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• Tomita’s talk, 1967

• Haag-Hugenholtz-Winnink: On the equilibrium states in quan-
tum statistical mechanics, CMP 1967.

• Takesaki book: Tomita’s Theory of Modular Hilbert Algebras
and Its Applications, 1970

• 70’s - 80’s Araki, Connes, Haagerup...
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Huzihiro Araki 1932-2022
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• The theory is multifaceted and can be described from many
different starting points.

• We will choose an unusual one, the entropic starting point.

• Historically, it emerged as one of the conclusions:
Araki, H: Relative entropy of states of von Neumann alge-
bras I, II, 1976/77.
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IN THE BEGINNING THERE WAS ENTROPY

God picking out the special (low-entropy) initial conditions of our universe.

Penrose (1999).
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A finite alphabet, P probability on A,

S(P ) = −
∑

P (a) logP (a).

0 ≤ S(P ) ≤ log |A|, S(P ) = log |A| iff P = Pu,
Pu(a) = 1/|A|.

S(P |Pu) = log |A| − S(P )

=
∑

P (a) log
P (a)

Pu(a)
≥ 0.
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RELATIVE ENTROPY

S(P |Q) =
∑

P (a) log
P (a)

Q(a)
.

S(P |Q) ≥ 0 and S(P |Q) = 0 iff P = Q.

Relative Renyi α-entropy

Sα(P |Q) =
∑

P (a)

[
P (a)

Q(a)

]−α

.

∂αSα(P |Q)|α=0 = −S(P |Q)

∂αSα(P |Q)|α=1 = S(Q|P ).
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Radon-Nikodym derivative dP
dQ(a) = P (a)/Q(a),

S(P |Q) =
∫
A
log

dP

dQ
dP

Sα(P |Q) =
∫
A

[
dP

dQ

]−α

dP

In this formulation relative entropies generalize to any measur-
able space A and any two equivalent probability measures P,Q

on A.

The key: Radon-Nikodym derivative that leads to the entropy
function log dP

dQ.

7



NON-COMMUTATIVE SETTING

Finite dim Hilbert space H, states = density matrices ρ, ν.

Entropy: S(ρ) = −tr(ρ log ρ).

Relative entropy: S(ρ|ν) = tr(ρ(log ρ− log ν)).

Relative Renyi entropy: Sα(ρ|ν) = tr(ρ1−ανα).

But what is the Radon-Nikodym derivative now? How to ex-
tend these formula to the general non-commutative setting of
von Neumann algebras?

Modular structure enters here!
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O = B(H) is Hilbert space with inner product ⟨X,Y ⟩ = tr(X∗Y ).
Superoperators B(O).

GNS representation: O is identified with the left multiplication
map in B(O),

O ∋ X 7→ AX ∈ O.

π(A)(X) = AX,

O ∋ A 7→ π(A) ∈ B(O).

π(A)∗ = π(A∗), ∥A∥ = ∥π(A)∥.

π′(A)X = XA. Commutant of π(O) in O is π′(O).

π(O) ∨ π(O)′ = B(O), π(O) ∩ π(O)′ = {C Id}.
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Relative modular operator ∆ρ|ν : O → O,

∆ρ|νX = ρXν−1.

This is the non-commutative RN-derivative. It is not in π(O)!

∆ρ|ρ = ∆ρ

is the modular operator of the state ρ. It is non-trivial, and this
non-triviality is central to the richness of quantum statistical me-
chanics.
Connes’s cocycle

[Dρ : Dν](X) = ∆ρ|ν∆
−1
ν (X) = ρν−1X.

is in π(O). Chain rule

[Dρ1 : Dρ2][Dρ2 : Dρ3] = [Dρ1 : Dρ3].
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Hilbert space O comes with:

(a) Natural cone: P = {X ∈ O |X ≥ 0}.

(b) Modular conjugation J : O → O, J(X) = X∗.

To any state ρ one associates Ωρ = ρ1/2 ∈ P:

ρ(A) = tr(ρA) = tr(ρ1/2Aρ1/2) = ⟨Ωρ, π(A)Ωρ⟩

Jπ(O)J = π′(O),

J∆
1/2
ρ π(A)Ωρ = π(A)∗Ωρ.
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ENTROPIES

log∆ρ|ν(X) = log ρX −X log ν.

S(ρ|ν) = tr(ρ(log ρ− log ν)) = ⟨Ωρ, log∆ρ|νΩρ⟩.

S(ρ|ν) ≥ 0 with equality iff ρ = µ.

Sα(ρ|ν) = tr(ρ1−ανα) = ⟨Ωρ,∆
−α
ρ|νΩρ⟩.

We have achieved our goal—the non-commutative Radon-Nikodym
structure that allows to define directly relative entropies in the
general setting.

And we got much more.
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EQUILIBRIUM STATISTICAL MECHANICS

Dynamics: generated by Hamiltonian H on H, Heisenberg flow

τ t(A) = eitHAe−itH .

π(τ t(A)) = eitLπ(A)e−itL,

L(X) = HX −XH.

L-the standard Liouvillean of τ t.

A state of thermal equilibrium at inverse temperature β is

ρβ = e−βH/Z(β),

where

Z(β) = tr(e−βH).
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Pressure P (β) = logZ(β). Gibbs variational principle:

P (β) = max
ρ

(S(ρ)− βtr(ρH))

with unique maximizer ρ = ρβ.
Proof:

S(ρ|ρβ) = tr(ρ(log ρ− log ρβ))

= −S(ρ) + βtr(ρH) + P (β).

GVP follows from S(ρ|ρβ) ≥ 0 with equality iff ρ = ρβ.

β-KMS-characterization: ρβ is unique state satisfying β-KMS
boundary condition

tr(ρBtA) = tr(ρABt+iβ),

Bt = τ t(B). ρ is β-KMS state.
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To any ρ one associates modular dynamics

σtρ(A) = eit log ρAe−it log ρ

For Hamiltonian log ρ, ρ is (−1)-KMS state. The corresponding
standard Liouviellan is

Lρ = log∆ρ.

ρ is β-KMS for dynamics generated by H iff

Lρ = −βL.

In general setting of von Neumann algebras this is known as
Takesaki theorem.
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NON EQUILIBRIUM QUANTUM STATISTICAL MECHANICS

Dynamics generated by H. Shrödinger flow ρt = ρ−itHρeitH .

Fix initial state ρ, ρt ̸= ρ.

Chain rule:

[Dρt+s : Dρ] = τ−t([Dρs : Dρ])[Dρt : Dρ].

ℓρt|ρ = log∆ρt|ρ − log∆ρ.

ℓρt|ρ ∈ π(O), ℓρt|ρ(X) = (ρt − ρ)X.

ℓρt+s|ρ = τ−t(ℓρs|ρ) + ℓρt|ρ.
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Entropic cocycle ct = τ t(ℓωt|ω) = ρ− ρ−t,

ct+s = cs + τs(ct)

Entropy production observable = quantum phase space contrac-
tion rate =

σ =
d

dt
ct
∣∣∣
t=0

= i[log ρ,H].

Entropy production along the trajectory

ct =
∫ t

0
σsds.

It may have negative eigenvalues.
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Entropy balance equation–genesis of the second law

S(ρt|ρ) = ρ(ct) =
∫ t

0
ρ(σs)ds ≥ 0.

If the system is time-reversal invariant with time reversal ϑ,

ϑ(ct) = c−t, ϑ(σ) = −σ.

Eigenvalues of ct are symmetric wrt 0!
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Spectral decomposition

ct =
∑

sPs

ρ(ct) =
∑

sρ(Ps) ≥ 0.

However, the fluctuation relation

ρ(P−s)

ρ(Ps)
= e−s

fails. To restore it, we need new new players. But first an exam-
ple.
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OPEN QUANTUM SYSTEMS

Small Hamiltonian system S coupled to two thermal reservoirs.
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Hilbert space HR1
⊗HS ⊗HR2

.

Hamiltonian generating flow: H0 = HS +HR1
+HR2

,

H = H0 + V.

Initial state:

ρ =
1

Z
e−β(HS+V )−β1HR1

−β2HR2.

Xj = β − βj (thermodynamical force).

Φj = i[Hj, H] the energy flux out of the j-th reservoir.
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Entropy production observable

σ = X1Φ1 +X2Φ2.

∫ t

0
ρ(σs)ds = X1

∫ t

0
ρ(τs(Φ1))ds︸ ︷︷ ︸

Energy change of R1

+X2

∫ t

0
ρ(τs(Φ2))ds︸ ︷︷ ︸

Energy change of R2

≥ 0 ⇐⇒ heat flows from hot to cold
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Two-times measurement and modular theory

Two-times quantum measurement of the entropy observable − log ρ.

ρ =
∑

λPλ.

First measurement at t = 0, − logλ is observed with probability
tr(ρPλ). State reduction

ρ 7→ ρPλ/tr(ρPλ).

Reduced state evolves to

e−itH [ρPλ/tr(ρPλ)] e
itH .

The second measurement at time t gives − logµ with probabil-
ity

tr
(
e−itH [ρPλ/tr(ρPλ)] e

itHPµ

)
.
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The probability that the pair (− logλ,− logµ) is observed is

pt(λ, ν) = tr
(
e−itHρPλe

itHPµ

)
.

The entropy production random variable is

E(λ, µ) = − logµ− (− logλ).

The distribution Qt of E wrt pt is

Qt(s) =
∑

E(λ,µ)=s

pt(λ, µ).

Qt is physically natural and experimentally accessible (in princi-
ple).
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Basic fact ∫
R
eαsdQt(s) = ⟨Ωρ,∆

−α
ρ|ρ−t

Ωρ.⟩

= Sα(ρ|ρ−t).

Qt = spectral measure of − log∆ρ|ρ−t
for Ωρ.

The characteristic function is Renyi’s relative entropy of the pair
(ρ, ρ−t). Observational status of the modular structure!

∫
R
sdQt(s) =

∫ t

0
ρ(σs)ds = S(ρt|ρ) ≥ 0

r(s) = −s, Q̄t = Qt ◦ r,

dQ̄t

dQt
(s) = e−s.
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GENERAL SETTING

M von Neumann algebra on Hilbert space H. M ⊂ B(H) and
M = M′′.

Ω ∈ H reference unit vector. Cyclic (MΩ = H) and separating
M′Ω = H for M. Reference state

ρ0(A) = ⟨Ω, AΩ⟩.

ρ0-normal states = states represented by density matrices on
H. Nρ0.

The map

SAΩ = A∗Ω, A ∈ M,
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extends to a closed antilinear operator on H with polar decom-
position

S = J∆
1
2

where ∆ ≥ 0 and J is antilinear involution.

∆-modular operator of ρ0/Ω. J is the modular conjugation.
Basic facts:

(1) JMJ = M′.

(2) Natural cone P: Closure of {AJAJΩ |A ∈ M}.
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(3) For any normal ρ ∈ Nρ0 there exists unique Ωρ ∈ P such
that

ν(A) = ⟨Ωρ, AΩρ⟩.

Ωρ is cyclic iff it is separating.
(4)

∥Ωρ1 −Ωρ2∥
2 ≤ ∥ρ1 − ρ2∥ ≤ ∥Ωρ1 −Ωρ2∥∥Ωρ1 +Ωρ2∥.

(5) The map

SAΩρ1 = A∗Ωρ2, A ∈ M

extends to a anti-linear closed operator on H with polar decom-
position

S = J∆
1
2
ρ2|ρ1

.
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∆ρ2|ρ1 is the relative modular operator of the pair (ρ1, ρ2).
∆ρ = ∆ρ|ρ the modular operator of ρ.

(6) σtρ = ∆it
ρ ·∆−it

ρ preserves M. Modular dynamics

(7) ρ is (−1)-KMS state for its modular dynamics.

(8) Connes cocycle:

[Dρ1 : Dρ2]α = ∆iα
ρ1|ρ2∆

−iα
ρ2

is a family of unitaries in M satisfying

[Dρ1 : Dρ2]α[Dρ2 : Dρ3]α = [Dρ1 : Dρ3]α.
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(9) Araki’s relative entropy:

S(ν1|ν2) = ⟨Ων1| log∆ν1|ν2Ων1⟩.

(10) Renyi’s relative entropy

Sα(ν1|ν2) = ⟨Ων1,∆
−α
ν1|ν2

Ων1⟩.

(11) For any W ∗-dynamics τ = {τ t | t ∈ R} on M there exists
unique self-adjoint L, called standard Liouvillean of τ , such that

τ t(A) = eitLAeitL, e−itLP ⊂ P.

(11) Koopmanism: ν ◦ τ = ν iff LΩν = 0. (M, τ, ν) is ergodic,
i.e.

lim
T→∞

1

2T

∫ T

−T
ν(B∗τ t(A)B)dt = ν(B∗B)ν(A)

iff 0 is a simple eigenvalue of L.
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(12) ν is a (τ, β)-KMS state,

ν(τ t(B)A) = ν(Aτ t+iβ(B))

iff

Lν = −βL

where Lν is the generator of σν.

(13) and much much more: Pα-cones, 0 ≤ α ≤ 1/2 (natural
cone is α = 1/4), non-commutative Lp-spaces, p = 1/2α ∈
[1,∞), etc....
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EQUILIBRIUM STATISTICAL MECHANICS

Quantum spin systems on lattice Zd. Equivalence of:

(1) β-KMS condition

(2) Gibbs variational principle

(3) Araki-Gibbs condition (quantum analog of Dobrushin-Lanford-
Ruelle theory, Araki theory of perturbation of KMS structure).
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NON-EQUILIBRIUM STATISTICAL MECHANICS

Chain rule:

[Dρt+s : Dρ]α = τ−t([Dρs : Dρ]α)[Dρt : Dρ]α.

Leads to:

ℓρt|ρ = log∆ρt|ρ − log∆ρ.

ℓρt+s|ρ = τ−t(ℓρs|ρ) + ℓρt|ρ.

ct = τ t(ℓωt|ω).

ct+s = cs + τs(ct)

σ =
d

dt
ct
∣∣∣
t=0

.
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ct =
∫ t

0
σsds.

S(ρt|ρ) = ρ(ct) =
∫ t

0
ρ(σs)ds ≥ 0.

Two-times measurement entropy production: spectral measure
Qt for − log∆ν|ν−t

and Ων.

∫
R
sdQt(s)ds =

∫ t

0
ρ(σs)ds = S(ρt|ρ) ≥ 0

r(s) = −s, Q̄t = Qt ◦ r,

dQ̄t

dQt
(s) = e−s.



IMPORTANT REMARK ABOUT NON-EQUILIBRIUM

Finite t theory provides only the setting.

The non-trivial results emerge only in the limit t → ∞!

Equilibrium parallel: Phase transitions and thermodynamic limit.
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