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Simple toy model

Consider a scalar field with a mass which varies in time m2 + δm2χ(t).

(□−m2 − χ δm2)ϕ = 0.

where χ ∈ C∞(R), χ(t) = 0 for t < −ϵ and χ(t) = 1 for t > 0.

A pure, translation invariant, Gaussian state of the corresponding quantised
theory has the two-point function of the form:

ω2(x , y) =
1

(2π)3

∫

R3

d3p ξp(tx)ξp(ty )e
ip(x−y).

given in terms of the modes ξp(t) which are solution of

ξ̈p(t) + (|p|2 +m2 + δm2χ(t))ξp(t) = 0.

If the state was prepared in the vacuum

ξp(t) =
e−iω0t

√
2ω0

, t < −ϵ ξp(t) = αp
e iω1t

√
2ω1

+ βp
e−iω1t

√
2ω1

t > 0,

where ω0 =
√

|p|2 +m2, ω1 =
√

|p|2 +m2 + δm2 and αp, βp are complex functions and
βp decays rapidly at large p.

Simple toy model

Consider a scalar field with a mass which varies in time m2 + �m2�(t).

(⇤� m2 � � �m2)� = 0.

where � 2 C1(R), �(t) = 0 for t < �✏ and �(t) = 1 for t > 0.

A pure, translation invariant, Gaussian state of the corresponding quantised theory
has the two-point function of the form:

!2(x , y) =
1

(2⇡)3

Z

R3

d3p ⇠p(tx)⇠p(ty )e
ip(x�y).

given in terms of the modes ⇠p(t) which are solution of

⇠̈p(t) + (|p|2 + m2 + �m2�(t))⇠p(t) = 0.

If the state was prepared in the vacuum

⇠p(t) =
e�i!0t

p
2!0

, t < �✏ ⇠p(t) = ↵p
e i!1t

p
2!1

+ �p
e�i!1t

p
2!1

t > 0,

where !0 =
p

|p|2 + m2, !1 =
p

|p|2 + m2 + �m2 and ↵p, �p are complex functions and
�p decays rapidly at large p.



At late time

ω2(x , y) =
1

(2π)3

∫

R3

d3p

2ω1

(
αpβpe

−iω1(tx+ty ) + αpβpe
+iω1(tx+ty ) + . . .

)
e ip(x−y),

where we see the contribution which is not invariant under time translation
(tx , ty ) → (tx + a, ty + a).

αpβp decays rapidly for large p. The contribution which depends on tx + ty remains
bounded. No secular growths are visible at late time in the exact solution.

Expanding in powers of δm2 and truncating the power series at order n, there are
contributions which grows as

On = C(tx + ty )
n−5/2(δm2)n,

The presence of these secular growths is an artefact of perturbation theory.

When they are present, perturbation theory is not reliable.

Examples: Dirac fields in external potential; perturbations over equilibrium
states; interacting fields over Schwarzschild spacetimes

Question

Can we avoid these kind of problems?

Yes, if the state after the mass change is invariant under time translation
(example equilibrium states)



Basic settings of quantum statistical mechanics

Let A be the C∗−algebra describing the observables of the theory.

Time evolution (also called dynamics) is described by a one-parameter group of
∗−automorphisms t 7→ τt , τt : A → A.

A C∗−algebra A equipped with a continuous time evolution τt forms a
C∗−dynamical system

A state ω over A is a linear functional which is positive and normalized ω(1) = 1.



C ∗−dynamical systems and equilibrium states

Equilibrium states are characterized by the Kubo Martin Schwinger (KMS) condition

Definition (KMS states)

A state ω for A, is a (β, τt)−KMS state if ∀A,B ∈ A the map

t 7→ ω(Aτt(B))

can be extended to an analytic function in the strip ℑ(t) ∈ (0, β) and if

ω(Aτiβ(B)) = ω(BA).

β is the inverse temperature.

Suppose that in a representation π, τt is described by e itH generated by H
selfadjoint. If e−βH is trace class a Gibbs state is obtained averaging

ωβ(A) = Tr(ρπ(A)), ρ := e−βH/Tr(e−βH) A ∈ A

where β is the inverse temperature.

Gibbs states are KMS states

KMS condition is meaningful for infinitely extended systems

KMS states are stable under perturbation of the dynamics



Araki construction of perturbed KMS states

Consider a C∗−algebra A and P = P∗ ∈ A the perturbation Hamiltonian.

Then the perturbed dynamics τP is such that

τP
t (A) = U(t)τt(A)U(t)∗, where −i

d

dt
U

∣∣∣∣
t=0

= P

where U(t) is the cocycle generated by P, U(t + s) = U(t)τtU(s).

Theorem (Araki)

Let ω be an extremal (β, τ)−KMS state and τP the perturbed dynamics. Consider

ωP(A) :=
ω(AU(iβ))

ω(U(iβ))

where ω(AU(iβ)) is the analytic continuation of ω(AU(t)), then ωP(A) is a
(β, τP)−KMS state.



Stability of KMS states for C ∗−dynamical systems

If the following clustering condition holds for ω

lim
t→±∞

ω(AτP
t (B)) = ω(A)ω(B)

stability - return to equilibrium holds:

lim
t→∞

ω(τP
t (A)) = ωP(A)

[Haag Kastler Trych-Pohlmeyer, Bratteli Robinson, Bratteli Robinson Kishimoto]

In [Drago, Faldino, np] it is proved that in the case of an scalar self interacting
quantum field theory strong clustering does not hold under the adiabatic limit,
and equilibrium states cannot be constructed with a limit t → ∞.

For this reason return to equilibrium does not hold in general.

In [Fredenhagen, Lindner] the Araki construction is used to obtain equilibrium
states for interacting quantum field theories constructed with perturbation theory



Real scalar quantum field

The Lagrangian density of the theory on Minkowski space (sign. (−,+,+,+))

L = −1

2
∂µϕ∂

µϕ− m2

2
ϕ2 − λϕn

Observables for the linear theory λ = 0, (□−m2)ϕ = 0

They form a ∗−algebra (off-shell) Aq gen. by

ϕ(f ) =

∫
ϕ(x)f (x)dx , f ∈ C∞

0 (M).

(in a concrete representation ϕ(x) is a smooth field configuration)

The product is given in terms of the causal propagator ∆ = ∆R −∆A

e iϕ(f ) ⋆ e iϕ(g) = e−
i
2
⟨f ,∆g⟩e iϕ(f+g)

Aq can be extended to A which contains normal ordered local fields like∫
ϕn(x)f (x)dx in Floc . [Hollands Wald, Brunetti Fredenhagen Köhler]

(Extensive use of Microlocal Analysis)



Algebra of interacting fields

[Brunetti, Fredenhagen, Duetsch, Rejzner, Hollands, Wald]

Consider an interaction Lagrangian LI (ϕ) (like −ϕn) and the corresponding local
functional

V
.
= λ

∫
gLI (ϕ)dx

with the cutoff g ∈ C∞
0 (M), inserted to have V ∈ Floc.

Time ordered exponential as an element of A[[λ]] (S-matrix)

S(V )
.
= expT (iV ).

Relative S−matrices are then defined as

SV (F )
.
= S(V )−1S(V + F ), F ∈ Floc.

Bogoliubov map (also called Møller map)

RV (F )
.
= −i

d

dµ
SV (µF )

∣∣∣∣
µ=0

= S(V )−1T (e iVF ).

Interacting observables supported in O can now be represented in A[[λ]] as the
smaller subalgebra containing RV (F ) for every F ∈ Floc(O)

AI (O)
.
= [{SV (F )|F ∈ Floc(O)}] ⊂ A[[λ]].



Adiabatic limit g → 1

[Hollands Wald, Brunetti Fredenhagen]

Causal properties of the S matrix. If A ≳ C
(J+(suppA) ∩ J−(suppC) = ∅)

S(A+ B + C) = S(A+ B) S(B)−1 S(B + C).

V = λ

∫
gLIdx

If g , g ′ coincide on J+(O) ∩ J−(O)

V ′ − V = W+ +W−

with suppW+ ∩ J−(O) = ∅ and suppW− ∩ J+(O) = ∅.

For interacting observables supported in O, the map

RV (F ) 7→ RV ′(F ) = SV (W−)
−1 RV (F ) SV (W−)

O

defined for F ∈ Floc(O),

extends to an isomorphism Ag
I (O) → Ag′

I (O).

The limit g → 1 can now be taken at algebraic level
(direct limit).



Adiabatic limit g → 1

A

C

The S−matrix and the equation of motion:

S(V ) ·T L(1) = S(V ) ⋆ L(1)
0

Time slice axiom permits to restrict observables on [Chilian Fredenhagen]

Σϵ
.
= {p ∈ M | t(p) ∈ (−ϵ, ϵ)} .

For every A ∈ AI (O) it exists a C ∈ AI (Σϵ ∩ J(O)) such that

A = C +W

where W ∈ AI vanishes on solutions hence

ω(A) = ω(C)



States in the adiabatic limit

To construct a state for the int. alg. AI (M) it suffices to know it on AI (J
+(Σϵ)).

We choose a cutoff function g in the interaction Lagrangian of the form

g(t, x) = χ(t)h(x)

χ(t) is a smooth function which is equal to 1 for t > −ϵ and 0 for t ≤ −2ϵ.
h is a space cutoff which is compactly supported on Σ.

To obtain a state in the adiabatic limit, we consider the limit where h tends to 1
keeping fixed the time cutoff χ.



Equilibrium states for the free theory

A state is characterized by its n−point functions

ωn(f1, . . . , fn) = ω(ϕ(f1) . . . ϕ(fn)), fi ∈ C∞
0 (M)

a state is quasi-free (Gaussian) if its n−point functions can be given in terms of
the two-point function only.

Fix the spacetime to be Minkowski. The free time evolution is given in terms of
time translations

τt(ϕ(f ))
.
= ϕ(ft) , ft(s, x)

.
= f (s − t, x) .

Proposition

It exists an unique quasifree KMS state ωβ at inverse temperature β wrt τt (m > 0).

ω̂β
2 (p) =

1

2π

1

1− e−βp0
δ(p2 +m2)sign(p0)



Interacting time evolution

Time evolution τtF (ϕ)
.
= Ft(ϕ)

.
= F (ϕt), ϕt(x) = ϕ(x + te0).

The interacting time evolution τV
t in AI (O) is such that

τV
t (RV (F ))

.
= RV (Ft) F ∈ Floc.

The causal factorisation property implies that

τV
t (RV (F )) = SV (Vt − V ) τt(RV (F )) SV (Vt − V )−1, F ∈ Floc(J

+Σϵ), t ≥ 0,

where U(t)
.
= SV (Vt − V ) are unitary elements which intertwines the free and

interacting time evolutions. U(t) satisfies the cocycle condition

U(t + s) = U(t)τtU(s), HI
.
= −i

d

dt
U(t)

∣∣∣∣
t=0

,

where, HI is the interaction Hamiltonian which is given in terms of the
interaction Hamiltonian density HI by

HI =

∫
h(x)HI (x)d

3x, HI (x)
.
=

∫
χ̇(t)RV (−LI (t, x))dt.



Equilibrium state for the interacting theory

For every A ∈ AI (J
+Σϵ) with fixed h

t 7→ ωβ(AU(t))

can be analytically continued to Imt ∈ (0, β). Hence,

ωβ,V
h (A)

.
=

ωβ(AU(iβ))

ωβ(U(iβ))
, A ∈ AI (J

+Σϵ)

defines a β−KMS state with respect to τV
t .

The state does not depend on χ

If m > 0 the limit h → 1 (Adiabatic Limit) can be taken thanks to suitable
clustering properties of the truncated n−point functions for large spatial
separations [Fredenhagen Lindner]

Expectation values in the state ωβ,V can be computed by the following formula

ωβ,V
h (A) =

∑

n

∫

0≤u1≤...un≤β

du1 . . . dun

∫

R3n

d3x1 . . . d
3xnh(x1) . . . h(xn)

ωβ
T (A; τiu1(HI (x1)); . . . ; τiun (HI (xn))) .

Here ωβ
T denotes the truncated functional associated to ωβ .



Thermal states in perturbation theory

In this way one obtains the KMS state for the interacting theory in the
adiabatic limit. [Fredenhagen Lindner]

The case LI = −ϕ4, m = 0 can be treated with the use of the thermal mass.
[Drago, Hack, np].

:ϕ4:∞=:ϕ4:β +M2
β :ϕ2:β

Limit t → ∞ can be easily taken because ωβ,V is invariant under time translations

ωβ,V (RV (A)) = ωβ,V (τV
t RV (A)) = ωβ,V (RV (At)) = ωβ,V−t (RV−t (A))

In some cases, the obtained correlation functions differ from predictions in the
traditional Real Time formalisms. (where equilibrium states are obtained by
means of stability) [Braga Vasconcellos, Drago,np].



Comparison with the physical literature

ωβ,V (SV (F )) =
ωβ(SVU(iβ))

ωβ(U(iβ))
=

ωβ(S−1S(V + F )U(iβ))

ωβ(U(iβ))

A direct comparison requires a bit of work. Notice in particular that formally

SV (F )UV (t) = SV

(
F −

∫ t

0
τs V̇ ds

)
= S̃

(
F +

∫
C
τs V̇ ds

)
where C is the known Keldysh contour and S̃ is the time ordered exponential wrt C .

In the literature: two methods to study interacting field theory at finite temp:

Matsubara or imaginary time method: Suited to compute correction to global
thermodynamical quantities. Example

F = −
1

β
log(ω(U(iβ)))

It is not possible to compute the correlation functions of localized field in space.

The real time formalisms: assuming stability the state is essentially constructed as

lim
t→∞

ωβ(τVt RV (F ))

however this fails sometime as we have seen above.

ωβ,V contains corrections to the correlation functions already at lower orders.



Return to equilibrium and KMS condition

We start with an h of compact spatial support.

Theorem (Return to equilibrium)

If V = Vχh is a spatially compact interaction Lagrangian

lim
t→∞

ωβ,V (τt(A)) = lim
t→∞

ωβ(τt(A)U(iβ))

ωβ(U(iβ))
= ωβ(A)

where A is an element of AI (Σϵ).

The limits are taken in the sense of perturbation theory.

Idea of the Proof:
Decay of ω

β
2 implies ω

β
2 (x, y + te0) ≤ C

t3/2
for t >> 1 [Buchholz Bros]. Hence we have clustering of ωβ .

lim
τ→∞

ω
β (Aτt (B)) = ω

β (A)ωβ (B)

from which we obtain the thesis.



Stability and KMS condition

Theorem (Stability)

If V = Vχ,h is a spatially compact interaction Lagrangian

lim
t→∞

ωβ(τV
t (A)) = ωβ,V (A)

where A is an element of AI (Σϵ).

The limits are taken in the sense of perturbation theories.
Idea of the Proof: The following clustering condition holds

lim
t→+∞

[
ω
β (AτV

t (B)) − ω
β (A)ωβ (τV

t (B))
]
= 0,

for A and B in AI (O),

τ
V
t (B) = τt (B) +

∑
n≥1

(−i)n
∫
0<t1<···<tn<t

[
τt1 (HI ), . . . ,

[
τtn (HI ), τt (B)

]]
dt1 . . . dtn.

Now

ω
β (τV

t (A)) = ω
β (τ−tτ

V
t (A)) = ω

β (U(−t)−1AU(−t)) = ω
β (U(−t)τiβU(−t)−1

τiβA)

where in the last equality we have used the KMS condition. The co-cycle condition for U(t) implies that

τ−t (U(t))−1 = U(−t) and that U(s)τs (U(t)) = U(t + s) = U(t)τt (U(s))

ω
β (τV

t (A)) = ω
β (U(−t)τ−t (U(iβ)−1)U(−t)−1U(iβ)τiβA) = ω

β (τV
−t (U(iβ)−1)U(iβ)τiβA).

The clustering for τV
t

lim
t→∞

ω
β (τV

t (A)) = ω
β (U(iβ)τiβA) lim

t→∞
(ωβ (τV

−t (U(iβ)−1))) = ω
β (AU(iβ))ωβ (U(iβ))−1

B

HI

HI

A



Instabilities in the adiabatic limit - secular effects

Under the adiabatic limit, the clustering condition fails at first order

lim
t→∞

lim
h→1

(
ωβ(Aτt(HI ))− ωβ(A)ωβ(HI )

)
̸= 0,

no return to equilibrium is expected to hold.

Counterexamples can be found:

Consider the ergodic mean of ωβ ◦ τV
t to smoothen oscillations

ωV ,+
T (A)

.
= lim

h→1

1

T

∫ T

0

ωβ(τV
t (A))dt

the limit T → ∞ produces a NESS.



Secular growth

Theorem

Let ωβ be an equilibrium state with respect to the free dynamics τt . If return to
equilibrium holds at all order in perturbation theory:

lim
T→∞

ωβ(τV
T (A)) = ωβ,V (A) , ∀A ∈ A

then secular effects are absent.

Proof.

The proof is a consequence of invariance under time translations of the KMS states.

If V = Vχh is spatially compact we have seen that return to equilibrium holds and
hence no secular growths are present in that case.

Once the large time limit is taken, also the adiabatic limit can be performed
without introducing secular instabilities.

If the limit t → ∞ is taken after the limit h → 1 we expect secular growth.



Generalization

Absence of secular growths for general states if the correlation functions satisfy certain
conditions.

Theorem

Consider an interaction V outside the adiabatic limit. Let ω be a state on A such that
for every {Ai}i∈{1,...,n} ∈ A, n ∈ N the function:

fA1...An (t1, . . . , tn) := ωT (τt1(A1)⊗ · · · ⊗ τtn (An))

is secularily bounded, for ωT the truncated or connected functions of ω. Then, for
every A ∈ A the following uniform bound holds in the sense of perturbation theory:

|ω(τV
t (A))| ≤ C .

In particular, no secular effects are present.

Proof: Write ω(τV
t (A)) in terms of sum of connected functions.



Secularily bounded

Definition

A function f (t1, . . . , tn) of real variables (t1, . . . , tn) ∈ Rn is called secularily bounded if
it satisfies both the following two conditions:

i) f is absolutely integrable on Rn−1 in the variables tp1 , . . . , tpn−1 for any choice of
{p1, . . . , pn−1} ⊂ {1, . . . , n}:

∫

Rn−1

|f (t1, . . . , tn)|dtp1 · · · dtpn−1 < ∞.

ii) The function:

g(tpn ) :=

∫

Rn−1

|f (t1, . . . , tn)|dtp1 · · · dtpn−1

satisfies a bound |g(tpn )| ≤ C1 for C1 ∈ R+, for every pn ∈ {1, . . . , n}.

Observation, this holds in particular if the initial state is quasi free, invariant under
translations and 〈∣∣∣∣∂

(α)
x ∂(β)

y ω2(x ; y0 + t, y)

∣∣∣∣
〉

≤ C

t1+ϵ
, t > 1.



Summary
Secular effects are artefacts of perturbation theory.

They can be avoided if the final state is invariant under time translations.

For equilibrium states this holds as a consequence of return to equilibrium.

The condition can be generalized.



Thanks a lot for your attention



Graphical expansion of the correlation functions

Expectation values in the state ωβ,V can be computed by the following formula

ωβ,V
h (A) =

∑

n

∫

0≤u1≤...un≤β

du1 . . . dun

∫

R3n

d3x1 . . . d
3xnh(x1) . . . h(xn)

ωβ
T (A; τiu1(HI (x1)); . . . ; τiun (HI (xn)))

Here ωβ
T denotes the truncated functional associated to ωβ .

Let Gn be the set of connected graphs with n vertices.

ωβ
T (A⊗ K1 ⊗ · · · ⊗ Kn) =

∑

G∈Gc
n+1

1

Sym(G)
·

·
[ ∏

l∈E(G)

∫
dxldyl ∆

β(xl − yl)
δ2

δφs(l)(xl)δφr(l)(yl)

]
A⊗ K ⊗ · · · ⊗ K

∣∣∣∣
φi=0

where the thermal propagator ∆β(x − y) = ωβ
2 (x , y) is analytically continued

. . .
K1A K2 Kn



Comparison with the physical literature

. . .
K1A K2 Kn

In physical literature, there are two methods to analyze interacting field theory at finite
temperature:

Matsubara or imaginary time method: Suited to compute correction to global
thermodynamical quantities. It is not possible to compute the correlation functions
of localized field. (limχ → θ)

The real time formalisms: assuming stability the state is essentially constructed as

lim
t→∞

ωβ(τV
t RV (F ))

however this fails sometime.

In [Drago, Faldino, np] it is proved that clustering does not hold in the adiabatic
limit, hence the real time formalisms cannot be used in this case

ωβ,V for a ϕ4 theory contains corrections to the correlation functions already at
lower orders. [Braga Vasconcellos, Drago,np]. back


