Observe that (89) implies that, taking any product co-ordinate system on M� (i.e., a

co-ordinate of the form (↵, �, z), where z is as above and @↵, @� are tangent to each surface

orbit)
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"�(z2 � z1) 
8

3
(97)

21

S ⇠ e
� 1

3K
2
⇤�

n (1)

O(1) (2)

. . . (3)

⇤ > 0 (4)

distance = a⇥ time2 (5)

sin(✓i) = nr sin(✓r) (6)

(Rµ⌫⇢�)2n⇤2n
C

⇤4n
. (Rµ⌫⇢�)2n

⇤2n
R

(7)

�  0 (8)

⇤R ! 0 (9)
d

d�
= K

d

dt
(10)

n
µ
n
⌫ 8⇡G Tµ⌫ = Gµ⌫n

µ
n
⌫ (11)Z

d
4
x
p
�g Rµ⌫⇢�R̃

µ⌫⇢� (12)
Z

S

p

h
(2)
R = 0 (13)

H|
S
= 0 (14)Z

p

h
(2)
R = 0 (15)

K
2 (16)

K ! K⇤ & �µ⌫ ! 0 almost everywhere

) gij(t) ! gij(t0)e
2
3K⇤t & (2)

Rµ⌫ ! 0 almost everywhere

Kµ⌫ =
1

2
Khµ⌫ + �µ⌫ (17)

hK
2
i ! K

2
⇤ (18)

hK
2
i � K

2
⇤ (19)

& dV/d� = hK
2
iV (20)

(21)



–Physical equivalence to dS over exp. growing Balls

–Consider an observer

–equivalence of lengths         

»         same geodesics

»         same horizon as in dS

–Observer has access to matter only from finite volume. At all times, in this volume:         

–available energy-momentum is below any threshold

Steps of proof: (6)

Figure 3: Some of the geometric quantities that are defined in Sec. 7.

This means that for any curve � such that �(�) 2 M�, its length w.r.t. the spacetime

metric converges exponentially, as we take �0 larger and larger, to the respective quantity

evaluated on the comparison metric g(4). Note further that if such a curve is future-pointing

timelike or null w.r.t the true space time metric ds2
4
, then g(�̇, �̇)  2K2

⇤
, as below eq. (152),

so, by Theorem 6 (provided �0 is large enough, say, as before, �0 >
6 log(100C11)
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This and (176) yield
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In fact, any future-pointing timelike or null curve w.r.t the true space time metric ds2
4
, with

non-vanishing velocity, can be re-parametrized so that �(�) 2 M�. Such a re-parametrization

is possible since if u0 is a critical point of the function �(�(u)) then �̇(u0) 2 M�, so the tangent

to � is spacelike at such a point. As the length of curves is invariant under re-parametrization,

the length of all future-pointing timelike or null curves become very close to the length com-

puted on a metric which expands like de Sitter.

To compare lengths to a true de Sitter space, we need to use Theorem 8. To do so we

need to prove that time-like and null curves remain inside the ball where the theorem applies.

This is given by the following simple lemma (see Fig. 3).
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9 Summary and Physical Equivalence to de Sitter

Summary: We have considered 3+1 dimensional cosmologies satisfying the Einstein equa-

tions with a positive cosmological constant and matter satisfying the dominant and the strong

energy conditions. We have assumed that the only potential singularities are of the crushing

kind, and that the spatial slices have homogeneous but potentially anisotropic 2-surfaces.

We used the mean curvature flow to probe the geometry: spacetime is foliated by the mean

curvature flow surfaces and the flow parameter runs orthogonal to them. We proved that the

spatial part of the resulting metric converges pointwise to the one of de Sitter space in flat

slicing on balls whose radius becomes arbitrarily large, growing as e
1
3K⇤�, as the flow time �

goes arbitrarily large. The lapse function converges to the one of de Sitter almost everywhere.

The gradient of the lapse function converges to zero almost everywhere only once averaged

over an arbitrarily small, but non-vanishing, time. We have then shown that these results

imply that the length of any future-oriented, timelike or null curve between two points at

late enough time converges exponentially to the same quantity computed with the de Sitter

metric. We have also shown that all components of the stress tensor go to zero almost every-

where. Let us now explain in which sense our findings imply physical equivalence to de Sitter

space at late enough times.

Physical Equivalence to de Sitter Space: Let us start by discussing the role of the

residual matter, which, by (189), does not necessarily go to zero pointwise. However, the fact

that future-oriented null geodesics, at late enough times, behave as in de Sitter space tells

us that at late times there is a cosmological horizon approaching the one of de Sitter space.

Therefore, fixing a late enough time �2, an observer will be able to gather information in the

future only from points that, at �2, are contained in a ball, Bc(�2) ⇢ M�2 , of radius 4 ·3/K⇤;

the de Sitter horizon is 3/K⇤. (The extra factor of 4 is included to account for the di↵erence

between the actual size of the horizon and the one of de Sitter space and also for the motion of

the observer. These corrections decay exponentially in �2, and we are taking �2 late enough.)

At any time � � �2, the integral on M� \ y�(y
�1

�2
(Bc(�2))) of any component of the stress

tensor in an orthonormal frame, is bounded by

16⇡GN

Z

M�\y�(y�1
�2

(Bc(�2)))

|Tµ⌫e
µan⌫b

|  16⇡GN

Z

M�\y�(y�1
�2

(Bc(�2)))

Tµ⌫n
µn⌫




⇡(12)2C14

K⇤

e�
1
3K

2
⇤� 

⇡(12)2C14

K⇤

e�
1
3K

2
⇤�2 , (194)

) (195)

where we used (189) at time �. We therefore see that the overall energy and momentum

contained at any time � � �2 in the ball of points that are causally connected to the center

goes to zero as we send �2 ! +1. Since any experiment has some finite energy or momentum

threshold below which no measurement can be done, we conclude that the residual matter

content is equivalent to vacuum for all physical purposes.
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9 Summary and Physical Equivalence to de Sitter

Summary: We have considered 3+1 dimensional cosmologies satisfying the Einstein equa-

tions with a positive cosmological constant and matter satisfying the dominant and the strong

energy conditions. We have assumed that the only potential singularities are of the crushing

kind, and that the spatial slices have homogeneous but potentially anisotropic 2-surfaces.
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residual matter, which, by (189), does not necessarily go to zero pointwise. However, the fact

that future-oriented null geodesics, at late enough times, behave as in de Sitter space tells
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future only from points that, at �2, are contained in a ball, Bc(�2) ⇢ M�2 , of radius 4 ·3/K⇤;

the de Sitter horizon is 3/K⇤. (The extra factor of 4 is included to account for the di↵erence

between the actual size of the horizon and the one of de Sitter space and also for the motion of

the observer. These corrections decay exponentially in �2, and we are taking �2 late enough.)
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where we used (189) at time �. We therefore see that the overall energy and momentum

contained at any time � � �2 in the ball of points that are causally connected to the center

goes to zero as we send �2 ! +1. Since any experiment has some finite energy or momentum

threshold below which no measurement can be done, we conclude that the residual matter

content is equivalent to vacuum for all physical purposes.

38

9 Summary and Physical Equivalence to de Sitter

Summary: We have considered 3+1 dimensional cosmologies satisfying the Einstein equa-

tions with a positive cosmological constant and matter satisfying the dominant and the strong

energy conditions. We have assumed that the only potential singularities are of the crushing

kind, and that the spatial slices have homogeneous but potentially anisotropic 2-surfaces.

We used the mean curvature flow to probe the geometry: spacetime is foliated by the mean

curvature flow surfaces and the flow parameter runs orthogonal to them. We proved that the

spatial part of the resulting metric converges pointwise to the one of de Sitter space in flat

slicing on balls whose radius becomes arbitrarily large, growing as e
1
3K⇤�, as the flow time �

goes arbitrarily large. The lapse function converges to the one of de Sitter almost everywhere.

The gradient of the lapse function converges to zero almost everywhere only once averaged

over an arbitrarily small, but non-vanishing, time. We have then shown that these results

imply that the length of any future-oriented, timelike or null curve between two points at

late enough time converges exponentially to the same quantity computed with the de Sitter

metric. We have also shown that all components of the stress tensor go to zero almost every-

where. Let us now explain in which sense our findings imply physical equivalence to de Sitter

space at late enough times.

Physical Equivalence to de Sitter Space: Let us start by discussing the role of the

residual matter, which, by (189), does not necessarily go to zero pointwise. However, the fact

that future-oriented null geodesics, at late enough times, behave as in de Sitter space tells

us that at late times there is a cosmological horizon approaching the one of de Sitter space.

Therefore, fixing a late enough time �2, an observer will be able to gather information in the

future only from points that, at �2, are contained in a ball, Bc(�2) ⇢ M�2 , of radius 4 ·3/K⇤;

the de Sitter horizon is 3/K⇤. (The extra factor of 4 is included to account for the di↵erence

between the actual size of the horizon and the one of de Sitter space and also for the motion of

the observer. These corrections decay exponentially in �2, and we are taking �2 late enough.)

At any time � � �2, the integral on M� \ y�(y
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(Bc(�2))) of any component of the stress
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where we used (189) at time �. We therefore see that the overall energy and momentum

contained at any time � � �2 in the ball of points that are causally connected to the center

goes to zero as we send �2 ! +1. Since any experiment has some finite energy or momentum
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Theorem

If the 2-surfaces have non-positive Euler characteristic (or 
in the case of 2-spheres, if the initial 2-spheres are large 
enough) and also if the initial spatial slice is expanding 
everywhere, then the asymptotically the spacetime becomes  
physically indistinguishable from de Sitter space on 
arbitrarily large regions of spacetime. This holds true 
notwithstanding the presence of initial arbitrarily-large 
density fluctuations and potential singularities. 

with Creminelli, Hershkovits, Vasy Advances in Math. 2023



Mean Curvature Flow in de Sitter
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• The usage of MCF revealed itself useful for the 2-isometry case. But that was a 
symmetric case, with no singularities.

• In general, we expect singularities to form, so, we need to be able to describe some 
local regions of  

• We achieved this in

• Consider a tube of de Sitter space:

Is Mean Curvature Flow good?

M�

(1)with Hershkovits 2023



• .

• where                                   is te MCF given by the flat slices of the FRW slicing of dS. 

Locally converging to FRW slicing



• Proof:

– several ideas

– perhaps most innovative/crucial:

• study the evolution of                ,

• with

• so effectively focus the study on the tube:

• eg:

Locally converging to FRW slicing


