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Tomita’s talk, 1967

Haag-Hugenholtz-Winnink: On the equilibrium states in quan-
tum statistical mechanics, CMP 1967.

Takesaki book: Tomita’s Theory of Modular Hilbert Algebras
and Its Applications, 1970

70’s - 80’s Araki, Connes, Haagerup...
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e The theory is multifaceted and can be described from many
different starting points.

e We will choose an unusual one, the entropic starting point.

e Historically, it emerged as one of the conclusions:
Araki, H: Relative entropy of states of von Neumann alge-
bras I, Il, 1976/77.



IN THE BEGINNING THERE WAS ENTROPY

God picking out the special (low-entropy) initial conditions of our universe.
Penrose (1999).



A finite alphabet, P probability on A,
S(P) = —) _ P(a)log P(a).

0<S(P)<log|A|, S(P) =log|A|iff P = Py,
Pu(a) = 1/|A|.

S(P|Pu) = log |A[ — S(P)

=Y P(a)log Pla)

Po(a) =




RELATIVE ENTROPY

_ Nog Fla)
S(P|Q) =) P(a)log 10}

S(P|Q) > 0and S(P|Q) = 0iff P = Q.

Relative Renyi a-entropy

Sa(PIQ) = Y P(a) [P("’)]_ .

Q(a)
aozsoz(P|Q)|oz=O — _S(P|Q)

8@Sa(P|Q)|a=1 — S(Q|P)



Radon-Nikodym derivative g—P(a) = P(a)/Q(a),
S(P|Q) = / 09 —dP

dpP]™“
So(P|Q) = / Eogp
P = [ |50
In this formulation relative entropies generalize to any measur-
able space A and any two equivalent probability measures P, Q

on A.

The key: Radon Nikodym derivative that leads to the entropy
function Iog Q



NON-COMMUTATIVE SETTING

Finite dim Hilbert space H, states = density matrices p, v.
Entropy: S(p) = —tr(plog p).

Relative entropy: S(p|v) = tr(p(log p — logv)).

Relative Renyi entropy: Sa(p|v) = tr(pl—ov®).

But what is the Radon-Nikodym derivative now? How to ex-
tend these formula to the general non-commutative setting of

von Neumann algebras?

Modular structure enters here!



O = B(H) is Hilbert space with inner product (X, Y) = tr(X*Y).
Superoperators B(O).

GNS representation: O is identified with the left multiplication
map in B(O),

O>5X— AX € O.
T(A)(X) = AX,
O35 A w(A) € B(O).
m(A)* = 7(A%), |A]| = [|=(A)].

7/(A)X = X A. Commutant of 7(O) in O is 7' (O).

7(O) VvV r(O) = B(O), n(O) N7 (O) = {CId}.



Relative modular operator A, : O — O,

A X = ,OXI/_]'.

plv
This is the non-commutative RN-derivative. It is not in 7 (O)!

pl
Is the modular operator of the state p. It is non-trivial, and this
non-triviality is central to the richness of quantum statistical me-
chanics.

Connes’s cocycle

[Dp : DV)(X) = A,,A, (X)) = pr ' X.
is in (). Chain rule
[Dp1 : Dp2][Dpo @ Dp3] = [Dpy : Dp3l.
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Hilbert space O comes with:

(a) Natural cone: P ={X € O| X > 0}.

(b) Modular conjugation J : O — O, J(X) = X*.
To any state p one associates 2, = pl/2 € P:

p(A) = tr(pA) = tr(p/2Apt/2) = (Qp, T(A)Q)

Jr(O)J = 7'(0),

TN 21 (A)Q, = 1(A)*Q,.
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ENTROPIES

log Amy(X) = log pX — X logv.

S(plv) = tr(p(logp —logvr)) = (2, log Ap|yQp>.
S(plv) > 0 with equality iff p = p.

Sa(plv) = tr(p' = w®) = (), A 0Qy).

We have achieved our goal—the non-commutative Radon-Nikodym
structure that allows to define directly relative entropies in the
general setting.

And we got much more.
12



EQUILIBRIUM STATISTICAL MECHANICS

Dynamics: generated by Hamiltonian H on H, Heisenberg flow
Tt(A) — eitHAe_itH.
m(r'(4)) = m(A)e L,

£L(X)=HX — XH.

L-the standard Liouvillean of 7¢.

A state of thermal equilibrium at inverse temperature 3 is

pg=ePH17(p),
where
Z(B) = tr(e”P).
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Pressure P(B) = log Z(3). Gibbs variational principle:

P(B) = max(5(p) — ptr(pH))

with unique maximizer p = pg.
Proof:

S(plpg) = tr(p(1og p — 109 pg))
= —S(p) + ptr(pH) + P(B).
GVP follows from S(p|pg) > O with equality iff p = pg.

B-KMS-characterization: pg is unique state satisfying 5-KMS
boundary condition

tr(pBiA) = tr(pAB;4ig),
B; = 7(B). pis p-KMS state.
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To any p one associates modular dynamics
UZ(A) — eitlog pAe—itlogp

For Hamiltonian log p, p is (—1)-KMS state. The corresponding
standard Liouviellan is

p is B-KMS for dynamics generated by H iff

In general setting of von Neumann algebras this is known as
Takesaki theorem.
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NON EQUILIBRIUM QUANTUM STATISTICAL MECHANICS
Dynamics generated by H. Shrédinger flow p; = p—tH peitH
Fix initial state p, pr # p.

Chain rule:
[Dpyys : Dpl = 77 "([Dps : Dp])[Dpy : Dp].

= log A —log Ap.

Corlp ptlp
gpt‘p S 7'('((9), Epﬂp(X) — (pt — p)X

I
Ept+s|p =7 (E,oslp) + Lot
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Entropic cocycle ¢! = 7°(4,,1,,) = p — p—t,

Ct—l—s — 5 + TS(Ct>

Entropy production observable = quantum phase space contrac-
tion rate =

= i[log p, H].

=9
g dtc ‘tzO

Entropy production along the trajectory

" t
C =/ osds.
0]

It may have negative eigenvalues.
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Entropy balance equation—genesis of the second law

S(pilp) = () = [ p(os)ds > 0.

If the system is time-reversal invariant with time reversal 9,

¥(ct) =7, ¥ o) = —0.

Eigenvalues of ¢! are symmetric wrt O!
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Spectral decomposition

ct = ZSPS

p(ct) =) sp(Ps) > 0.

However, the fluctuation relation

p(P—S) - ~—S
=e
p(Ps)
fails. To restore it, we need new new players. But first an exam-

ple.
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OPEN QUANTUM SYSTEMS

Small Hamiltonian system S coupled to two thermal reservoirs.

20



Hilbert space Hi, ® Hs ® HR,-

Hamiltonian generating flow: Ho = Hg + Hp, + Hp,,
H=Hy+V.

Initial state:
)= %e—B(HS‘FV)—BlHRl—BQHRQ.

X; = B — B; (thermodynamical force).

®,; = i[H;, H] the energy flux out of the j-th reservoir.
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Entropy production observable

o= X{D1 + XoDo.

[ ploas =x1 [ tp(r%cbl))ds:

0
Energy chznge of Ry

t

|\

+ X5 /O (75 (d2))ds

Energy chEnQe of R»

\ -

> 0 <= heat flows from hot to cold
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Two-times measurement and modular theory

Two-times quantum measurement of the entropy observable — log p.

P = Z )\P)\
First measurementat¢ = 0, — log X\ is observed with probability
tr(pP)). State reduction

p = pPy/tr(pPy).
Reduced state evolves to
e " [pPy/tr(pPy)] ™.

The second measurement at time ¢ gives — log . with probabil-
ity
tr (e—‘tH [pPy /tr(pPy)] et PM> .

23



The probability that the pair (— log A\, — log ) is observed is
pe(\,v) = tr (e_ithPAeitHPM) :
The entropy production random variable is

E(A\ pu) = —logu— (—log ).
The distribution Q4 of £ wrt p; is
Qt(s) — Z pt(>‘7 ,LL)
E(A\p)=s
Qy is physically natural and experimentally accessible (in princi-
ple).
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Basic fact

/Reo‘sth(s) = (2, A0 Q)

= Sa(plp—t)-

Q¢ = spectral measure of —log A, for €2,

The characteristic function is Renyi’s relative entropy of the pair
(p, p—¢). Observational status of the modular structure!

[ 5dQu(s) = [ plo)ds = S(prlp) > O
R 0

t(s) = —s5,Qt =Qtor,
d—Qt(s) = e 5.

dQ¢

25



GENERAL SETTING

2t von Neumann algebra on Hilbert space #H. M C B(H) and
m = m”.

2 € H reference unit vector. Cyclic (M2 = H) and separating
M2 = H for M. Reference state
po-normal states = states represented by density matrices on

H. Npo.

The map
SAQ = A*Q, A e M,

26



extends to a closed antilinear operator on H with polar decom-
position

S = JA3

where A > 0 and J is antilinear involution.

A-modular operator of pg/<2. J is the modular conjugation.
Basic facts:

(1) JMJT = M.

(2) Natural cone P: Closure of {AJAJQ2 | A € M }.

27



(3) For any normal p € N, there exists unique €2, € P such
that

V(A) = (2, AQ2)).

2, Is cyclic iff it is separating.

(4)
||Q,01 _ sz”2 < ||P1 — PQH < ||Q/)1 - QPQ||||Q/01 + QPQH'

(5) The map
extends to a anti-linear closed operator on H with polar decom-

position

1
S = JA? :
p2|p1
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Ap2|p1 is the relative modular operator of the pair (pq1, po).
A, = Ap‘p the modular operator of p.

(6) of, = All. AT preserves M. Modular dynamics
(7) pis (—1)-KMS state for its modular dynamics.
(8) Connes cocycle:

. _ i —ia
[Dp1 @ Dpola = A A,

is a family of unitaries in 9t satisfying

[Dp1 : DpolalDp2 @ Dpzla = [Dp1 : Dp3la-
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(9) Araki’s relative entropy:

S(I/1|V2) = <Qy1| log A

(10) Renyi’s relative entropy

1/1|1/QQV1>'

Sa(l/1|l/2) — <Qy1, A;lo‘éI/QQV1>.

(11) For any W*-dynamics 7 = {r!|t € R} on 90 there exists
unique self-adjoint £, called standard Liouvillean of 7, such that

ri(A) = eFAeltt,  eTp P

(11) Koopmanism: vor = viff L2, = 0. (M, 7, v) is ergodic,

..

: 1 T * 1 *
_— = v(B"B)v(A
Tll_rgrg>o 7 _Tu(B 7'(A)B)dt = v/( Jv(A)
iff O is a simple eigenvalue of L.
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(12) vis a (7, 8)-KMS state,
v(r'(B)A) = v(Ar" TP (B))
iff
L, = —BL

where L, is the generator of o,.

(13) and much much more: Py-cones, 0 < o < 1/2 (natural

cone is « = 1/4), non-commutative LP-spaces, p = 1/2a €
[1,00), etc....
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EQUILIBRIUM STATISTICAL MECHANICS
Quantum spin systems on lattice Z¢. Equivalence of:
(1) B-KMS condition
(2) Gibbs variational principle

(3) Araki-Gibbs condition (quantum analog of Dobrushin-Lanford-
Ruelle theory, Araki theory of perturbation of KMS structure).
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NON-EQUILIBRIUM STATISTICAL MECHANICS

Chain rule:
[Dpits : Dpla = 7 "([Dps : Dpla)[Dps : Dpla.
Leads to:

= log A —log Ap.

Coilp ptlp
R

Em+dp'_7' (4%m>'F€mnr
Ct — Tt(fwﬂw).

Ct—l—s — 5 + TS(Ct)

d
— t‘
o= —

t=0"
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" t
C =/ osds.
0

S(ilp) = () = [ plo)ds > 0.

Two-times measurement entropy production: spectral measure
Q¢ for —log A and €2,.

v|v_¢

[ 54Qu()ds = [ p(os)ds = S(pulp) > 0

t(s) = —s,Qr=Qor,
dQ:

——(s) = e °.

dQ



IMPORTANT REMARK ABOUT NON-EQUILIBRIUM

Finite ¢ theory provides only the setting.

The non-trivial results emerge only in the limit ¢ — oo!

Equilibrium parallel: Phase transitions and thermodynamic limit.
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