The Euclidean vacuum state for linearized gravity on de Sitter spacetime

Christian Gérard Université Paris-Saclay

April 8, 2024

< □ → < ⓓ → < ё → < ≧ → < ≧ → < ≧ → < ○ </p>
Centre Euclidean vacuum state for linearized gravity on de Sit

Some background on quasi-free states

Wick rotation

Linearized gravity

Quantization of linearized gravity

de Sitter spacetime

The Euclidean vacuum state on de Sitter space

CCR*-algebras

Let $(\mathcal{Y}, \mathbf{q})$ be a Hermitian space.

- One can introduce the abstract CCR *-algebra CCR(𝒱, q) generated by the symbols ψ(救), ψ*(救) for 𝗴 ∈ 𝒱 with relations:
 - 1) $\mathcal{Y} \ni y \mapsto \psi^*(y)$ resp. $\psi(y)$ linear resp. anti-linear,

2)
$$[\psi(y_1), \psi^*(y_2)] = \overline{y}_1 \cdot \mathbf{q} y_2 \mathbb{1}, y_1, y_2 \in \mathcal{Y},$$

3) $[\psi(y_1), \psi(y_2)] = [\psi^*(y_1), \psi^*(y_2)] = 0, \ y_1, y_2 \in \mathcal{Y},$

4)
$$\psi(y)^* = \psi^*(y), y \in \mathcal{Y}.$$

Quasi-free states

A quasi-free state ω on CCR(𝔅, q) is determined by a pair of Hermitian forms λ[±] on 𝔅 (called the covariances) by

$$\begin{split} \omega(\psi(y_1)\psi^*(y_2)) &= \overline{y}_1 \cdot \lambda^+ y_2, \\ \omega(\psi^*(y_2)\psi(y_1)) &= \overline{y}_1 \cdot \lambda^- y_2, \\ \omega(\psi(y_1)\psi(y_2)) &= \omega(\psi^*(y_1)\psi^*(y_2)) = 0. \end{split}$$

Necessary and sufficient conditions for λ[±] to be covariances are

1)
$$\lambda^+ - \lambda^- = \mathbf{q}$$
 (CCR),

2) $\lambda^{\pm} \geq 0$ (positivity).

Useful to introduce c[±] =: ±q⁻¹ ∘ λ[±]. Then c⁺ + c⁻ = 1 and ω is pure iff c[±] are projections.

Quasi-free states for matter fields

- Let (M, g) a globally hyperbolic spacetime, V → M a finite rank Hermitian bundle.
- Let *D* a second order differential operator acting on $C^{\infty}(M; V)$ such that $D = D^*$ with principal symbol $\xi \cdot g^{-1} \xi \mathbb{1}_V$.
- standard example is the Klein-Gordon operator D = −□, acting on scalar functions.
- ► D has unique advanced/retarded inverses G_{ret/adv}, G := G_{ret} - G_{adv} is the commutator function.

Some background on quasi-free states Wick rotation

VVICK rotation Linearized gravity Quantization of linearized gravity de Sitter space The Euclidean vacuum state on de Sitter space

The various Hermitian spaces

• 'off shell' Hermitian space is
$$\frac{C_0^{\infty}(M; V)}{DC_0^{\infty}(M; V)}$$
 with

$\overline{[u]} \cdot \mathbf{Q}[u] = \mathrm{i}(u|Gu)_V.$

▶ 'on shell' Hermitian space is $\operatorname{Ker}_{\operatorname{sc}} D$ (space of solutions) with

 $\overline{u} \cdot \mathbf{q} u = (u | [D, \mathrm{i} \mathbbm{1}_{J^+(\Sigma)}] u)_V, \ \Sigma$ space-like Cauchy surface

• 'Cauchy surface' Hermitian space is $C_0^{\infty}(\Sigma; V \otimes \mathbb{C}^2)$ with

$$\overline{\mathbf{f}} \cdot \mathbf{q}_{\Sigma} \mathbf{f} = \int_{\Sigma} (f_1 | f_0)_V + (f_0 | f_1)_V dVol_h, \ \mathbf{f} = \begin{pmatrix} f_0 \\ f_1 \end{pmatrix}$$

٠

The various covariances

- ► All three Hermitian spaces are isomorphic. One can use any of the three to construct CCR(𝒱, q).
- ▶ 'off shell' covariances: a pair Λ^{\pm} : $C_0^{\infty}(M; V) \rightarrow \mathcal{D}'(M; V)$ such that

(1)
$$D \circ \Lambda^{\pm} = \Lambda^{\pm} \circ D = 0$$
 (field equation),

(2)
$$\Lambda^+ - \Lambda^- = \mathrm{i}G$$
, (CCR).

(3) $(u|\Lambda^{\pm}u)_V \geq 0, \ u \in C_0^{\infty}(M; V), \ (\text{positivity}).$

► 'Cauchy surface' covariances: a pair $\lambda_{\Sigma}^{\pm} : C_{0}^{\infty}(\Sigma; V \otimes \mathbb{C}^{2}) \rightarrow \mathcal{D}'(\Sigma; V \otimes \mathbb{C}^{2}) \text{ such that:}$ (1) $\lambda_{\Sigma}^{\pm} - \lambda_{\Sigma}^{-} = \mathbf{q}_{\Sigma}, \text{ (CCR)},$ (2) $(f|\lambda_{\Sigma}^{\pm}f)_{V \otimes \mathbb{C}^{2}} \ge 0, f \in C_{0}^{\infty}(\Sigma; V \otimes \mathbb{C}^{2}), \text{ (positivity)}.$

The Euclidean vacuum state for linearized gravity on de Site

Some background on quasi-free states

Wick rotation Linearized gravity Quantization of linearized gravity de Sitter spacetime The Euclidean vacuum state on de Sitter space

The various covariances

The two types of covariances are related by

$$\begin{split} \lambda_{\Sigma}^{\pm} &= (\varrho^* \mathbf{q}_{\Sigma})^* \Lambda^{\pm} (\varrho^* \mathbf{q}_{\Sigma}), \\ \Lambda^{\pm} &= (\varrho G)^* \lambda_{\Sigma}^{\pm} (\varrho G), \end{split}$$

where
$$\varrho u = \begin{pmatrix} u \upharpoonright_{\Sigma} \\ i^{-1} \nabla_n u \upharpoonright_{\Sigma} \end{pmatrix}$$
 is the trace of u on Σ .

・ロト イラト イラト イラト ラ シーへで The Euclidean vacuum state for linearized gravity on de Sit

The Hadamard condition

The Hadamard condition on Λ[±] singles out the physically meaningful states:

$$\operatorname{WF}(\Lambda^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm},$$

where:

►

$$\mathcal{N} = \{ (x,\xi) \in T^*M \setminus o : \chi \cdot \mathbf{g}^{-1}(x)\xi = 0 \},$$

characteristic manifold aka lightcone,

 $\mathcal{N}^{\pm} =$ positive/negative energy components of \mathcal{N} ,

► WF(Λ^{\pm})' ⊂ $T^*(M \times M) \setminus o$ is the wavefront set of $\Lambda^{\pm} \in \mathcal{D}'(M \times M; V \boxtimes V)$ (distributional kernel of Λ^{\pm}).

Wick rotation

- Assume that $M = I_t \times \Sigma$, $\mathbf{g} = -dt^2 + h_t(x)dx^2$ and h_t real analytic in t near t = 0.
- Wick rotation amounts to set t =: is (dt = ids etc). We obtain $\tilde{M} = \tilde{l}_s \times \Sigma$ with a metric $\tilde{\mathbf{g}} = ds^2 + h_{is}(x)dx^2$.
- ▶ Note that **ğ** is in general not Riemannian.
- ► The operator D becomes D̃, which is elliptic, at least near s = 0.

Calderón projectors

• Let
$$\Omega^{\pm} = \tilde{M} \cap \{\pm s > 0\}$$
. For $u \in \overline{C^{\infty}}(\Omega^{\pm})$ we set

$$\tilde{\varrho} u = \left(\begin{array}{c} u \upharpoonright_{\Sigma} \\ -\partial_{s} u \upharpoonright_{\Sigma} \end{array} \right).$$

Key fact: the spaces

$$E^{\pm} = \{ \tilde{\varrho} u : u \in \overline{C^{\infty}}(\Omega^{\pm}), \ \tilde{D} u = 0 \text{ in } \Omega^{\pm} \}$$

are not equal to $C^{\infty}(\Sigma; \mathbb{C}^2)$: one cannot solve the Cauchy problem for an elliptic equation !

Calderón projectors

- ► The Calderón projectors č[±] are the projections on E[±] along E[∓].
- This requires that

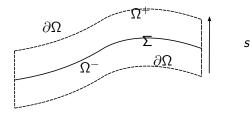
$$E^+ \cap E^- = \{0\}, \ (\tilde{D} \text{ injective}), \ E^+ + E^- = C^{\infty}(\Sigma; \mathbb{C}^2), \ (\tilde{D} \text{ surjective}),$$

► \tilde{D} has to be defined as a linear operator, not only as a formal expression: boundary conditions on $\partial \Omega$!

Calderón projectors

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ The Euclidean vacuum state for linearized gravity on de Sit

æ



Hadamard states from Calderón projectors

- For scalar fields one can put Dirichlet boundary conditions on $\partial \Omega$ to make \tilde{D} invertible.
- Theorem (GW)

Let

$$\lambda_{\Sigma}^{\pm} = \pm \mathbf{q}_{\Sigma} \circ \tilde{c}^{\pm}.$$

Then λ_{Σ}^{\pm} are the Cauchy surface covariances of a Hadamard state.

For ultrastatic spacetimes g = −dt² + h, ğ = ds² + h, the state obtained with Calderón projectors with no boundary conditions (ie l̃ = ℝ) is the vacuum state.

Einstein's equations

Einstein's equations:

 $Ric(g) = \Lambda g, \ \Lambda \ cosmological \ constant.$

► fix a background metric g solution of Einstein equations

$$\mathsf{Ric}(\mathbf{g} + \epsilon u) - \Lambda(\mathbf{g} + \epsilon u) = \epsilon P u + O(\epsilon^2),$$

for $u \in C^{\infty}(M; \otimes^2_{\mathrm{s}} T^*M)$.

Pu = 0 linearized Einstein equations.

Similarly linearize a diffeomorphism χ around 1:

$$\chi^* = 1 + \epsilon \mathcal{L}_{\nu} + O(\epsilon^2),$$

 \mathcal{L}_{v} Lie derivative associated to the vector field v.

Some background

- ► Set $V_k = \mathbb{C} \otimes_{s}^{k} T^*M$, k = 0, 1, 2. V_k equipped with canonical Hermitian form $(\cdot|\cdot)_{V_k}$
- physical Hermitian form: $(u|v)_{I,V_2} := (u|Iv)_{V_2}$,
- ► *I trace reversal*: orthogonal symmetry w.r.t. Cg:

$$lu_2 = u_2 - \frac{1}{4}\mathbf{g}(\mathbf{g}|u_2)_{V_2},$$

one has

$$I^2 = \mathbb{1}, I\mathbf{g} = -\mathbf{g}, \ I = I^* \text{ for } (\cdot|\cdot)_{V_2}.$$

Symmetric differential and co-differential

symmetric differential: we set

$$d: \begin{array}{l} C^{\infty}(M;V_k) \rightarrow C^{\infty}(M;V_{k+1}) \\ (du)_{a_1\dots,a_{k+1}} = \nabla_{(a_1}u_{a_2\dots,a_{k+1}}), \end{array}$$

 $u_{(a_1...a_k)}$ is the symmetrization of $u_{a_1...a_k}$,

symmetric co-differential

$$\delta: \begin{array}{l} C^{\infty}(M;V_k) \to C^{\infty}(M;V_{k-1}) \\ (\delta u)_{a_1,\dots,a_{k-1}} = -k \nabla^a u_{aa_1\dots a_{k-1}}. \end{array}$$

 $d^* = \delta$ w.r.t. the Hermitian form $(\cdot|\cdot)_{V_k}$.

Linearized gravity as a gauge theory

- ▶ replace *u*₂ by *lu*₂.
- P becomes

$$P = -\Box - I \circ d \circ \delta + 2\mathsf{Riem},$$

set

 $K := I \circ d.$

► The gauge invariance of *P* is expressed by

$$P \circ K = 0$$
,

• u_2 and $u_2 + Ku_1$ are equivalent solutions of $Pu_2 = 0$.

canonical Hermitian space: $\frac{\text{Ker}_{sc} P}{\text{Ran}_{sc} K}$,

ie solutions of linearized Einstein modulo gauge equivalence.

The Euclidean vacuum state for linearized gravity on de Sit

Quantization of linearized gravity

- ► To quantize linearized gravity we need to equip $\frac{\text{Ker}_{sc} P}{\text{Ran}_{sc} K}$ with a Hermitian form \mathbf{q}_P .
- ► $\overline{u} \cdot \mathbf{q}_P u := (u|I[P, \mathrm{ill}_{J^+(\Sigma)}]u)_{V_2}$, for Σ space-like Cauchy surface, $u \in \mathrm{Ker} P$.
- \mathbf{q}_P is independent on the choice of Σ .
- ▶ **q**_P passes to quotient on $\frac{\operatorname{Ker}_{\mathrm{sc}} P}{\operatorname{Ran}_{\mathrm{sc}} K}$ (ie $\overline{u} \cdot \mathbf{q}_P K v = 0$ for all $u \in \operatorname{Ker}_{\mathrm{sc}} P$, $v \in C_{\mathrm{sc}}^{\infty}(M; V_2)$).

Harmonic gauge

- ► *P* not hyperbolic (admits compactly supported solutions).
- one adds the gauge condition $K^* u = 0$ ie $\delta u = 0$ (harmonic gauge condition).
- here A^* is the adjoint w.r.t. the physical Hermitian form

$$(u|u)_{I,V_2} = (u|Iu)_{V_2}.$$

- for any u_2 with $Pu_2 = 0$ there exists u_1 such that $K^*(u_2 + Ku_1) = 0$.
- u₁ is unique modulo a solution of K^{*}Kv₁ = 0 (residual gauge freedom).

It follows that

$$\frac{\mathrm{Ker}_{\mathrm{sc}} P}{\mathrm{Ran}_{\mathrm{sc}} K} \sim \frac{\mathrm{Ker}_{\mathrm{sc}} D_2 \cap \mathrm{Ker}_{\mathrm{sc}} K^{\star}}{K \, \mathrm{Ker}_{\mathrm{sc}} D_1},$$

where

$$D_2 := P + K \circ K^* = -\Box + 2 \text{Riem},$$
$$D_1 := K^* \circ K = -\Box + \Lambda,$$

- ▶ D_i = D_{i,L} 2Λ where D_{i,L} are the Lichnerowicz d' Alembertians, D_i are hyperbolic operators.
- They admit advanced/retarded inverses.

Further gauge fixing

It is possible to impose further gauge fixing conditions, for example the traceless gauge

$$K_0^{\star} u_2 = 0$$

for $K_0^{\star} u_2 = -\text{tr}_{\mathbf{g}} u_2$, $K_0 u_0 = u_0 \mathbf{g}$.

One obtains then the equivalent Hermitian space

$$\frac{\operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_2 \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} K^* \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} K_0^*}{K \operatorname{\mathsf{Ker}}_{\operatorname{sc}} D_1 \cap \operatorname{\mathsf{Ker}}_{\operatorname{sc}} K_0^*};$$

It is also possible to change the gauge fixing condition.

 $\delta u_2 + \epsilon d \mathrm{tr}_{\mathbf{g}} u_2 = \mathbf{0},$

for $\epsilon \in \mathbb{R}$ has been used in the Euclidean framework.

• Leads to different operators D_i (leading term no more scalar).

 $\blacktriangleright \frac{\text{Ker}_{sc} P}{\text{Ran}_{sc} K}$ represents the 'on shell' Hermitian space.

the corresponding ' off shell' Hermitian space is

$$\mathcal{V} = \frac{\operatorname{Ker}_{c} K^{\star}}{\operatorname{Ran}_{c} P}.$$

• One equips it with the Hermitian form

$$\overline{[u]} \cdot \mathbf{Q}[u] = \mathrm{i}(u|G_2u)_{I,V_2},$$

for
$$G_2 = G_{2ret} - G_{2adv}$$
.

Cauchy surface Hermitian space

- We have $D_2 \circ K = K \circ D_1$ and (taking adjoints) $K^* \circ D_2 = D_1 \circ K^*$.
- therefore

$$K: \operatorname{Ker}_{\operatorname{sc}} D_1 \to \operatorname{Ker}_{\operatorname{sc}} D_2,$$

$${\sf K}^\star:{\operatorname{{\sf Ker}}}_{\operatorname{sc}}D_2 o{\operatorname{{\sf Ker}}}_{\operatorname{sc}}D_1$$

- We denote by K_{Σ} , K_{Σ}^{\dagger} the 'Cauchy data' versions of K, K^* .
- For example if $D_1u_1 = 0$, $f_1 = \varrho_{1\Sigma}u_1$, then

$$K_{\Sigma}f_1=\varrho_{2\Sigma}Ku_1.$$

• Since $D_1 = K^* \circ K$ we have

$$K_{\Sigma}^{\dagger} \circ K_{\Sigma} = 0.$$

Cauchy surface Hermitian space

- ▶ We have $I \circ D_2 = D_2 \circ I$, so $I : \text{Ker}_{sc} D_2 \rightarrow \text{Ker}_{sc} D_2$. (I = trace reversal).
- We denote by I_{Σ} the Cauchy data version of I.
- The Cauchy surface Hermitian space is

$$\frac{\operatorname{\mathsf{Ker}}_{\mathrm{c}} K_{\Sigma}^{\dagger}}{\operatorname{Ran}_{\mathrm{c}} K_{\Sigma}},$$

equipped with the Hermitian form

$$\overline{[f]} \cdot \mathbf{q}_{2,l}[f] = (f | \mathbf{q}_{2\Sigma} \circ I_{\Sigma} f)_{V_2 \otimes \mathbb{C}^2}, \ f \in \operatorname{Ker}_{c} K_{\Sigma}^{\dagger}$$

Off-shell covariances

Let
$$\Lambda_2^{\pm} \in L(C_0^{\infty}(M; V_2); C_0^{\infty}(M; V_2)^*).$$

assume that

(1)
$$D_2 \circ \Lambda_2^{\pm} = \Lambda_2^{\pm} \circ D_2 = 0$$
 (field equation),

(2)
$$\Lambda_2^+ - \Lambda_2^- = \mathrm{i} G_2$$
 on Ker_c \mathcal{K}^\star (CCR),

(3)
$$\Lambda_2^{\pm} = 0$$
 on Ker_c $K^{\star} \to \operatorname{Ran}_c K K^{\star}$ (gauge invariance),

(4)
$$(u|I\Lambda_2^{\pm}u)_{V_2} \ge 0, \ \forall u \in \operatorname{Ker}_{c} K^{\star}$$
 (positivity).

Then

$$\overline{[u]} \cdot \Lambda_2^{\pm}[u] := \overline{u} \cdot \Lambda_2^{\pm} u$$

are the covariances of a quasi-free state on $(\frac{\operatorname{Ker}_{c} K^{\star}}{\operatorname{Ran}_{c} P}, \mathbf{Q})$.

Cauchy surface covariances

- Let λ[±]_{2Σ} : C[∞]₀(Σ; V₂ ⊗ C²) → D'(Σ; V₂ ⊗ C²) a pair of Cauchy surface covariances. We set λ[±]_{2Σ} =: ±q_{2Σ} ∘ c[±]₂.
- Assume that

(1)
$$c_2^+ + c_2^- = 1$$
 on $\operatorname{Ker}_c K_{\Sigma}^{\dagger}$ (CCR),
(2) $c_2^{\pm} : \operatorname{Ran}_c K_{\Sigma} \to \operatorname{Ran} K_{\Sigma}$ (strong gauge invariance),

- (3) $\pm (f|I_{\Sigma}\mathbf{q}_{2\Sigma}c_2^{\pm}f)_{V_2\otimes\mathbb{C}^2} \geq 0, \ \forall f \in \operatorname{Ker}_{c} K_{\Sigma}^{\star} \text{ (positivity)}.$
- Then [f] ·λ[±]_{2Σ}[f] := f ·λ[±]_{2Σ} f are the Cauchy surface covariances of a quasi-free state on CCR(Ker_c K[†]_Σ/Ran_cK_Σ, q_{2,1}).

Cauchy surface covariances

leads to the weaker condition:

$$c_2^{\pm}: \operatorname{Ran}_{\operatorname{c}} {\mathcal{K}}_{\Sigma} o \operatorname{Ran} {\mathcal{K}}_{\Sigma} {\mathcal{K}}_{\Sigma}^{\dagger}$$
 (weak gauge invariance)

Hadamard condition

►

In addition to the above conditions, we require the Hadamard condition ie

$$\operatorname{WF}(\Lambda_2^{\pm})' \subset \mathcal{N}^{\pm} \times \mathcal{N}^{\pm},$$

or equivalently

$$\operatorname{WF}(U_{2\Sigma} \circ c_2^{\pm})' \subset \mathcal{N}^{\pm} \times T^*\Sigma,$$

イロト イポト イヨト イヨト The Euclidean vacuum state for linearized gravity on de Sit

э

Existence of Hadamard states

► Theorem (G 2023)

Let (M, \mathbf{g}) be any Einstein manifold with compact Cauchy surfaces. Then there exist gauge invariant Hadamard states for linearized gravity on (M, \mathbf{g}) .

- ► The proof relies on pdo calculus and uses full gauge fixing:
- this amounts to find a convenient supplementary space to RanK_Σ inside Ker K[†]_Σ. The delicate gauge invariance property can now be forgotten.

de Sitter spacetime

► the de Sitter spacetime dS⁴ is R_t × S³, equipped with the metric

$$\mathbf{g} = -dt^2 + \cosh^2(t)\mathbf{h},$$

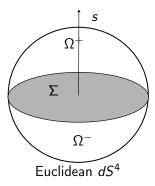
 h canonical metric on $\mathbb{S}^3=\Sigma.$

- ▶ By Wick rotation $t \mapsto is$ we obtain the metric $\tilde{\mathbf{g}} = ds^2 + \cos^2(s)h$, $s \in] \pi/2, \pi/2[$,
- ie the sphere S⁴ by setting

$$x_0 = \sin s, \ (x_1, \ldots, x_4) = \cos s \ \omega, \ \omega \in \mathbb{S}^3.$$

- The Wick rotations of D_i are denoted by D̃_i.
- ► They are selfadjoint for the natural scalar products on S⁴.

Wick rotated de Sitter spacetime



臣

Wick rotated de Sitter spacetime

- ► The Wick rotation of dS^4 is compact: no need for boundary conditions to define \tilde{D}_1 , \tilde{D}_2 !
- \tilde{D}_2 is invertible,
- $\tilde{D}_2 \ge 2$ on Ker($\tilde{\mathbf{g}}$ | (traceless symmetric 2-tensors on \mathbb{S}^4).
- \tilde{D}_1 is not invertible,
- ► Ker \tilde{D}_1 = Ker d = Ker d ∩ Ker δ = space of Killing 1-forms on \mathbb{S}^4 .

Calderón projectors

• By Wick rotating the identity $D_2 \circ K = K \circ D_1$ we obtain

$$ilde{D}_2\circ ilde{K}= ilde{K}\circ ilde{D}_1, \ (ilde{K}= ilde{I}\circ ilde{d}).$$

▶ If Calderón projectors \tilde{c}_i^{\pm} exist for \tilde{D}_i then one would have

$$\tilde{c}_2^{\pm} \circ \tilde{K}_{\Sigma} = \tilde{K}_{\Sigma} \circ \tilde{c}_1^{\pm}$$

hence \tilde{c}_2^{\pm} preserves $\operatorname{Ran} \tilde{K}_{\Sigma}$: one would get strong gauge invariance !

Calderón projectors

- \tilde{c}_2^{\pm} exist since \tilde{D}_2 is invertible.
- \tilde{c}_1^{\pm} do not exist on the whole space $C^{\infty}(\Sigma; \tilde{V}_1 \otimes \mathbb{C}^2)$, since \tilde{D}_1 is not invertible.
- this problem is due to the existence of Killing one-forms !
- it is still present with any of the alternative gauge fixing conditions explained above.

The Euclidean vacuum state

Let us define Cauchy surface covariances

$$\overline{f}_2 \cdot \lambda_{2\Sigma}^{\pm} f_2 = \pm (f_2 | q_{2\Sigma} I_{\Sigma} \widetilde{c}_2^{\pm} f_2)_{V_2 \otimes \mathbb{C}^2}.$$

- We call the associated (pseudo) state ω_{vac} the Euclidean (pseudo) vacuum.
- (pseudo reflects the fact that ω_{vac} is not positive).
- use the 'mode expansion method' as a way to label states:
 ω_{vac} is a Bunch Davies state.
- We will see that ω_{vac} has nevertheless some problems.

Study of $\mathcal{E}_{\mathrm{TT}}$

- We denote by *E*_{TT} the space of Cauchy data of transverse-traceless solutions Ker *D*₂ ∩ Ker *K*^{*} ∩ Ker *K*^{*}₀, equipped with the Hermitian form **q**_{2,1}.
- ► q_{2,1} is degenerate on *E*_{TT}, with an explicit 10-dimensional kernel *E*_{TT,sing}.
- ► We set $\mathcal{E}_{TT,reg} = \mathcal{E}_{TT,sing}^{\perp}$, orthogonal for the Riemannian scalar product.
- $\begin{array}{l} \blacktriangleright \ \mathcal{E}_{\mathrm{TT,sing}} \text{ is included in } \mathrm{Ran} \mathcal{K}_{\Sigma} \text{ ie consists of pure gauge} \\ \text{ solutions. Therefore } \mathbf{q}_{I,2} \text{ is non degenerate on the quotient} \\ \text{space } \frac{\mathcal{E}_{\mathrm{TT}}}{\mathrm{Ran} \mathcal{K}_{\Sigma} \cap \mathcal{E}_{\mathrm{TT}}}. \end{array}$

Action of de Sitter symmetries on $\mathcal{E}_{\mathrm{TT}}$

- ► One can check that *E*_{TT} is invariant under the full *O*(1,4) symmetry group of *dS*⁴.
- The only precaution is to implement time reversal $\tau : (t, \omega) \mapsto (-t, \omega)$ antilinearly is by $u \mapsto \overline{\tau^* u}$ (Wigner time reversal).
- The same invariance is true of $\mathcal{E}_{TT} \cap \operatorname{Ran} \mathcal{K}_{\Sigma}$.

The Euclidean vacuum on $\mathcal{E}_{\mathrm{TT}}$

We now examine the properties of ω_{vac} on $\mathcal{E}_{TT}.$ We start by the gauge invariance.

- ► Let $\mathcal{K} \subset \text{Ker } D_1$ the 10 dimensional space of Killing 1-forms on dS^4 and $\mathcal{K}_{\Sigma} = \varrho_1 \mathcal{K}$.
- λ[±]_{2Σ} are strongly gauge invariant only under gauge transformations in K^{q1}_Σ, the orthogonal for q1 of KΣ.
- $\mathcal{K}_{\Sigma}^{\mathbf{q}_1}$ is the subspace on which the Calderón projectors \tilde{c}_1^{\pm} for \tilde{D}_1 are well defined.
- But: $\lambda_{2\Sigma}^{\pm}$ are weakly gauge invariant !
- the space-time covariances Λ_2^{\pm} are hence gauge invariant.

The Euclidean vacuum on $\mathcal{E}_{\mathrm{TT}}$

We now examine the positivity and Hadamard property of ω_{vac} .

- The Hadamard property is rather easy: ω_{vac} satisfies the Hadamard condition, as does any state constructed with Calderón projectors.
- λ[±]_{2Σ} are not positive on the whole of 𝔅_{TT}. Their inertia indices are (6, +∞). They are negative definite on an explicit 6 dimensional subspace, included in 𝔅_{TT,sing}.
- This is the most delicate part of the analysis. It relies on the partial gauge invariance of λ[±]_{2Σ}.
- as a consequence ω_{vac} is not positive on the whole phase space.

The Euclidean vacuum on $\mathcal{E}_{\mathrm{TT}}$

Finally we examine the invariance of ω_{vac} under O(1,4)

- ω_{vac} is invariant under the full symmetry group O(1,4).
- of course time reversal has to be implemented antilinearly.

Construction of α -vacua

 α -vacua were discovered in the 80's for scalar fields on de Sitter. Their construction is made obscure by the use of mode expansions. It is actually very simple:

- Let S : u → τ^{*}u be the Racah time reversal and S_Σ its Cauchy surface version. S_Σ is now linear.
- Let U_α = e^{αS_Σ}. U_α is a 1-parameter group of Bogoliubov transformations.
- The α -vacua ω_{α} are defined by the covariances

$$\lambda_{2,\alpha}^{\pm} = U_{\alpha}^* \lambda_{2\Sigma}^{\pm} U_{\alpha}.$$

They have the same properties as ω_{vac} except the Hadamard condition.

Modified Euclidean vacuum

It is possible to repair ω_{vac} by additional gauge fixing. This amounts to add to the TT gauge condition an extra condition formulated in terms of Cauchy data on Σ .

- Let π the orthogonal projection on $\mathcal{E}_{TT,reg} = \mathcal{E}_{TT,sing}^{\perp}$.
- The physical phase space $\frac{\mathcal{E}_{TT}}{\text{Ran}K_{\Sigma}}$ is isomorphic to

$$\frac{\mathcal{E}_{\mathrm{TT,reg}}}{\mathcal{K}_{\Sigma}^{\boldsymbol{q}_{1}}}$$

('correct' space in the denominator).

• We replace
$$\lambda_{2\Sigma}^{\pm}$$
 by

$$\lambda_{2\Sigma \mathrm{mod}}^{\pm} = \pi^* \lambda_{2\Sigma}^{\pm} \pi.$$

Theorem (GW)

The modified covariances $\lambda_{2\Sigma mod}^{\pm}$ satisfy:

- (1) the Hadamard condition,
- (2) the CCR on \mathcal{E}_{TT} ,
- (3) the strong gauge invariance on \mathcal{E}_{TT} .
- (4) the positivity on \mathcal{E}_{TT} ,
- (5) the invariance under de Sitter isometries preserving Σ .
- ► We denote by ω_{mod} the associated state on \mathcal{E}_{TT} . It is a true, gauge invariant, quasi-free state.
- ▶ Its only defect is that it is not invariant under the full O(1,4) group, only under its subgroup O(4).
- Thank you for your attention !