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0. Preamble

• Null infinity, I , of asymptotically flat space-times, and horizons, ∆, of BHs in
equilibrium, are null 3-manifolds but have very different physical connotations.
Typically ∆ lies in the strong field region and there is no radiation flux across it, while I lies in

the asymptotic, weak field regime with possibly large fluxes of radiation across it! Yet,
surprisingly, they share a large number of geometric properties, making them both
Weakly Isolated Horizons (WIHs) h. Consequently symmetry groups of ∆ and I

are almost the same. The origin of the drastic differences in their physics is
remarkably simple: Einstein’s equations hold on ∆, while conformal Einstein’s
equations hold on I ! These considerations apply also for cosmological horizons.

• General WIHs h, are null surfaces ⇒ can extract (constraint-free) DOF and
introduce a convenient Hamiltonian framework to obtain fluxes (and charges)
associated with symmetries of WIHs h. It reproduces the standard results at I

without having to extend symmetry vector fields to the space-time interior, or to
find preferred symplectic potentials, even though I is a ‘leaky’ boundary. At ∆,
on the other hand, it yields zero fluxes, just as one would physically expect.

• This unified framework paves a way to explore the relation between horizon
dynamics in the strong field region and waveforms at infinity. Should also be
useful in the analysis of black hole evaporation in quantum gravity.
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1. Geometrical WIHs

• A Non Expanding Horizon (NEH) in 4-d Space-time (M̄, ḡab) is a null submanifold h,
topologically S2 × R , such that:

(i) Every null normal k̄a to h is expansion-free, θk̄ = 0; and,

(ii) On h the Ricci tensor satisfies R̄abk̄a = αk̄b for some function α.

• Raychaudhuri Eq. implies that shear of k̄a also vanishes ⇒ the intrinsic (degenerate)
metric q̄ab satisfies Lk̄ q̄ab = 0; it is ‘time independent’. As a result, by pull-back, the
space-time derivative operator ∇ induces a canonical intrinsic derivative D on h:

←∇̄ = D̄. It satisfies: D̄aq̄ab = 0, and, D̄ak̄b = ω̄a k̄b for some 1-form ω̄a.

• We can always restrict ourselves to geodesic null normals k̄aD̄ak̄b = 0. Then NEH

conditions ⇒ Lk̄ω̄a = 0; ω̄a is also ‘time-independent’. Furthermore, we can now severely

restrict the rescaling freedom in k̄a by demanding that ω̄a be divergence-free, i.e, q̄abD̄aω̄b = 0.

Only remaining freedom: k̄a → ck̄a where c is a positive constant.

• Thus, every NEH can be naturally equipped with a (small) equivalence class of
null normals [k̄a] (where k̄′ a ≈ k̄a iff k̄′ a = ck̄a) such that Lk̄ω̄a = 0. An NEH
equipped with an equivalence class [k̄a] of null normals with this property is called
a Weakly Isolated Horizon (WIH). On a WIH we also have Lk̄ q̄ab = 0 automatically. The
triplet ([k̄a], q̄ab, D̄) is said to constitute the geometry of the WIH h.
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Time Dependence on Geometric WIHs

• On any geometrical WIH (h, [k̄a], q̄ab, D̄), fields q̄ab, ω̄a are time independent :

˙̄qab := Lk̄ q̄ab = 0 and ˙̄ωa := Lk̄ ω̄a = 0 ⇔ ˙̄Dak̄b = 0.

Furthermore, one can show that, given any horizontal 1-form ha (i.e. hak̄a = 0),
˙̄Dahb := (Lk̄D̄a − D̄aLk̄)hb = 0.

• Thus, time dependence of D̄ is completely determined by Ḋaj̄b for any 1-form j̄b

satisfying j̄ak̄a = −1. It is given by:
˙̄Daj̄b =

(
D̄aω̄b + ω̄aω̄b

)
+
(
k̄c C̄c←ab

d j̄d + 1
2
S̄
←ab

+ α q̄ab
)

(1).

(C̄abc
d and S̄ab are the 4-d Weyl and 4-d Schouten tensors and R̄abk̄a = α k̄b.) None of the

terms on the right hand side vanishes on h! Thus part of the geometry of a WIH
is dynamical. This dynamics is driven by the pull-back to h of the 4-d curvature
tensor R̄abcd, since ω̄a is part of D̄.

• So far no field equations have been imposed; we only have a geometric
condition on R̄ab. So Eq. (1) holds both on BH (and cosmological) horizons ∆

and null infinity I +. We will find that the diametrically opposite physics of ∆ and
I + emerges from the fact that field equations imply that complementary terms
on the right side of (1) vanish in the two cases.
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2. BH (and Cosmological) WIHs ∆

• To discuss these horizons, let us now assume Einstein’s vacuum field equations
on them. Following literature, we will drop ‘bars’ over symbols ḡab, R̄abcd, D̄ and
use the notation: h→ ∆; k̄a → `a; j̄b → na.

• Now the Ricci tensor terms in equation (1) for Ḋ vanish. Furthermore, already
on geometric WIHs h, the the Weyl term that enters the equation (1) for Ḋ is
given by `c C̄c←ab

d nd = −( 1
4
R qab +D[aωb]) (with R the 2-d scalar curvature). Therefore,

Ḋanb = D(aωb) + ωaωb − 1
4
R qab (2)

• Thus, even on BH WIHs ∆, the derivative operator D is time-dependent! But
this dependence is highly constrained, because the right side of (2), is time
independent. (L`qab = 0, L`ω = 0, (and ωa`a = 0).) Therefore, (qab, D) on ∆ are
completely determined by its values on a 2-sphere cross-section; they are ‘corner
data’, representing ‘Coulombic fields’. There are no 3-d degrees of freedom that
are hallmarks of radiation. That is why physical quantities on ∆ –mass, angular
momentum, as well as all higher multipole moments– are absolutely conserved.
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3. Asymptotic WIH I +

• A physical space-time (M, gab) is said to be asymptotically flat at future at
future infinity if it admits a conformal completion (M̂, ĝab), where M̂ = M ∪I + is
a manifold with a boundary I +, topologically S2 × R, and ĝab = Ω2gab on M s.t.

(i) At I +, we have Ω =̂ 0 and ∇̂aΩ 6=̂ 0; and,
(ii) gab satisfies Einstein’s equations Gab = 8πGTab, with Ω−2 Tab admitting a

smooth limit to I +.

These conditions imply: (a) I + is null with null normal n̂a := ∇̂aΩ; and, (b) we can always

choose Ω such that ∇̂an̂a = 0. As is standard, let us work with these divergence-free conformal

frames. (If in addition the conformal factor is such that the (degenerate) metric on I is a unit

2-sphere metric, we are in a Bondi conformal frame: gabdx
adxb =̂ 2dudr + dθ2 + sin2 θdφ2).

• Conformal Einstein’s equations at I + imply: (1) R̂abn̂b ∝ n̂a at I +, and,
(2) ∇̂an̂b = 0 at I +. Thus I + is a null 3-manifold, for which the expansion θn̂ of
the null normal vanishes, and the Ricci tensor is such that it is an NEH. Also,
condition (2) ⇒ ∇̂an̂b ≡ ω̂an̂b = 0, whence ω̂a = 0, and (I +, n̂a) is a WIH.

Thus (I +, n̂a, q̂ab, D̂) is a WIH in the conformally completed space-time (M̂, ĝab).
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Time dependence of the WIH geometry of I +

• Since I + is a WIH, the metric q̂ab is time independent. Recall that on any
WIH, the time dependence of D̄ is given by

˙̄Daj̄b = D̄aω̄b + ω̄aω̄b + k̄c C̄c←ab
d j̄d + 1

2
S̄
←ab

+ α q̄ab (1).

In the notation used at I +: k̄a → n̂a, j̄b → ˆ̀
b, D̄ → D̂, ω̄a → ω̂a.

Interestingly, since ω̂a = 0, and Ĉabc
d = 0 at I +, all the terms that contribute to

Ḋ on BH horizons ∆ now vanish at I + and terms that vanish at ∆ now survive!
Thus, at I + we have:

˙̂
Da ˆ̀

b = 1
2
Ŝ
←ab

+ α q̂ab or, in a Bondi conformal frame, TF (
˙̂
Da ˆ̀

b) = 1
2
N̂ab (3).

• While time-dependence of D was driven by the Weyl curvature of gab at ∆, at
I + is is driven by the Ricci curvature of ĝab, the conformally invariant part of
which is just the Bondi news! Therefore, D̂ has 2-degrees of freedom per point of
I +. These are 3-d degrees of freedom, representing the radiative modes. Put
differently, while the WIH geometry of ∆, carries only ‘coulombic’ information
contained in the ‘corner data’, that at I + carries ‘radiative’ information contained
on all of I +.

This diametrically opposite physics emerges from the same equation, (1), because
Einstein’s and conformal Einstein’s equations set complementary terms to zero!
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4A. Symmetries of WIHs

• Let’s return to geometrical WIHs h. Fields they are equipped with, (q̄ab, [k̄a]),
vary from one WIH to another. However, each h carries a 3-parameter family of
round, unit metrics q̊ab, conformally related to its q̄ab, hence a 3-parameter family
of pairs (q̊ab := ψ̊2q̄ab, [̊ka] = ψ̊−1k̄a). (Rescaling of [k̄a], which is natural rescaling for

vectors, plays an essential role in the multipole moment considerations.)

• While the conformal factor ψ̊ in q̊ab := ψ̊2q̄ab varies from one WIH to another,
the relative conformal factors α̊ between two unit round metrics, q̊′ab = α̊2q̊ab, are
universal: (normalized) linear combinations of the first 4 spherical harmonics of
q̊ab. Thus, the universal structure of WIHs consists of conformally related pairs
(q̊ab, [̊k

a]), where (q̊′ab, [̊k′ a]) = (α̊2q̊ab, [α̊−1k̊a]) on h.

• The WIH symmetry group G is the subgroup of diffeos of h that preserve this
universal structure. It has a semi-direct product structure: G = B nD, where B is
the BMS group and D is a 1-d group of dilations. Action of the infinitesimal
generators is given by: Lξ q̊ab = 2β̊ q̊ab and Lξ k̊a = −(β̊ + $̊)̊ka

where, as in the BMS case, β̊ is a linear combination of the ` = 1 spherical
harmonics, while the constant $̊ is new, representing the action of dilation which
only rescales each k̊a in [̊k] by a constant, leaving q̊ab unchanged.
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Reduction of G to B on asymptotic WIHs I +

• So far we consider geometrical WIHs h. Nothing changes on BH WIHs ∆. The
symmetry group is again G. Could we add fields to the universal structure to eliminate the

1-d dilation group D on h? The answer is in the negative: For example, on the Schwarzschild

WIH ∆, the static Killing field is a dilation. So if one were to add structure to eliminate D, the

time translation symmetry would fail to belong to the resulting WIH symmetry group!

• Let us now consider I + as a WIH in any given conformal completion M̂, ĝab.
This WIH comes with a preferred null normal n̂a=̂∇̂aΩ, rather than an equivalence class [n̂a].

Therefore, from the WIH perspective, the universal structure now reduces to the pairs

(ˆ̊q′ab,
ˆ̊na) ≈ (α̊2 ˆ̊q′ab, α̊

−1 ˆ̊na) –i.e. Bondi conformal frames. The subgroup of Diff(I +) that

preserves this universal structure is precisely the BMS group B! Thus, G reduces to B

because we no longer have the freedom to rescale the null normal to I +. The
dilation disappears. What about the Killing field in, say, Schwarzschild? While it is a dilation

on ∆, it is a supertranslation on I +. Interesting and rather subtle interplay between ∆ and I +

that allows us to treat both in the general WIH framework.

• A physical space-time (M, gab) admits infinitely many divergence-free completions (M̂, ĝab).

I + is a WIH in each completion, but each completion endows it with a distinct WIH geometry

(q̂ab, n̂
a, D̂), all with the same universal structure. Although distinct, these geometries carry the

same physics (BMS fluxes and charges) because of conformal invariance of observables.
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4.B Phase spaces of local DOF: Strategy

• Example: KG field satisfying (�− µ2)φ = 0 in Minkowski space. The covariant phase space
Γcov is the space of (suitably regular) solutions φ, equipped with the symplectic structure:

ω |φ (δ1, δ2) =
∫
Σ

(
(δ1φ)∇a(δ2φ) − (δ2φ)∇a(δ1φ)

)
εabcd dSbcd ≡

∫
Σ Jbcd dSbcd

Every Killing field ξa defines a Hamiltonian Hξ via δHξ = ω |φ(δξ, δ). As is well-known,

Hξ = Fξ :=
∫
Σ Tma ξ

mεabcd dSbcd . Thus, the usual flux Fξ associated with ξa –which is

conserved because Σ is a Cauchy surface– is naturally recovered from Hamiltonian

considerations.

• Let us introduce a ‘local’ phase space ΓR associated with an open 3-d region R of Σ,
representing degrees of freedom that are ‘reside’ in R. ΓR consists of initial data γ ≡ (ϕ, π)R ,
restricted to R, equipped with the topology given by the norm:

||γ||2R :=
∫
R
(
π2 +DaϕDaϕ+ µ2ϕ2

)
d3x <∞.

The symplectic structure ωR on ΓR is obtained by just restricting the integral to R:

ωR|γ (δ1, δ2) =
∫
R Jabc dSabc =

∫
R
(
δ1ϕ δ2π − δ2ϕ δ1π

)
d3x.

It is continuous and weakly non-degenerate on ΓR. Given a Killing vector field ξa tangential to

R, the vector field δξ := (Lξϕ, Lξπ) is Hamiltonian on a dense subspace of ΓR with the

Hamiltonian given by Hξ =
∫
R
(
Lξϕ)π d3x. Clearly, it admits a continuous extension to all of

ΓR. Furthermore, Hξ = Fξ |R, so that it has the interpretation of the flux across R associated

with ξa. Thus, (as is common in infinite dimensional phase spaces) the Hamiltonian VF is only

densely defined. But the the Hamiltonian is a continuous function on full ΓR and equals Fξ|R .

11 / 19



Phase spaces of local DOF at I +

• Let us now consider a massless KG field and extend local phase spaces to
regions R̂ of I +, bounded by any two 2-sphere cross-sections. Now the degrees of
freedom of φ residing in R̂ is encoded in the ‘radiation field’ φ̂|

R̂
= Ω−1φ|

R̂
. The

local phase space ΓR̂ has the topology induced by the norm:

||φ̂||2R =
∫
R
(
|n̂aDaφ̂|2 + |2D̂aφ̂|2 + 1

l2
|φ̂|2

)
d3I + <∞

Topology is insensitive to the extra structure used to define the norm. Pull-back of the
symplectic current Jabc to R̂ gives

ωR̂|φ̂ (δ1, δ2) =
∫
R̂
(
(δ1φ̂)∇̂a(δ2φ̂) − (δ2φ̂)∇̂a(δ1φ)

)
ε̂abcd dŜbcd

It is continuous and weakly non-degenerate on ΓR̂.

• For any BMS vector field ξa on I +, the phase space vector field δξφ̂ = (ξaD̂a + β̂)φ̂ is again

well-defined and a Hamiltonian VF on a dense subspace of ΓR̂. The Hamiltonian

Hξ =
∫
R̂(δξφ̂)(Ln̂φ̂) admits a continuous extension to all of ΓR̂. As before, Hξ = Fξ |R̂. Thus,

the Hamiltonians now represent the BMS fluxes across the region R̂ of I +.

• Topology: The Hamiltonian framework does not have direct knowledge of Tab.
But continuity of the Hamiltonian Hξ generating δξ in the above topology ensures
that Hξ equals the flux Fξ =

∫
R̂ Tabξ

an̂b d3I +. Gravitational waves have no Tab but
we can carry over the topology to define BMS fluxes across R̂.
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4.C Gravitational field at I +

• To construct the phase space, let us consider conformal completions (M̂, ĝab) of
asymptotically flat vacuum solutions. What are the local DOF in an open region
R̂ of I + bounded by 2 cross-sections? As our discussion in part 3 suggests, these are

captured in connection D̂ restricted to R̂, or rather, in certain equivalence classes {D̂} of

connections on R̂, after removing redundant conformal freedom. Information in the
curvature of {D̂}: the Bondi news N̂ab , and, part of Weyl curvature that captures
purely radiative information, ?K̂ab, (or, the NP (Ψ◦4, Ψ◦3, ImΨ◦2), or the CK (α, β, σ)) .

• There are connections {D̂} with ‘trivial curvature’ (i.e., for which N̂ab = 0) and
?K̂ab = 0 . They serve as origins in the affine space of {D̂}. Recall that the
non-trivial content in any connection D̂ is captured by D̂a ˆ̀

b, for any ˆ̀
a satisfying

ˆ̀
an̂a = −1. So we can label any {D̂} by γ̂ab = TF(D̂a − D̂a)ˆ̀

b ; they provide a
natural chart on the affine space of {D̂} (as Cartesian coordinates do on the Minkowski

affine space.) The two components of the STT γ̂ab encode radiative DOF in {D̂}.

• The ‘local’ phase space ΓR̂ is the space of {D̂a} on R̂, equipped with topology
given by the norm ||γ̂||2

R̂
:=
∫
R̂
[
|n̂aD̂aγ̂bc|2 + |2D̂aγ̂bc|2 + 1

l2
|γ̂ab|2

]
d3I +. Again, the

topology is insensitive to the extra structure introduced to define the norm. ΓR̂ is
the phase space of ‘true’ or radiative DOF that reside in R̂.
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Fluxes associated with BMS symmetries

• As before, the symplectic structure on ΓR̂ is obtained by pulling back to R̂ the
symplectic current Jabc of the full covariant phase space Γcov of GR. Result:

ω |γ̂(δ1, δ2) = 1
8πG

∫
R̂

[
(δ1 γ̂ab) (Ln̂ δ2 γ̂cd) − (δ2 γ̂ab)(Ln̂ δ1 γ̂cd)

]
q̂ac q̂bd d3I +

Action of the BMS group on ΓR̂: First consider ξa for which Lξ q̂ab = 0, Lξn̂a = 0.
The infinitesimal motion generated by ξa induces a densely defined VF δξ on ΓR̂:
δξ γ̂ab = TF(LξD̂a − D̂aLξ)ˆ̀

b .

• Again, it is Hamiltonian, i.e. satisfies ω |γ̂(δξ, δ) = δHξ with

Hξ = 1
8πG

∫
R̂(δξ γ̂ab)(Ln̂γ̂cd) q̂acq̂bd d3I + = 1

16πG

∫
R̂
[
(LξD̂a − D̂aLξ)ˆ̀

b

]
N̂cd q̂

acq̂bd d3I +

on a dense subspace of ΓR̂. The first form makes it clear that it has a continuous extension

from the dense subspace to full ΓR̂. This Hξ represents the BMS flux associated with ξa across

a general open region R̂ of I +. The second form brings out geometrical meaning. For
supertranslations, ξa = ŝn̂a with Ln̂ŝ = 0 and the expression simplifies:

Hŝ({D̂}) = 1
32πG

∫
R̂
[
ŝ N̂ab + 2D̂aD̂b ŝ + ŝ ρ̂ab

]
N̂cd q̂

acq̂bd d3I +

providing both the hard and the soft terms.

• For a general BMS VF, Lξ q̂ab = 2β q̂ab, Lξn̂a = −β n̂a. The only difference is that
(as in the scalar field case) there is now an extra term in the expression of the VF δξ

on ΓR̂: δξ γ̂ab = TF
[
(LξD̂a − D̂aLξ)ˆ̀

b + 2ˆ̀
(aD̂b)β

]
.
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4.D Fluxes on BH (and cosmological) horizons ∆

• What fluxes do we obtain if we apply this procedure to open regions R of Black
hole horizons ∆ using infinitesimal generators ξa of G? Space-time metrics induce
fields (qab, D) on ∆ (and hence on regions R) that constitute ΓR. They can again
be labelled by freely specifiable fields (analogs of γ̂ab), but now on any 2-d cross
section of R; now the DOF are only 2-d! By pulling-back the symplectic current
Jabc to R we can ask if ω |

(q,D)
(δξ, δ) = δHξ for some Hξ.

• It turns out that all fluxes vanish identically now, because the pull-back of the
symplectic current Jabc (of the full covariant phase space of GR) to ∆ itself
vanishes. Of course this is what we expect physically. But we now see explicitly
that one and the same strategy –of using local phase spaces that capture the
DOF that reside in regions R̂ of I + and R of ∆– yield strikingly different physical
results although both are WIHs!

• Why did the pull-back of Jabc not vanish at I +? After all, it too is a WIH. The
terms that vanish on ∆ are multiplied by inverse powers of the conformal factor Ω

relating gab to ĝab making the pull-back is non-zero. Again, it is the fact that ∆ is
a WIH in (M, gab) while I + is a WIH in the conformally completed (M̂, ĝab) that
leads to drastically different results for fluxes associated with R and R̂!
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5. Discussion: Remarks on results at I +

1. BMS Fluxes are physical observables on radiative phase spaces ΓR̂. All fluxes
vanish if N̂ab = 0. (Thus, there is no flux of angular momentum if the energy flux vanishes.)

2. Fluxes require only radiative degrees of freedom that are encoded intrinsically
in R̂. They have the form Fξ =

∫
R̂ F

(ξ)
abc. Question: Are the 3-forms F(ξ)

abc on I +

exact? If so, there would be corresponding charges Qξ.

Now, full conformal Einstein’s equations and Bianchi identities at I + satisfied by ĝab relate the
radiative DOF to the Coulombic DOF contained in the asymptotic Weyl curvature (in particular,
the NP (ReΨ◦2, Ψ◦1) and the CK (ρ, β)). These relations imply existence of unique 2-forms

Q(ξ)
ab on I +, constructed locally from fields, such that dQ(ξ) = F(ξ), and Q(ξ)

ab = 0 in

Minkowski space. Therefore, for any cross-section S of I +, we obtain charges Qξ satisfying the

balance law Qξ[S1]−Qξ[S2] = Fξ(R̂) for the region R̂ of I + bounded by S1, S2. The
Charges and fluxes are the standard ones.

For fluxes, the 4-metric and the full field equations are excess baggage. Charges on the other

hand refer to Coulombic aspects that are intertwined with the radiative aspects through field

equations. To obtain them one needs to step out of ΓR̂ and use information from full Γcov.

3. Unlike in other approaches, this framework does not require one to extend
symmetry vector fields ξa away from I + or choose specific symplectic potentials,
and encompasses I + with Λ > 0. But so far, developed only for 4-d GR.
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Summary

• Null infinity I of asymptotically flat space-times, and horizons ∆ of BHs in
equilibrium, are null 3-manifolds but have very different physical connotations.
Typically ∆ lies in the strong field region and there is no radiation flux across it, while I lies in

the asymptotic, weak field regime with arbitrarily large fluxes of radiation across it! Yet, they
share a large number of geometric properties, making them both WIHs h, (but
not an Isolated Horizon!!) Consequently symmetry groups of ∆ and I are almost
the same. The origin of the drastic differences in their physics is remarkably
simple: Einstein’s equations hold on ∆, while conformal Einstein’s equations hold
on I ! (These considerations apply also for cosmological horizons).

• The geometry (q̄ab, D̄) of general WIHs h, captures their constraint-free DOF.
Local phase spaces of these DOF lead us fluxes (and charges) associated with the
WIH symmetries. It reproduces the standard results at I without having to
extend symmetry vector fields to the space-time interior, or to find preferred
symplectic potentials, even though I is a ‘leaky’ boundary. At ∆, on the other
hand, it yields zero fluxes, just as one would physically expect.

• This interplay between I and ∆ discussed in parts 1 -4 is reminiscent of a
musical fugue with 4 voices.
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