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On many curved spacetimes one can define four natural Green func-
tions of the Klein-Gordon equation:

o the retarded or forward propagator G,

o the advanced or backward propagator G/,

o the (distinguished) Feynman propagator G,

e the (distinguished) antiFeynman propagator GY.

The first two are well-known. The last two are less obvious.

Feynman and antiFeynman propagators are key ingredients of per-
turbative Quantum Field Theory. | will discuss their various possible
definitions and properties.



. FLAT SPACETIME.

Consider first the Klein-Gordon equation on the flat Minkowski
space RLd-1,
(—O0+m*) = 0. (1)
We will say that G(x,y) is a Green function of (1) if
(—Oz +m?)G(x,y) = 6(z — y),
(—0, +m*)Glz,y) = oz —y).



There are four Green functions invariant wrt the restricted Poincaré
group:

e the forward/backward propagator

GV 1 ey d
(@,y) = (2)* /p2 + m? 410 sgn py b

e the Feynman/anti-Feynman propagator

_ 1 e_i(x_y)'p
F/F _
G (@,y) = (27)4 /p2 +m?2 Fi0 dp.

GV and G” are related to the classical Cauchy problem, because

their support is in the forward, resp. backward cone. GY and GF
are used in QFT to compute Feynman diagrams.

They satisfy the identity G + G¥ = GV + G/



Using the above Green functions we can define the following useful
bisolutions of the Klein-Gordon operator.

e the Pauli-Jordan propagator or commutator function

GPJ($7 y) = G\/ R G/\7
e the positive frequency or Wightman 2-point function

G(+>(SIZ, y> — %(GF . G/\) _ l<_GF + G\/>7

1

e the negative frequency or anti-Wightman 2-point function

G(_)(x, Y) = 1(—GF + G = %(GF ~-GY).

1



The Feynman and antiFeynman propagator has an interesting “operator-
theoretic” interpretation:

(1) The Klein-Gordon operator K = —[ + m? is essentially self-
adjoint on C°(R13) in the sense of L?(R13).

(2) For s > % as an operator (t)SL*(R13) — (£)SL2(RY?), the
Feynman propagator is the boundary value of the resolvent of the
Klein-Gordon operator:

slm(K Fie) = GF/F
e\,0

Here (t) denotes the so-called “Japanese bracket”

(t) == V1+t2



After quantization, we obtain an operator—valued distribution
RVI=1 5 o — o*(x) = o(x)* satisfying the Klein-Gordon equation
and commutation relations

(=0 +m?)p*(z) =0,
(), (y)] = G (z,y).

We also have a state (€2 - 2) such that

(Q T(w(az) *
(Q] T(v(x)d




II. CURVED SPACETIMES.

Consider a curved spacetime M with the metric tensor g,,,,. Define
the d’Alembertian and the Klein-Gordon operator

1 1

(One could also replace the term m? with an x-dependent scalar po-

tential). How to generalize the well-known propagators from RLd-1
to generic spacetimes?



As is well-known, if M is globally hyperbolic, then the forward/backward
propagators have natural generalizations. Namely, there exist unique

distributions G and G”* such that
(~O+m*)Vh = .
supp QV//\ C future/past shadow of supp f

is uniquely solved by

(VINz) = / GV, y)f ()l (y) dy.



Note that —[ is obviously Hermitian (symmetric) on C'2°(M) in

the sense of the Hilbert space L?(M, |g\%) Assume it is essentially
self-adjoint. Then its resolvent (—J + m?)~! is well defined for
complex m2. For real m?, not eigenvalues of [J, we define the
operator-theoretic Feynman/antiFeynman propagator as the integral

kernel of
1 = 1

GF = i GE o= .
el\n%( O+ m? —ie)’ P el\n%(—Derz—He)

| believe that the following argument justifies this definition. Here
is an elementary fact about Fresnel integrals (with z € R):

f e:l:i %:):2+Ja:) dor 1]2
i :eXp($2 i’O)'
[e 5% A (c £10)




If we use path integrals, the generating function formally is

fels P ap* )—|—1¢J*+1¢*Jpwpw>k
f olS (Y,9%) Dy Dp*

Z(J) =
If the action is quadratic

S, ¥*) = — / (80" (@)0"() + M2 (@)(2)) V]gl(x) da
— (W[(-O+m?)),

then the path integral can be rigorous/y defined as

)=exp (i [ [ TGS w170V 9100 Vsl w) d dy)

= expi(J]( —O+ m? —10) J)



Essential self-adjointness of the d'Alembertian is easy in some spe-
cial cases:

e stationary spacetimes;
o Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes;
e 1 +0-dimensional spacetimes;

e deSitter and (the universal covering of) anti-deSitter spacetime,
(which follows from general properties of symmetric spaces).

On a class of asymptotically Minkowskian spacetimes essential self-
adjointness was recently proven by Vasy and Nakamura-Taira. Essen-
tial self-adjointness is destroyed by (space-like or time-like) bound-
aries—this can be repaired by imposing boundary conditions.



There exists also a different definition of Feynman propagators
based on a time-ordered expectation of quantum fields in a state.
Let ¢)(x) be the quantum field satisfying

(), 0" (y)] = =G (z,y).
Let (2o be any Fock vacuum (in other words, pure quasifree state).
Set

GL = (Qald(@)d* (1)), GY) = (Qald*(x)d ()0,
SGE = (Qu| T (@) ()00),  1GE = (Qu[TE(@)* (1)) ).

We have  Gh(z,y) + Gh(z,y) = GV(x,y) + G\x, y).
)

We say that ), is Hadamard if the singularities of GEX are similar

to those on the Minkowski space.



It useful to extend the above definitions of 2-point functions, Feyn-
man and antiFeynman propagators to pairs of vacua {}y and {)g:

GS} (z,y) = @&%x:@)y)%)’
Géf@) (z,y) = (Q&hi;(j|>§;2()y>%)’
—iG (e, ):( @‘Tipgz(aig;)(y)) 2
iGE (2, ) = (QMT(sz(zig;)(y))%)



Note that they satisfy
(-0, +mA)G ) =0,
o ~F/F
(—0Oz +m >G045 x,y) =0(x,y),
1<G(<)4—;> _ G(%)) _ GPJ _ G\/ . G/\,
EF V /\
G 0B T e 0B = =G+ G
+
¢y =G5 ) we),  GEyla,y) = GE ()
(Let us stress that €) B> G%O) Ggﬁ Gga can be also defined in
a purely operator-theoretic way, without invoking QFT).

(
(




Suppose that the Klein-Gordon equation is stationary (does not
depend on time) and stable (the classical Hamiltonian is positive).
Then there is a distinguished vacuum 2, given by the space of posi-
tive frequency modes of the generator of dynamics. It is then easy to
show (D. Siemssen and JD) that —[0+ m? is essentially self-adjoint
and the operator-theoretic Feynman propagator corresponds to 2:

—iGh, = (QT(W ()" (y))Q),

AN AN

iGY = (T (@) (y)9).



If M is asymptotically stationary and stable in the future and past
then we have two natural states: the in-vacuum {)_ and the
out-vacuum €)4.. As proven by Gérard and Wrochna, they are Hadamard

) F :

|n1.:roduce the out-in Feynman propagator G _ and the in-out

antiFeynman propagator

A NS R
) RGN
T (g = EH i‘é(i;:;y” )

By the Wick Theorem, they appear in the evaluation of Feynman
diagrams for the scattering operator resp. its inverse.



One can heuristically derive (D.Siemssen and JD), and under some
technical assumptions prove rigorously (Vasy and Nakamura—Taira)
that they coincide with the operator-theoretic propagators:

Gop =G,



Assume now that M is globally hyperbolic and —L1 is essentially
self-adjoint. (If not, choose a self-adjoint extension).
We will say that —J + m? is special if

Goola,y) + Gz, y) = GY(x,y) + Gz, y).

Equivalently, it is special if

supp (Ggp(-, y) + Gfp(-, y)) C causal shadow of {y}.



Special Klein-Gordon equations are superconvenient! There exist
good techniques to compute the Feynman and antiFeynman propaga-
tors (because they are defined in the framework of operator theory).
The forward /backward propagators can then be computed as

GV, y) = (22" 7 4°) (GE (2, y) + G (2, 1))

As usual, we then set G := GV — G/. More interestingly, we
have a natural candidate for the two-point function of a distinguished

state:

QD) () = (CE, — &) = <(~Ch, + G¥).

| == ] =

Q1§ @()Q) = (-Gl + 6) = 2(Gh, — 6.

-



Recall that for any state o

Go(x,y) + Ghlz,y) = GV (z,y) + Gz, y).
Hence if
() = Q‘l’?

then —[0 + m? is special.
This is in particular true if M is stationary and stable—hence they
are special.



1. EXAMPLES OF SPACETIMES AND THEIR PROPAGATORS

Stationary stable Klein-Gordon equations are special, as we dis-
cussed above. This includes the Minkowski space. Recall that sta-
bility means that the Hamiltonian is positive definite (which corre-
sponds to m? > 0).

For tachyonic stationary Klein-Gordon equations, that is with m? <
0, we can also define all four Green's functions. However they are
not special! (And, of course, we do not have a physical state).



Consider a 1 + 0 dimensional spacetime. In view of applications to
FLRW spacetimes, assume that it is perturbed by a time-dependent
potential. Thus the Klein-Gordon operator has the form of a
1-dimensional Schrodinger operator

K=-H+m? H:=-0+V({).
2

Then it is special if H is reflectionless at the energy m~.
For instance, the symmetric Scarf Hamiltonian

2 1

_82_@ 4
t 2
cosh” t

is reflectionless at all energies for a € Z + %



The deSitter space is defined as the submanifold of the d + 1-
dimensional Minkowski ambient space:

ds? = {X e R | - XZ+ XP+ -+ X3=1}).
One can look for the Feynman propagator by solving the equation
(—Op +m?)G (2,y) = d(x —y),

and requiring that G¥ (z, y) = G (w), where w = z-y is the product
of the vectors in the ambient space. We obtain the Gegenbauer
equation

((1 — w02 — dwdy — (41)2 + m2)GF(w) — 0.

We demand the singularities of G!' are similar to those of the Feyn-
man propagator on the Minkowski space.



d d 1

Assuming m > === L and setting v ;= \/m — 7)2 we obtain

F (4L i) (gL — i
G/ F (w) = i (G + ) (dQ s, o (—wEi0).
93 5 AV
(4m)>
Above, S, , is the Gegenbauer function regular at 1 and equal

1 . e
Tlatl) there. It satisfies

Gy +GL=GY +G".
We can compute forward/backward propagators, and the distin-
guished two-point function, called the Euclidean state (because it

is obtained by the Wick rotation from the Euclidean sphere). It is
the unique deSitter invariant Hadamard state.



The d'Alembertian on C2°(dS?) is essentialy self-adjoint and thus
one can define the operator-theoretic Feynman and antiFeynman
propagator. However, it is different from the “Euclidean” one:

Gy # Gop Gp# Gop,
Note that the deSitter space is quite pathological—in particular it is
not asymptotically stationary, and the Euclidean state is neither the
in-state nor the out-state.



There exists a family of deSitter invariant states parametrized by a complex
parameter, called alpha-vacua. Among them there is the Euclidean state, an
in-state and an out-state. The out-in Feynman propagators coincides with the
operator-theoretic Feynman propagators and is given by

N
Gh (w) = ( 2 ) (Zd_liy(—W—iO) —Zc_z_liy(—w—l—i())>, odd d;
22w ()2 ginhwy N 2 7 2=
N
GE_(w) = 5 — ) (Zgz_1 w( —w — iO) +Zq_, iy( —w + iO)), even d.
22w (2m) 2 coshmv N 2 7 27>
1
where Z,, ) is the Gegenbauer function behaving as % at w — +o00.

In odd dimensions and with m? > (£52)?, the deSitter space is special and the
out and in vacua coincide. This is not the case in even dimensions!



There is an alternative approach to the deSitter space based on global coordinates
X() — Sinht, X@ — cosh tfi?i, T E Sd_l

yielding the metric — dt? + cosh*tdQ?. This has a FLRW form and vyields the
Schrodinger operator

o\ 2
(%) B i — Aga- 1 <@)2.
cosh? ¢ 2
The spectrum of —Aga1is {I({+d—2) : 1 =0,1,2,...}, hence we obtain the

symmetric Scarf potential with a = % + [. Thus all modes are reflectionless iff

d is odd. Consequently, all modes are special iff d is odd, and they are not if d is
even.

_at? _



The Anti-deSitter space is defined as
AdS? ={(X, V) eRZxRT! © X2 X24+V}2 4+ - 4+Y7, =—1}.
It is stationary, however has timelike loops. Introduce the coordinates

cost sint
, X9 = . Y; = tan py;;
COS P COS p

(— dt* + dp? + sin® pdQ?).

X1 =

with the metric 5
COS* P

where t €] — 7w, 7|. By taking the universal covering of the Anti-deSitter space we

remove timelike loops. In coordinates this means ¢ € R,
The d'Alembertian is essentially self-adjoint. We again set w := z - y from the

ambient space. For m? > —(%1)2, with v .= \/(%)2 + m?, we obtain

VAT (5 +v)

Zy ,,(—wi0(-1)"), n= {EJ |

GlE () - i d




In the following, it will be useful to know some properties of the trigonometric

Poschl-Teller Hamiltonian:
2 1 2 1
a P —— PR —
H::_ﬁng -24+ﬁ2
sin“ p COs® p

T

This Hamiltonian, as an operator on L*(0, 5], is essentially self-adjoint iff o > 1

and 3° > 1, and has a positive Friedrichs extension if o* > 0 and 3% > 0. If
a’ < 0 or B2 < 0, then all its extensions are unbounded from below.



The Anti-deSitter space, even after taking its universal covering, is still not
globally hyperbolic: it has trajectories that escape to infinity in finite time.
Consider now the Klein-Gordon operator on Anti-deSitter:
d—2

(tan p)Z (=0 + m2)(tan p) =

d=3\2 _ 1 _ A,
:0082,0((9752—(954-( 2) ;L Sd2+

sin” p Cos? p
=cos” p(0; + H),

where H is the trigonometric Poschl-Teller Hamiltonian. p = 0 is a coordinate

v

singularity. p = 5 is the spatial infinity, where classical particles may escape.

Following Wald-Ishibashi, we note that H is self-adjoint for m?* > 1 — (£21)%
For m? > —(%-1)?, we need to take the Friedrichs extension of H. In all these
cases the Anti-deSitter space is special! Only for m* < —(%)2 we do not have
distinguished forward and backward propagators (and of course the specialty breaks

down).




Thank you for your attention



Purely operator-theoretic approach to 2-point functions.
Consider the space of space-compact solutions to the Klein-Gordon equation

(—O+m?)¢ =0. (2)
It is equipped with the (indefinite) Klein-Gordon scalar product
(Gl = | G@dG)r (@ (3
o S _
where  (1(2)9,G(2) = 0,Gi(2)G(w) — (7)), (4)

and S is an arbitrary Cauchy surface. It is convenient to assume that this space
can be completed to a Krein space W (this is typically possible).



Let G*(z,y) be a bisolution to the Klein-Gordon equation, that is
(0. + MG, y) = (~Oy + MG, y) = 0

Then G* defines a linear map 1" on Wkq:

(T¢)(z) = /5 G* (2, 9) D, (1) ().

We then say that G* is the Klein-Gordon kernel of T'°.
Example: G'(z,y) is the Klein-Gordon kernel of the identity.



| et
Wie = 20 @ 20 (7)

be an orthogonal decomposition of the Krein space Wk into a maximal positive
and maximal negative subspace. Such a decomposition defines a Fock represen-

tation with the vacuum €,. Let ng) and Hg_) be the corresponding projections.
Then

Ga+)(x, y) = (Qah%(:l:)lﬂf(y)ﬁa),
G (2, y) = (U (2)d(y)a).

are the Klein-Gordon kernels of ng) and H&_).



Let
Wka = Zg_) D Zé_) (8)
be another orthogonal decomposition of the Krein space Wk into a maximal

positive and maximal negative subspace, defining the vacuum {23. One can show
that we have a (non-orthogonal) direct sum

Wie = 25" @ 20 (9)
Let Hg(;), H((y_@) be the corresponding projections. Then
92} (1)0)
(e, y) =\ 1
af (33, y) <QQ‘Q6> ) ( 0)
: 04 ()1 ()92
ﬁ ($7y> (Q/?’Qog) ( )

are the Klein-Gordon kernels of H(ﬁz) and Hé_ﬁ).



Green functions of 1-dimensional Schrodinger operators.
Suppose 11, 19 solve

(H + k)(t) =0, i=1,2
Then their Wronskian

W (1, 4a) = b1 (t)y(t) — 1 (L)ea(t)

does not depend on t.
The function

G (—k*t,s) =
( ) 78) W

1
(O 0) (1(t)1ha(s) — a(t)ehn(s))

does not depend on the choice of 11, 15 and defines the so-called canonical biso-
lution, the analog of the Pauli Jordan propagator. From G we can define the
forward and backward Green functions:

G7(=k*t,s) = G7(=k*t,5)0(t — s),
G (—k*t,s) = =G (=K% t,5)0(s — 1).



For Re k£ > 0 we define the left and right Jost solutions to be the unique solutions
of

(H + k2>¢:|:<t7 k) — 07 ¢i<t7 k) ~ e:Ftka +t — 00.

We also introduce the Jost function

W<k) = W(w—l-(a k)a ¢—('7 k))
The resolvent of H, denoted G(—k?) := (H + k*)~! has the integral kernel
G<_k2; t, 5) — ﬁ(e@ o 5)¢+<t7 k>w—<87 k) + 8(‘9 o t>¢—(t7 k)¢+<57 k)) :

We say that H is reflectionless if there exist functions T'(+ip) such that
Y4 (£ip) = T(£ip)y—(Fip).



