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CCR∗-algebras

Let (Y,q) be a Hermitian space.
I One can introduce the abstract CCR ∗-algebra CCR(Y,q)

generated by the symbols ψ(y), ψ∗(y) for y ∈ Y with relations:

1) Y 3 y 7→ ψ∗(y) resp. ψ(y) linear resp. anti-linear,

2) [ψ(y1), ψ∗(y2)] = y1 ·qy21l, y1, y2 ∈ Y,

3) [ψ(y1), ψ(y2)] = [ψ∗(y1), ψ∗(y2)] = 0, y1, y2 ∈ Y,

4) ψ(y)∗ = ψ∗(y), y ∈ Y.
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Quasi-free states

I A quasi-free state ω on CCR(Y,q) is determined by a pair of
Hermitian forms λ± on Y (called the covariances) by

ω(ψ(y1)ψ∗(y2)) = y1 ·λ+y2,

ω(ψ∗(y2)ψ(y1)) = y1 ·λ−y2,

ω(ψ(y1)ψ(y2)) = ω(ψ∗(y1)ψ∗(y2)) = 0.

I Necessary and sufficient conditions for λ± to be covariances
are

1) λ+ − λ− = q (CCR),

2) λ± ≥ 0 (positivity).
I Useful to introduce c± =·· ±q−1 ◦ λ±. Then c+ + c− = 1l and
ω is pure iff c± are projections.
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Quasi-free states for matter fields

I Let (M, g) a globally hyperbolic spacetime, V π−→ M a finite
rank Hermitian bundle.

I Let D a second order differential operator acting on
C∞(M;V ) such that D = D∗ with principal symbol ξ·g−1ξ1lV .

I standard example is the Klein-Gordon operator D = −2,
acting on scalar functions.

I D has unique advanced/retarded inverses Gret/adv,
G ··= Gret − Gadv is the commutator function.
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The various Hermitian spaces

I ’off shell’ Hermitian space is
C∞0 (M;V )

DC∞0 (M;V )
with

[u]·Q[u] = i(u|Gu)V .

I ’on shell’ Hermitian space is Kersc D (space of solutions) with

u ·qu = (u|[D, i1lJ+(Σ)]u)V , Σ space-like Cauchy surface

I ’Cauchy surface’ Hermitian space is C∞0 (Σ;V ⊗ C2) with

f ·qΣf =

ˆ
Σ

(f1|f0)V + (f0|f1)V dVolh, f =

(
f0
f1

)
.
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The various covariances

I All three Hermitian spaces are isomorphic. One can use any of
the three to construct CCR(Y,q).

I ’off shell’ covariances: a pair Λ± : C∞0 (M;V )→ D′(M;V )
such that

(1) D ◦ Λ± = Λ± ◦ D = 0 (field equation),

(2) Λ+ − Λ− = iG , (CCR),

(3) (u|Λ±u)V ≥ 0, u ∈ C∞0 (M;V ), (positivity).

I ’Cauchy surface’ covariances: a pair
λ±Σ : C∞0 (Σ;V ⊗ C2)→ D′(Σ;V ⊗ C2) such that:

(1) λ+
Σ − λ

−
Σ = qΣ, (CCR),

(2) (f |λ±Σf )V⊗C2 ≥ 0, f ∈ C∞0 (Σ;V ⊗ C2), (positivity).
The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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The various covariances

I The two types of covariances are related by

λ±Σ = (%∗qΣ)∗Λ±(%∗qΣ),

Λ± = (%G )∗λ±Σ(%G ),

where %u =

(
u�Σ

i−1∇nu�Σ

)
is the trace of u on Σ.
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The Hadamard condition

I The Hadamard condition on Λ± singles out the physically
meaningful states:

I

WF(Λ±)′ ⊂ N± ×N±,
where:

I

N = {(x , ξ) ∈ T ∗M \o : χ·g−1(x)ξ = 0},
characteristic manifold aka lightcone,

N± = positive/negative energy components of N ,

I WF(Λ±)′ ⊂ T ∗(M ×M) \o is the wavefront set of
Λ± ∈ D′(M ×M;V � V ) (distributional kernel of Λ±).
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Wick rotation

I Assume that M = It × Σ, g = −dt2 + ht(x)dx2 and ht real
analytic in t near t = 0.

I Wick rotation amounts to set t =·· is (dt = ids etc). We
obtain M̃ = Ĩs × Σ with a metric g̃ = ds2 + his(x)dx2.

I Note that g̃ is in general not Riemannian.
I The operator D becomes D̃, which is elliptic, at least near

s = 0.
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Calderón projectors

I Let Ω± = M̃ ∩ {±s > 0}. For u ∈ C∞(Ω±) we set

%̃u =

(
u�Σ
−∂su�Σ

)
.

I Key fact: the spaces

E± = {%̃u : u ∈ C∞(Ω±), D̃u = 0 in Ω±}

are not equal to C∞(Σ; C2): one cannot solve the Cauchy
problem for an elliptic equation !
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Calderón projectors

I The Calderón projectors c̃± are the projections on E± along
E∓.

I This requires that

E+ ∩ E− = {0}, (D̃ injective),

E+ + E− = C∞(Σ; C2), (D̃ surjective),

I D̃ has to be defined as a linear operator, not only as a formal
expression: boundary conditions on ∂Ω !
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Calderón projectors
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Σ

Ω+

Ω−

∂Ω

∂Ω

s
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Hadamard states from Calderón projectors

I For scalar fields one can put Dirichlet boundary conditions on
∂Ω to make D̃ invertible.

Theorem (GW)
Let

λ±Σ = ±qΣ ◦ c̃±.

Then λ±Σ are the Cauchy surface covariances of a Hadamard state.
I For ultrastatic spacetimes g = −dt2 + h, g̃ = ds2 + h, the

state obtained with Calderón projectors with no boundary
conditions (ie Ĩ = R) is the vacuum state.
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Einstein’s equations

I Einstein’s equations:

Ric(g) = Λg, Λ cosmological constant.

I fix a background metric g solution of Einstein equations

Ric(g + εu)− Λ(g + εu) = εPu + O(ε2),

for u ∈ C∞(M;⊗2
sT
∗M).

I

Pu = 0 linearized Einstein equations.
I Similarly linearize a diffeomorphism χ around 1l:

χ∗ = 1l + εLv + O(ε2),

Lv Lie derivative associated to the vector field v .
The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Some background

I Set Vk = C⊗k
s T ∗M, k = 0, 1, 2.

Vk equipped with canonical Hermitian form (·|·)Vk

I physical Hermitian form: (u|v)I ,V2 := (u|Iv)V2 ,
I I trace reversal: orthogonal symmetry w.r.t. Cg:

Iu2 = u2 −
1
4
g(g|u2)V2 ,

I one has
I 2 = 1l, Ig = −g, I = I ∗ for (·|·)V2 .

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Symmetric differential and co-differential

I symmetric differential: we set

d :
C∞(M;Vk)→ C∞(M;Vk+1)

(du)a1...,ak+1 = ∇(a1ua2...,ak+1),

u(a1...ak ) is the symmetrization of ua1...ak ,
I symmetric co-differential

δ :
C∞(M;Vk)→ C∞(M;Vk−1)

(δu)a1,...,ak−1 = −k∇auaa1...ak−1 .

d∗ = δ w.r.t. the Hermitian form (·|·)Vk
.
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Linearized gravity as a gauge theory

I replace u2 by Iu2.
I P becomes

P = −2− I ◦ d ◦ δ + 2Riem,
I set

K ··= I ◦ d .
I The gauge invariance of P is expressed by

P ◦ K = 0,

I u2 and u2 + Ku1 are equivalent solutions of Pu2 = 0.
I

canonical Hermitian space:
Kersc P
RanscK

,

ie solutions of linearized Einstein modulo gauge equivalence.
The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Quantization of linearized gravity

I To quantize linearized gravity we need to equip
Kersc P
RanscK

with

a Hermitian form qP .
I u ·qPu ··= (u|I [P, i1lJ+(Σ)]u)V2 , for Σ space-like Cauchy

surface, u ∈ Ker P .
I qP is independent on the choice of Σ.

I qP passes to quotient on
Kersc P
RanscK

(ie u ·qPKv = 0 for all

u ∈ Kersc P , v ∈ C∞sc (M;V2)).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Harmonic gauge

I P not hyperbolic (admits compactly supported solutions).
I one adds the gauge condition K ?u = 0 ie δu = 0 (harmonic

gauge condition).
I here A? is the adjoint w.r.t. the physical Hermitian form

(u|u)I ,V2 = (u|Iu)V2 .

I for any u2 with Pu2 = 0 there exists u1 such that
K ?(u2 + Ku1) = 0.

I u1 is unique modulo a solution of K ?Kv1 = 0 (residual gauge
freedom).
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I It follows that

Kersc P
RanscK

∼ Kersc D2 ∩ Kersc K ?

K Kersc D1
,

where
I

D2 ··= P + K ◦ K ? = −2 + 2Riem,

D1 ··= K ? ◦ K = −2 + Λ,

I Di = Di ,L − 2Λ where Di ,L are the Lichnerowicz d’
Alembertians, Di are hyperbolic operators.

I They admit advanced/retarded inverses.
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Further gauge fixing

I It is possible to impose further gauge fixing conditions, for
example the traceless gauge

K ?
0 u2 = 0

for K ?
0 u2 = −trgu2, K0u0 = u0g.

I One obtains then the equivalent Hermitian space
Kersc D2 ∩ Kersc K ? ∩ Kersc K ?

0
K Kersc D1 ∩ Kersc K ?

0
,

I It is also possible to change the gauge fixing condition.

δu2 + εdtrgu2 = 0,

for ε ∈ R has been used in the Euclidean framework.
I Leads to different operators Di (leading term no more scalar).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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I
Kersc P
RanscK

represents the ’on shell’ Hermitian space.

I the corresponding ’ off shell’ Hermitian space is

V =
Kerc K ?

RancP
.

I One equips it with the Hermitian form

[u]·Q[u] = i(u|G2u)I ,V2 ,

for G2 = G2ret − G2adv.
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Cauchy surface Hermitian space

I We have D2 ◦ K = K ◦ D1 and (taking adjoints)
K ? ◦ D2 = D1 ◦ K ?.

I therefore
K : Kersc D1 → Kersc D2,

K ? : Kersc D2 → Kersc D1

I We denote by KΣ, K
†
Σ the ’Cauchy data’ versions of K ,K ∗.

I For example if D1u1 = 0, f1 = %1Σu1, then

KΣf1 = %2ΣKu1.

I Since D1 = K ? ◦ K we have

K †Σ ◦ KΣ = 0.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Cauchy surface Hermitian space

I We have I ◦ D2 = D2 ◦ I , so I : Kersc D2 → Kersc D2.
(I = trace reversal).

I We denote by IΣ the Cauchy data version of I .
I The Cauchy surface Hermitian space is

Kerc K
†
Σ

RancKΣ
,

equipped with the Hermitian form

[f ]·q2,I [f ] = (f |q2Σ ◦ IΣf )V2⊗C2 , f ∈ Kerc K
†
Σ.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Off-shell covariances

Let Λ±2 ∈ L(C∞0 (M;V2);C∞0 (M;V2)∗).
I assume that

(1) D2 ◦ Λ±2 = Λ±2 ◦ D2 = 0 (field equation),

(2) Λ+
2 − Λ−2 = iG2 on Kerc K ? (CCR),

(3) Λ±2 = 0 on Kerc K ? → RancKK
? (gauge invariance),

(4) (u|IΛ±2 u)V2 ≥ 0, ∀u ∈ Kerc K ? (positivity).

I Then
[u]·Λ±2 [u] ··= u ·Λ±2 u

are the covariances of a quasi-free state on (
Kerc K ?

RancP
,Q).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Cauchy surface covariances

I Let λ±2Σ : C∞0 (Σ;V2 ⊗ C2)→ D′(Σ;V2 ⊗ C2) a pair of Cauchy
surface covariances. We set λ±2Σ =·· ±q2Σ◦c±2 .

I Assume that

(1) c+
2 + c−2 = 1l on Kerc K

†
Σ (CCR),

(2) c±2 : RancKΣ → RanKΣ (strong gauge invariance),

(3) ±(f |IΣq2Σc
±
2 f )V2⊗C2 ≥ 0, ∀f ∈ Kerc K ?

Σ (positivity).

I Then [f ]·λ±2Σ[f ] ··= f ·λ±2Σf are the Cauchy surface covariances

of a quasi-free state on CCR(
Kerc K

†
Σ

RancKΣ
,q2,I ).

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Cauchy surface covariances

I One can ask when Λ±2 = (%2G2)∗λ±2Σ(%2G2) generate a

quasi-free state on (
Kerc K ?

RancP
,Q).

I leads to the weaker condition:

c±2 : RancKΣ → RanKΣK
†
Σ (weak gauge invariance)

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Hadamard condition

I In addition to the above conditions, we require the Hadamard
condition ie

I

WF(Λ±2 )′ ⊂ N± ×N±,

or equivalently

WF(U2Σ ◦ c±2 )′ ⊂ N± × T ∗Σ,

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Existence of Hadamard states

I Theorem (G 2023)
Let (M, g) be any Einstein manifold with compact Cauchy surfaces.
Then there exist gauge invariant Hadamard states for linearized
gravity on (M, g).
I The proof relies on pdo calculus and uses full gauge fixing:
I this amounts to find a convenient supplementary space to

RanKΣ inside KerK †Σ. The delicate gauge invariance property
can now be forgotten.
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de Sitter spacetime

I the de Sitter spacetime dS4 is Rt × S3, equipped with the
metric

g = −dt2 + cosh2(t)h,

h canonical metric on S3 = Σ.
I By Wick rotation t 7→ is we obtain the metric

g̃ = ds2 + cos2(s)h, s ∈]− π/2, π/2[,
I ie the sphere S4 by setting

x0 = sin s, (x1, . . . , x4) = cos s ω, ω ∈ S3.

I The Wick rotations of Di are denoted by D̃i .
I They are selfadjoint for the natural scalar products on S4.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Wick rotated de Sitter spacetime

Σ

Ω+

Ω−

Euclidean dS4

s
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Wick rotated de Sitter spacetime

I The Wick rotation of dS4 is compact: no need for boundary
conditions to define D̃1, D̃2 !

I D̃2 is invertible,
I D̃2 ≥ 2 on Ker(g̃| (traceless symmetric 2-tensors on S4).
I D̃1 is not invertible,
I Ker D̃1 = Ker d = Ker d ∩ Ker δ= space of Killing 1-forms on

S4.
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Calderón projectors

I By Wick rotating the identity D2 ◦ K = K ◦ D1 we obtain

D̃2 ◦ K̃ = K̃ ◦ D̃1, (K̃ = Ĩ ◦ d̃).

I If Calderón projectors c̃±i exist for D̃i then one would have

c̃±2 ◦ K̃Σ = K̃Σ ◦ c̃±1

hence c̃±2 preserves RanK̃Σ: one would get strong gauge
invariance !

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Calderón projectors

I c̃±2 exist since D̃2 is invertible.
I c̃±1 do not exist on the whole space C∞(Σ; Ṽ1 ⊗ C2), since D̃1

is not invertible.
I this problem is due to the existence of Killing one-forms !
I it is still present with any of the alternative gauge fixing

conditions explained above.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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The Euclidean vacuum state

I Let us define Cauchy surface covariances

f 2 ·λ±2Σf2 = ±(f2|q2ΣIΣc̃
±
2 f2)V2⊗C2 .

I We call the associated (pseudo) state ωvac the Euclidean
(pseudo) vacuum.

I (pseudo reflects the fact that ωvac is not positive).
I use the ’mode expansion method’ as a way to label states:
ωvac is a Bunch Davies state.

I We will see that ωvac has nevertheless some problems.
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Study of ETT

I We denote by ETT the space of Cauchy data of
transverse-traceless solutions KerD2 ∩ KerK ? ∩ KerK ?

0 ,
equipped with the Hermitian form q2,I .

I q2,I is degenerate on ETT, with an explicit 10-dimensional
kernel ETT,sing.

I We set ETT,reg = E⊥TT,sing, orthogonal for the Riemannian
scalar product.

I ETT,sing is included in RanKΣ ie consists of pure gauge
solutions. Therefore qI ,2 is non degenerate on the quotient

space
ETT

RanKΣ ∩ ETT
.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime
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Action of de Sitter symmetries on ETT

I One can check that ETT is invariant under the full O(1, 4)
symmetry group of dS4.

I The only precaution is to implement time reversal
τ : (t, ω) 7→ (−t, ω) antilinearly ie by u 7→ τ∗u (Wigner time
reversal).

I The same invariance is true of ETT ∩ RanKΣ.
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The Euclidean vacuum on ETT

We now examine the properties of ωvac on ETT. We start by the
gauge invariance.
I Let K ⊂ KerD1 the 10 dimensional space of Killing 1-forms on

dS4 and KΣ = %1K.
I λ±2Σ are strongly gauge invariant only under gauge

transformations in Kq1
Σ , the orthogonal for q1 of KΣ.

I Kq1
Σ is the subspace on which the Calderón projectors c̃±1 for

D̃1 are well defined.
I But: λ±2Σ are weakly gauge invariant !
I the space-time covariances Λ±2 are hence gauge invariant.
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The Euclidean vacuum on ETT

We now examine the positivity and Hadamard property of ωvac.
I The Hadamard property is rather easy: ωvac satisfies the

Hadamard condition, as does any state constructed with
Calderón projectors.

I λ±2Σ are not positive on the whole of ETT. Their inertia indices
are (6,+∞). They are negative definite on an explicit 6
dimensional subspace, included in ETT,sing.

I This is the most delicate part of the analysis. It relies on the
partial gauge invariance of λ±2Σ.

I as a consequence ωvac is not positive on the whole phase
space.
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The Euclidean vacuum on ETT

Finally we examine the invariance of ωvac under O(1, 4)

I ωvac is invariant under the full symmetry group O(1, 4).
I of course time reversal has to be implemented antilinearly.
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Construction of α-vacua

α-vacua were discovered in the 80’s for scalar fields on de Sitter.
Their construction is made obscure by the use of mode expansions.
It is actually very simple:
I Let S : u 7→ τ∗u be the Racah time reversal and SΣ its Cauchy

surface version. SΣ is now linear.
I Let Uα = eαSΣ . Uα is a 1-parameter group of Bogoliubov

transformations.
I The α-vacua ωα are defined by the covariances

λ±2,α = U∗αλ
±
2ΣUα.

I They have the same properties as ωvac except the Hadamard
condition.
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Modified Euclidean vacuum

It is possible to repair ωvac by additional gauge fixing. This
amounts to add to the TT gauge condition an extra condition
formulated in terms of Cauchy data on Σ.
I Let π the orthogonal projection on ETT,reg = E⊥TT,sing.

I The physical phase space
ETT

RanKΣ
is isomorphic to

ETT,reg

Kq1
Σ

.

(’correct’ space in the denominator).
I We replace λ±2Σ by

λ±2Σmod = π∗λ±2Σπ.

The Euclidean vacuum state for linearized gravity on de Sitter spacetime



Some background on quasi-free states
Wick rotation

Linearized gravity
Quantization of linearized gravity

de Sitter spacetime
The Euclidean vacuum state on de Sitter space

I Theorem (GW)
The modified covariances λ±2Σmod satisfy:

(1) the Hadamard condition,
(2) the CCR on ETT,
(3) the strong gauge invariance on ETT.
(4) the positivity on ETT,
(5) the invariance under de Sitter isometries preserving Σ.

I We denote by ωmod the associated state on ETT. It is a true,
gauge invariant, quasi-free state.

I Its only defect is that it is not invariant under the full O(1, 4)
group, only under its subgroup O(4).

I Thank you for your attention !
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