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We shall study the Cauchy problem on globally hyperbolic manifolds but
with a totally different approach to traditional ones. Instead of using
distributions and functional analysis, we will use sheaves, more precisely
microlocal sheaf theory, and D-modules. The unique tool from analysis
will be the precise Cauchy-Kowalevska theorem.
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Some historical comments

Microlocal analysis : introduced by Mikio Sato in 1970 with the tools of
complex analysis and sheaf theory. He defined first the analytic wave front
set of hyperfunctions, hence in particular, of distributions. He was soon
followed by Lars Hörmander who used Fourier analysis.
D-module theory: initiated by Sato in the 60s, developed by Masaki
Kashiwara in his master’s thesis in 1970 and independently by Joseph
Bernstein in 1971.
Microlocal sheaf theory: Kashiwara-S in 1982 developed in 1985 and
giving rise to the book “Sheaves on Manifolds” 1990.
The theory of analytic linear PDE (i.e., generalized holomorphic solutions
of D-modules) becomes series of exercises of microlocal sheaf theory.
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Plan of my talk

Introduction: sheaves and D-modules
Microlocal sheaf theory (with Masaki Kashiwara)
Applications to causal manifolds (with Benoît Jubin)
Sheaves for the Big Bang
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Basic geometrical notions

Let X be a real manifold of class C∞.
I τ : TX −→ X the tangent bundle, π : T ∗X −→ X the cotangent bundle,
I for M a submanifold of X , we associate the normal bundle TMX and

the conormal bundle T ∗MX :

0 −→ TM −→ M ×X TX −→ TMX −→ 0,
0 −→ T ∗MX −→ M ×X T ∗X −→ T ∗M −→ 0.

I X is identified with T ∗XX , the zero-section of T ∗X .
For example, if M is the hypersurface {x ∈ X ;ϕ(x) = 0} with dϕ 6= 0 on
M, then

T ∗MX = {(x ;λ · dϕ(x));ϕ(x) = 0, λ ∈ R}.
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Let f : X −→ Y a morphism of manifolds. We get the maps

TX

τX
%%

f ′ // X ×Y TY
τ
��

fτ // TY
τY
��

X f // Y

Recall that X ×Y TY = {(x ; (y , v)), x ∈ X , (y , v) ∈ TY , f (x) = y}.
By duality, we get the maps

T ∗X

πX
&&

X ×Y T ∗Y
π
��

fdoo fπ // T ∗Y
πY
��

X f // Y
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Sheaves

Let X be a real manifold of class C∞. We fix a field k (in practice,
k = C). We work in Db(kX ) the bounded derived category of sheaves on
X . Hence, F ∈ Db(kX ) is represented by a bounded complex of sheaves.
For example, the de Rham complex is isomorphic to the constant sheaf CX
or, on a complex manifold, the sheaf OX is isomorphic to the Dolbeault
complex.
For A a locally closed subset of X , one denotes by kA the constant sheaf
on A extended by 0 on X \ A.
We shall define later the “singular support” or micro-support of F ,
denoted SS(F ), a closed R+-conic subset of T ∗X .
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D-modules

Let (X ,OX ) be a complex manifold, DX the sheaf of rings of finite order
differential operators. An object of Db

coh(DX ) is locally isomorphic to a
bounded complex where the ·Pj ’s are matrices of differential operators
which operate on the right.

M ' 0 −→ DNr
X −→ · · · −→ DN1

X
·P0−−→ DN0

X −→ 0.

Then SolX (M ) := RHomDX
(M ,OX ) is given by

SolX (M ) ' 0 −→ ON0
X

P0·−−→ ON1
X −→ · · · −→ ONr

X −→ 0,

where now the Pj ·’s operate on the left.
One can define the characteristic variety of M , denoted char(M ), a
closed complex analytic co-isotropic (S-K-K, Gabber) subset of T ∗X ,
conic with respect to the action of C× on T ∗X .
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The Cauchy–Kowalevska-Kashiwara theorem

Let Y be a complex submanifold of the complex manifold X and let M be
a coherent DX -module. One defines MY ∈ Db(DY ), the induced system
by M on Y . In general, MY is not coherent. One says that
Y is non-characteristic for M if char(M ) ∩ T ∗YX ⊂ T ∗XX .
Recall that SolX (M ) := RHomDX

(M ,OX ).

Theorem (Kashiwara 70)
Assume Y is non-characteristic for M . Then MY is a coherent
DY -module and one has the CKK isomorphism:

SolX (M )|Y ∼−→ SolY (MY ).

The proof is deduced from the classical Cauchy-Kowalevska theorem by
purely algebraic arguments.
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An example

Let P be a differential operator on X open in Cn. Set M = DX/DX · P.
Then

char(M ) = {(z ; ζ) ∈ T ∗X ;σ(P)(z ; ζ) = 0},

where σ(P) denotes the principal symbol of P.

SolX (M ) is the complex 0 −→ OX
P·−→ OX −→ 0.

If P has order m and Y is a non-characteristic hypersurface, then
MY ' Dm

Y and the CKK theorem gives

KerP|Y ' Om
Y , coker P|Y ' 0.
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Sato’s hyperfunctions
Let M be a real analytic manifold, X a complexification of M. Set

D′XF = RHom (F ,CX ).

Then

AM = CM ⊗OX ,

the sheaf of real analytic functions,
BM = RHom (D′XCM ,OX ),
the sheaf of Sato’s hyperfunctions.

Since CM ' RHom (D′XCM ,CX ), we get the natural map

AM ' RHom (D′XCM ,CX )⊗OX ,−→ BM .

Note that if dimM = n, then D′XCM ' orM [−n] and thus

BM = RHom (D′XCM ,OX ) ' RΓM(OX )⊗ orM [n] ' Hn
M(OX )⊗ orM .
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Elliptic systems

Let M ∈ Db
coh(DX ) and set F = SolX (M ).

Theorem
Assume M is elliptic, that is, char(M ) ∩ T ∗MX ⊂ T ∗XX. Then

RHom (D′XCM ,CX )⊗F ∼−→ RHom (D′XCM ,F ).

In other words

RHomDX
(M ,AM) ∼−→ RHomDX

(M ,BM).
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This is a particular case of the following result for which X is real. (No
complex structure, no DX -modules.)
The notation SS(F ) will be defined in the sequel.

Theorem (Petrowsky theorem for sheaves)
Let G ∈ Db

Rc(kX ), F ∈ Db(kX ) and assume SS(G) ∩ SS(F ) ⊂ T ∗XX. Then

RHom (G , kX )⊗F ∼−→ RHom (G ,F ).

G ∈ Db
Rc(kX ) means that G is R-constructible, that is, there exists a

“subanalytic” stratification such that all cohomology groups H j(G) are
locally constant on the strata and of finite rank.
Example, = (X \M) tM, G = D′XCM .
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Microlocal sheaf theory

Let X be a real manifold.

Definition
Let F ∈ Db(kX ). The microsupport SS(F ) of F is the closed R+-conic
subset of T ∗X defined as follows: for an open subset W ⊂ T ∗X , one has
W ∩ SS(F ) = ∅ if and only if for any x0 ∈ X and any real C 1-function ϕ
on X with (x0; dϕ(x0)) ∈W , one has (RΓ{x ;ϕ(x)≥ϕ(x0)}F )x0 ' 0.

In other words, p /∈ SS(F ) if the sheaf F has no cohomology supported by
“half-spaces” whose conormals are contained in a neighborhood of p.
The micro-support is the set of co-directions of non propagation.
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Set U = {x ∈ X ;ϕ(x) < ϕ(x0)}. Then (RΓ{x ;ϕ(x)≥ϕ(x0)}F )x0 ' 0 if and
only if

lim−→
V3x0

H j(U ∪ V ;F ) ∼−→ H j(U;F ) for all j ∈ Z.

Any section of H j(U;F ) will extend through the boundary in a
neighborhood of x0.
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I By its construction, the microsupport is R+-conic, that is, invariant
by the action of R+ on T ∗X .

I SS(F ) ∩ T ∗XX = π(SS(F )) = supp(F ).
I The microsupport satisfies the triangular inequality: if

F1 −→ F2 −→ F3
+1−−→ is a distinguished triangle in Db(kX ), then

SS(Fi ) ⊂ SS(Fj) ∪ SS(Fk) for all i , j , k ∈ {1, 2, 3} with j 6= k.
I The microsupport SS(F ) is co-isotropic.
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Examples

(i) F ∈ Db(kX ) is a local system (i.e., F is locally constant) if and only if
SS(F ) ⊂ T ∗XX .
(ii) If M is a closed submanifold of X and F = kM , then SS(F ) = T ∗MX ,
the conormal bundle to M in X .
(iii) When X = R (denoted M on the picture!), F = kI where I is one of
the intervals [0, 1[ or [0, 1]:
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Let X be a complex manifold and let M ∈ Db
coh(DX ). Then

SS(SolX (M )) = char(M ).

The proof only uses the Cauchy-Kowalevska theorem, in a precise form due
to Petrowsky, Leray, Zerner.

18



Let f : X −→ Y a morphism of manifolds. Recall the maps

T ∗X

πX
&&

X ×Y T ∗Y
π
��

fdoo fπ // T ∗Y
πY
��

X f // Y

Theorem
Let f : X −→ Y be a morphism of manifolds, let F ∈ Db(kX ) and
G ∈ Db(kY ).
(a) Assume that f is proper on supp(F ). Then SS(Rf!F ) ⊂ fπf −1

d SS(F ) .
(b) Assume that f is non characteristic for G, that is, fd is proper on

f −1
π SS(G). Then SS(f −1G) ⊂ fd (f −1

π SS(G)) . Moreover
f −1G ⊗ωX/Y ∼−→ f !F .
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Direct image
On the example below, X = R2, f is the projection to R = Y . Recall

T ∗X fd←− X ×Y T ∗Y fπ−→ T ∗Y .

Hence, f is submersive, fd : X ×Y T ∗Y ↪→ T ∗X is an embedding and
X ×Y T ∗Y ⊂ T ∗X is the set of “horizontal” co-vectors. The theorem says
that the micro-support of the direct image is contained in
fπ(SS(F ) ∩ X ×Y T ∗Y ), but the inclusion may be strict. There is a similar
phenomena for inverse images.
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Microsupport along a submanifold
Let M be a closed submanifold of the real manifold X . The projection
T ∗MX −→ M (a submersive map) defines the embedding
T ∗M ×M T ∗MX ↪→ T ∗T ∗MX , hence the embedding:

T ∗M ↪→ T ∗T ∗MX .

In local coordinates (x , y ; ξ, η) ∈ T ∗X , M = {y = 0},
T ∗MX = {y = ξ = 0}, T ∗M ↪→ T ∗T ∗MX is given by

(x ; ξ) 7→ (x , 0; ξ, 0).

Let A ⊂ T ∗X . We shall use the Whitney normal cone of A along T ∗MX

CT∗MX (A) ⊂ TT∗MXT ∗X ' T ∗T ∗MX .

(x0; ξ0) ∈ T ∗M ∩ CT∗MX (A) ⇔ there exists (xn, yn; ξn, ηn)n ⊂ A,

(xn; ξn) n−→ (x0; ξ0), |yn|
n−→ 0, |yn||ηn|

n−→ 0.
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Let X be a real manifold, M a submanifold. For F ∈ Db(kX ), one defines
the micro-support of F along M as

SSM(F ) := T ∗M ∩ CT∗MX (SS(F )).

Theorem
One has

SS(RΓMF ) ∪ SS(F |M) ⊂ SSM(F ).
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Now let X be a complex manifold, M a real submanifold. Let M be a
coherent DX -module. One sets

charM(M ) := T ∗M ∩ CT∗MX (char(M )).

Assume that X is a complexification of M. Let N ↪→ M be a closed
submanifold of M and Y ↪→ X a complexification of N in X . Assume Y is
non characteristic for M . Applying the preceding result to F = Sol(M ),
using RΓN(F ) ' RΓNRΓY (F ) ' RΓN(F |Y ⊗ωX/Y ), we get

Corollary
Assume T ∗NM ∩ charM(M ) ⊂ T ∗MM. Then the CKK-isomorphism induces
the isomorphism

RHomDX
(M ,BM)|N ∼−→ RHomDY

(MY ,BN).

In other words, the Cauchy problem is well-posed in the framework of
Sato’s hyperfunctions for (weakly) hyperbolic systems.
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Example

Assume X open in Cn, M = X ∩ Rn.
Let (x +

√
−1y ; ξ +

√
−1η) denotes the coordinates on T ∗X , hence

T ∗MX = {y = ξ = 0}.
Let M = DX/DX ·P for a differential operator P. Let (x0; θ) ∈ T ∗M with
θ 6= 0. Then

(x0; θ) /∈ charM(M )⇔ σ(P)(x ; θ +
√
−1η) 6= 0

for all η ∈ Rn and x in a neighborhood of x0.
For example, the Cauchy problem on X = R2 with coordinates (t, x) is
well-posed for P = ∂2

t − ∂x on the hypersurface {t = 0} in the space of
hyperfunctions. This is is no more true for distributions (Hadamard).
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Causal manifolds

The part of the talk concerned with spacetime is based on a joint paper
with Benoît Jubin published at LMP (2016).

Definition
(a) A causal manifold (M, λ) is a nonempty connected manifold M

equipped with a closed convex proper cone λ ⊂ T ∗M satisfying
T ∗MM ⊂ λ and λ = Int(λ).

(b) A morphism of causal manifolds f : (M, λM) −→ (N, λN) is a
morphism of manifolds f : M −→ N satisfying fd f −1

π λN ⊂ λM .
Equivalently, Tf (λ◦M) ⊂ λ◦N , where λ◦ denotes the polar cone.

The polar cone λ◦ ⊂ TX is given by

λ0 = {v ∈ TX ; 〈v , ξ〉 ≥ 0} for all ξ ∈ λ.
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Definition
A locally closed set A ⊂ M is a λ-set if SS(kA) ⊂ λ. A λ-open set (resp. a
λ-closed set) is an open set (resp. a closed set)which is also a λ-set.

An open set U ⊂ M is λ-open if in a local chart V ⊂ Rn in a
neighborhood of x0 ∈ ∂U, for any open convex cone γ ⊂ Rn with
V × γ ⊂ Intλ◦a, one has (x + γ) ⊂ U in a neighborhood of x ∈ ∂U.

Theorem
The family of λ-open subsets of M defines a (classical) topology on M.
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(a) For A ⊂ M, we denote by J+
λ (A) the closure of A for the λ-topology.

In other words

J+
λ (A) =

⋂
Z with A ⊂ Z and Z is λ-closed.

(b) For x ∈ M, we set J+
λ (x) = J+

λ ({x}).
(c) We call J+

λ (A) the future of A.
(d) One defines the pre-order �λ by

x �λ y if and only if y ∈ J+
λ (x).
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Let I be the interval [0, 1] of the real line R with the coordinate t.

Definition
(a) A path c : I −→ M is a piecewise smooth (ps for short) map.
(b) If (M, λ) is a causal manifold, the path c is causal if

c ′l (t), c ′r (t) ∈ (λ◦)c(t) for any t ∈ I. Here, c ′l (t) and c ′r (t) are the left
and right derivative.

(c) One denotes by �
ps

the preorder given by x �
ps
y if there exists a causal

path c : I −→ M with c(0) = x and c(1) = y .

Theorem
The preorder �

ps
is causal, that is, x �λ y implies x �

ps
y.
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Let (t; τ) be the coordinates on T ∗R. We denote for short by (R,+) the
causal manifold associated with the cone {τ ≥ 0}.

Definition (Jubin-S)
(a) Let (M, λ) be a causal manifold. A Cauchy time function

q : (M, λ) −→ (R,+) is a surjective and submersive morphism of
causal manifolds such that for any compact set K ⊂ M, the map q is
proper both on J+

λ (K ) and on J−λ (K ).
(b) A G-causal (G for Geroch) manifold (M, λ, q) is a causal manifold

endowed with a Cauchy time function q.
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A classical causal manifold (M, g) is globally hyperbolic if diamonds are
compact and there are no causal loops.

Theorem
If (M, λ) is globally hyperbolic then there exists a Cauchy time function q
and thus (M, λ, q) is G-causal.

See Geroch70, Bernal-Sanchez 2005, the survey paper Minguzi-Sanchez08.
See also Fathi-Siconolli for a more general version.
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Lemma (Jubin-S)
Let (M, λ, q) be a G-causal manifold and let F ∈ Db(kM). Assume that
SS(F ) ∩ λ ⊂ T ∗MM. Then

SS(Rq∗F ) ∩ {τ ≥ 0} ⊂ T ∗RR.

Proof. Set Z = J−λ (K ). Then SS(kZ ) ⊂ λa and thus SS(FZ )∩λ ⊂ T ∗MM.
Since q is proper on Z , SS(Rq∗FZ ) ∩ {τ ≥ 0} ⊂ T ∗RR. Then one covers
(locally on R) the space M with an increasing family of such Z .
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Theorem (Jubin-S)

Let (M, λ, q) be a G-causal manifold. Let F ∈ Db(kM) satisfying
SS(F ) ∩ (λ ∪ λa) ⊂ T ∗MM.
Set M0 = q−1(0), a Cauchy hypersurface. Then the natural restriction
morphism below is an isomorphism:

RΓ(M;F ) ∼−→ RΓ(M0;F |M0).

In particular, for all j ∈ Z,

H j(M;F ) ∼−→ H j(M0;F |M0).
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Now consider an analytic G-causal manifold (M, λ, q), that is, M and q
are real analytic. Let X be a complexification of M and let M be a
coherent DX -module. Applying the preceding results, we get:

Theorem (Jubin-S16)
Let (M, λ, q) be an analytic G-causal manifold. Let N = q−1(0) and let Y
be a complexification of N in X. Assume
(a) Y is non characteristic for M , i.e., char(M ) ∩ T ∗YX ⊂ T ∗XX,
(b) N is hyperbolic for M , i.e., charM(M ) ∩ T ∗NM ⊂ T ∗MM,
(c) charM(M ) ∩ λ ⊂ T ∗MM.
Then one has the natural isomorphism

RΓ(M; RHomDX
(M ,BM)) ∼−→ RΓ(N; RHomDY

(MY ,BN)).

In other words, the Cauchy problem for hyperfunctions with data on N is
globally well-posed on M.
The theorem applies when M = DX/DX · P for P a wave operator.
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Before the Big Bang
Let us represent the universe as a closed ball in Rn whose radius grows
linearly with the time t. What happens for t < 0? If one replaces the
spacetime with the constant sheaf supported by it, the sheaf k{|x |≤t}
defined on t ≥ 0, we need to extend it naturally for t < 0. The
micro-support of this sheaf at the boundary is the interior conormal. If we
extend it naturally for t < 0 we get the exterior conormal which is the
micro-support of the constant sheaf on the open cone.

Figure: Before the Big Bang
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With Guillermou and Kashiwara, we have constructed a “distinguished
triangle” as follows. Set X = Rn

x × Rt . The morphism k{|x |≤−t} −→ k{0}
and the isomorphisms

D′X k{0} ' k{0} [−n − 1], D′X k{|x |≤−t} ' k{|x |<−t}

induce by duality the morphism

k{0}[−n − 1] −→ k{|x |<−t}.

Composing with k{|x |≤t} −→ k{0}, we get the morphism
k{|x |≤t}

ψ−→ k{|x |<−t} [n + 1] hence a distinguished triangle

k{|x |<−t}[n] −→ K −→ k{|x |≤t}
+1−−→
ψ

The micro-support of K outside the zero-section is the smooth Lagrangian
manifold, the image of T ∗{0}R

n by the Hamiltonian isotopy

(x ; ξ) 7→ (x − tξ/|ξ|; ξ).
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One can modify the Lorentzian case encountered above and replace Rn
x

with a Riemannian manifold (with convexity radius and injectivity radius
> 0) using the Hamiltonian isotopy associated with ||ξ||x .
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In particular, one can consider the n-dimensional unit sphere M = Sn

(n ≥ 2) endowed with the canonical Riemannian metric. In this case, the
sheaf obtained has a shift which jumps by the dimension when t ∈ πZ,
that is, at each pole.

Figure: Periodic Big Bang
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