Scattering on self-dual Black holes

Lionel Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

Quantum & classical fields interacting with geometry, IHP, 3/26/2024.

Work with: Tim Adamo, Giuseppe Bogna & Atul Sharma 2309.03834 building on 2003.13501, 2103.16984, 2110.06066, 2203.02238...

First steps to extend twistor integrability for gravity scattering amplitude formulae on SD backgrounds to SD black holes.

Amplitudes on nontrivial backgrounds

Promise: Encode fully nonlinear effects, exact to all-orders! Challenges:

- Construct momentum eigenstate analogues.
- Construct exact propagators on background.
- Perform space-time perturbation theory.

What has been done?

- 3-4 points on generic plane waves general: [2018 Adamo, Casali, M., Nekovar],
 BMN: [Constable-et. al., Spradlin-Volovich].
- AdS/dS correlators: 5 pt [Goncalves, Perreira, Zhou], n-pt MUV [Green-Wen].
- Adamo, M., Sharma [2203.02238] → all-multiplicity formulae on radiative SD backgrounds.

Here: extend to SD black hole backgrounds [2309.03834].

Amplitudes on nontrivial backgrounds

Promise: Encode fully nonlinear effects, exact to all-orders! Challenges:

- Construct momentum eigenstate analogues.
- Construct exact propagators on background.
- Perform space-time perturbation theory.

What has been done?

- 3-4 points on generic plane waves general: [2018 Adamo, Casali, M., Nekovar],
 BMN: [Constable-et. al., Spradlin-Volovich].
- AdS/dS correlators: 5 pt [Goncalves, Perreira, Zhou], n-pt MUV [Green-Wen].
- Adamo, M., Sharma [2203.02238] → all-multiplicity formulae on radiative SD backgrounds.

Here: extend to SD black hole backgrounds [2309.03834].

Amplitudes on nontrivial backgrounds

Promise: Encode fully nonlinear effects, exact to all-orders! Challenges:

- Construct momentum eigenstate analogues.
- Construct exact propagators on background.
- Perform space-time perturbation theory.

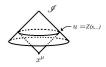
What has been done?

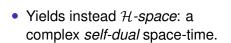
- 3-4 points on generic plane waves general: [2018 Adamo, Casali, M., Nekovar],
 BMN: [Constable-et. al., Spradlin-Volovich].
- AdS/dS correlators: 5 pt [Goncalves, Perreira, Zhou], n-pt MUV [Green-Wen].
- Adamo, M., Sharma [2203.02238] → all-multiplicity formulae on radiative SD backgrounds.

Here: extend to SD black hole backgrounds [2309.03834].

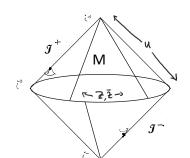
Twistors at null infinity, and integrability

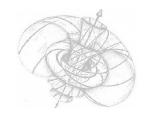
 Newman's good cuts attempt to rebuild space-time from \(\mathcal{I} \) data.





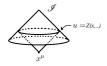
- We use Penrose's asymptotic twistor space at \(\mathcal{I} \), reformulating Newman's good cuts.
- Penrose's construction embodies integrability of self-dual sector.
- Use amplitudes to give perturbations of H-space approximating real space-time.

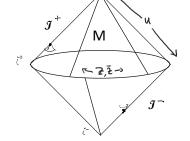




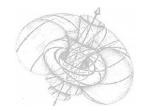
Twistors at null infinity, and integrability

 Newman's good cuts attempt to rebuild space-time from \(\mathcal{I} \) data.





- Yields instead H-space: a complex self-dual space-time.
- We use Penrose's asymptotic twistor space at \(\mathcal{I} \), reformulating Newman's good cuts.
- Penrose's construction embodies integrability of self-dual sector.
- Use amplitudes to give perturbations of H-space approximating real space-time.



Gravity amplitudes at MHV: - - + ... + helicity.

Scatter *n* gravitons with momenta k_i , i = 1, ... n.

· 2-component spinors express

$$x^{\dot{\alpha}\alpha} = \frac{1}{\sqrt{2}} \begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix} \implies t^2 - x^2 - y^2 - z^2 = \varepsilon_{\alpha\beta} \varepsilon_{\dot{\alpha}\dot{\beta}} x^{\dot{\alpha}\alpha} x^{\dot{\beta}\beta}$$

- So null momenta factorize: $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$.
- Spinor helicity: $\langle 1 \, 2 \rangle := \kappa_{1\alpha} \kappa_2^{\alpha} \,, \ [1 \, 2] := \kappa_{1\dot{\alpha}} \kappa_2^{\dot{\alpha}} \,,$
- MHV formula: [Hodges 2012] define $n \times n$ matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_{k} \frac{[ik]}{\langle ik \rangle} & i = j \end{cases}$$

- Then: $\mathcal{M}(1,\ldots,n) = \langle 12 \rangle^6 \det' \mathbb{H} \delta^4(\sum_i k_i)$.
- $\mathbb H$ is Laplace matrix for matrix-tree theorem $\overset{[\text{Feng,He 2012}]}{\sim}$
- Sum of tree diagrams with propagators $\frac{[j]}{(ji)}$ [Bern, et. al. '98]

For what theory???

Answer: [Adamo, M., Sharma, 2103.16984] $\mathcal{M} = \langle V_1 \dots V_{n-2} \rangle_{\mathrm{Trd}}$

Tree correlator for sigma-model in twistor space

Gravity amplitudes at MHV: $- + \dots +$ helicity.

Scatter *n* gravitons with momenta k_i , i = 1, ... n.

2-component spinors express

$$x^{\dot{\alpha}\alpha} = \frac{1}{\sqrt{2}} \begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix} \implies t^2 - x^2 - y^2 - z^2 = \varepsilon_{\alpha\beta} \varepsilon_{\dot{\alpha}\dot{\beta}} x^{\dot{\alpha}\alpha} x^{\dot{\beta}\beta}$$

- So null momenta factorize: $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$.
- Spinor helicity: $\langle 1 2 \rangle := \kappa_{1\alpha} \kappa_2^{\alpha}, \ [1 2] := \kappa_{1\dot{\alpha}} \kappa_2^{\dot{\alpha}},$
- MHV formula: [Hodges 2012] define n × n matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_{k} \frac{[ik]}{\langle ik \rangle} & i = j. \end{cases}$$

- Then: $\mathcal{M}(1,\ldots,n) = \langle 12 \rangle^6 \det' \mathbb{H} \, \delta^4(\sum_i k_i)$.
- $\mathbb H$ is Laplace matrix for matrix-tree theorem $\overset{[\text{Feng,He 2012}]}{\hookrightarrow}$
- Sum of tree diagrams with propagators $\frac{[j]}{\langle j \rangle}$ [Bern, et. al. '98]

For what theory???

Answer: [Adamo, M., Sharma, 2103.16984] $\mathcal{M} = \langle V_1 \dots V_{n-2} \rangle_{\mathrm{Tre}}$

Gravity amplitudes at MHV: $- + \dots +$ helicity.

Scatter *n* gravitons with momenta k_i , i = 1, ... n.

2-component spinors express

$$x^{\dot{\alpha}\alpha} = \frac{1}{\sqrt{2}} \begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix} \implies t^2 - x^2 - y^2 - z^2 = \varepsilon_{\alpha\beta} \varepsilon_{\dot{\alpha}\dot{\beta}} x^{\dot{\alpha}\alpha} x^{\dot{\beta}\beta}$$

- So null momenta factorize: $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$.
- Spinor helicity: $\langle 1 \, 2 \rangle := \kappa_{1\alpha} \kappa_2^{\alpha} \, , \; [1 \, 2] := \kappa_{1\dot{\alpha}} \kappa_2^{\dot{\alpha}} \, ,$
- MHV formula: [Hodges 2012] define n × n matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_{k} \frac{[ik]}{\langle ik \rangle} & i = j. \end{cases}$$

- Then: $\mathcal{M}(1,\ldots,n)=\langle 12\rangle^6\det'\mathbb{H}\;\delta^4(\sum_i k_i).$
- $\mathbb H$ is Laplace matrix for matrix-tree theorem $\overset{[\text{Feng,He 2012}]}{\hookrightarrow}$
- Sum of tree diagrams with propagators [ij] [Bern, et. al. '98]

For what theory???

Answer: [Adamo, M., Sharma, 2103.16984] $\mathcal{M} = \langle V_1 \dots V_{n-2} \rangle_{\mathrm{Tre}}$

Gravity amplitudes at MHV: --+...+ helicity.

Scatter *n* gravitons with momenta k_i , i = 1, ... n.

2-component spinors express

$$x^{\dot{\alpha}\alpha} = \frac{1}{\sqrt{2}} \begin{pmatrix} t - z & x + iy \\ x - iy & t + z \end{pmatrix} \implies t^2 - x^2 - y^2 - z^2 = \varepsilon_{\alpha\beta} \varepsilon_{\dot{\alpha}\dot{\beta}} x^{\dot{\alpha}\alpha} x^{\dot{\beta}\beta}$$

• So null momenta factorize: $k_{i\alpha\dot{\alpha}} = \kappa_{i\alpha}\kappa_{i\dot{\alpha}}$. • Spinor helicity: $\langle 1 2 \rangle := \kappa_{1\alpha}\kappa_2^{\alpha}$, $[1 2] := \kappa_{1\dot{\alpha}}\kappa_2^{\dot{\alpha}}$,

• MHV formula: (Hodges 2012) define $n \times n$ matrix:

$$\mathbb{H}_{ij} = \begin{cases} \frac{[ij]}{\langle ij \rangle} & i \neq j \\ -\sum_{k} \frac{[ik]}{\langle ik \rangle} & i = j. \end{cases}$$

- Then: $\mathcal{M}(1,\ldots,n) = \langle 12 \rangle^6 \det' \mathbb{H} \, \delta^4(\sum_i k_i)$.
- $\bullet~\mathbb{H}$ is Laplace matrix for matrix-tree theorem $\overset{[\text{Feng,He 2012}]}{\leadsto}$
- Sum of tree diagrams with propagators $\frac{[j]}{\langle j \rangle}$ [Bern, et. al. '98]

For what theory???

Answer: [Adamo, M., Sharma, 2103.16984] $\mathcal{M} = \langle V_1 \dots V_{n-2} \rangle_{\mathrm{Tree}}$

Tree correlator for sigma-model in twistor space.

Can we exploit integrability of SD background?

- The $\kappa_{i\alpha}$ survive as contants.
- We can 'dress' the $\kappa_{i\dot{\alpha}}$ and send $[ij] \rightarrow [ij]$ in formulæ.
- Can define (x-dependent) \mathbb{H}

But:

- there are, say, t interactions with background, t < n 2,
- and fields generate tails after hitting background...
- So define (n+t) × (n+t) generating matrix for t interactions with background

$$\mathcal{H} := egin{pmatrix} \mathbb{H} & \mathfrak{h} \ \mathfrak{h}^{\mathcal{T}} & \mathbb{T} \end{pmatrix}$$

• Gives contribution $\int_M d^4x \prod_{m=1}^t \partial_{\epsilon_m}^{p_m} \det' \mathcal{H}|_{\epsilon_m=0} \times \dots$

But, radiative \leftrightarrow defined from radiation data at \mathscr{I} : Stationary black holes are trivial at \mathscr{I} , so doesnt apply.

Can we exploit integrability of SD background?

- The $\kappa_{i\alpha}$ survive as contants.
- We can 'dress' the $\kappa_{i\dot{\alpha}}$ and send $[ij] \rightarrow [ij]$ in formulæ.
- Can define (x-dependent) \mathbb{H}

But:

- there are, say, t interactions with background, t < n 2,
- and fields generate tails after hitting background...
- So define $(n + t) \times (n + t)$ generating matrix for t interactions with background

$$\mathcal{H} := egin{pmatrix} \mathbb{H} & \mathfrak{h} \ \mathfrak{h}^{\mathcal{T}} & \mathbb{T} \end{pmatrix}$$

• Gives contribution $\int_M d^4x \prod_{m=1}^t \partial_{\epsilon_m}^{p_m} \det' \mathcal{H}|_{\epsilon_m=0} \times \dots$

But, radiative \leftrightarrow defined from radiation data at \mathscr{I} : Stationary black holes are trivial at \mathscr{I} , so doesnt apply.

Outline

Extension to self-dual (SD) black hole backgrounds:

- 1 Self dual Kerr = SD Taub-NUT with single copy SD dyon.
- ② Introduce charged Killing spinors for self-dual dyons →
- 3 momentum eigenstates on SD dyon background.
- 4 Solutions lift directly to SD Taub-NUT.
- 5 Find anomalous spin weights and fall-off from nontrivial topology of SD dyons and Taub-NUTs.
- **6** Two point functions for helicity-flip through backgrounds obtained by direct integration.
- Spin is incorporated by exponential factor.
- **8** MHV amplitudes at *n*-points via twistor theory.

Black holes and valence-2 Killing spinors

Vacuum black-holes, Kerr etc. have Petrov type D Weyl-spinor

$$\Psi_{\alpha\beta\gamma\delta} = \Psi_2 o_{(\alpha} o_{\beta} \iota_{\gamma} \iota_{\delta)}$$
.

Proposition (Penrose, Walker, Hughston, Sommers, 1972,3)

For any vacuum space-time of Petrov type D

- \exists Killing spinor $\chi^{\alpha\beta}$: $\nabla^{\dot{\alpha}(\alpha}\chi^{\beta\gamma)} = 0$.
- related to ASD Weyl spinor & ASD Maxwell field by

$$\Psi_{\alpha\beta\gamma\delta} = \frac{\chi_{(\alpha\beta}\chi_{\gamma\delta)}}{\chi^5}, \quad \phi_{\alpha\beta} := \frac{\chi_{\alpha\beta}}{\chi^3}, \quad \chi^{\alpha\beta} = \chi o^{(\alpha}\iota^{\beta)}.$$

• SD parts are the complex conjugates $\leftrightarrow ar{\chi}^{\dot{lpha}\dot{eta}}$.

In Kerr's original rectangular coords:
$$\chi_a^{\alpha\beta} = \begin{pmatrix} x + iy & z - ia \\ z - ia & x - iy \end{pmatrix}$$
.

Newman-Janis shift: $z \to z - ia$ sends $\chi_0^{\alpha\beta} \to \chi_a^{\alpha\beta}$.

But need also: $z \to z + ia$ to send $\bar{\chi}_0^{\dot{\alpha}\dot{\beta}} \to \bar{\chi}_a^{\dot{\alpha}\dot{\beta}}$

Black holes and valence-2 Killing spinors

Vacuum black-holes, Kerr etc. have Petrov type D Weyl-spinor

$$\Psi_{\alpha\beta\gamma\delta} = \Psi_2 o_{(\alpha} o_{\beta} \iota_{\gamma} \iota_{\delta)}$$
.

Proposition (Penrose, Walker, Hughston, Sommers, 1972,3)

For any vacuum space-time of Petrov type D

- \exists Killing spinor $\chi^{\alpha\beta}$: $\nabla^{\dot{\alpha}(\alpha}\chi^{\beta\gamma)} = 0$.
- related to ASD Weyl spinor & ASD Maxwell field by

$$\Psi_{\alpha\beta\gamma\delta} = \frac{\chi_{(\alpha\beta}\chi_{\gamma\delta)}}{\chi^5}, \quad \phi_{\alpha\beta} := \frac{\chi_{\alpha\beta}}{\chi^3}, \quad \chi^{\alpha\beta} = \chi o^{(\alpha}\iota^{\beta)}.$$

• SD parts are the complex conjugates $\leftrightarrow ar{\chi}^{\dot{lpha}\dot{eta}}$.

In Kerr's original rectangular coords: $\chi_a^{\alpha\beta} = \begin{pmatrix} x+iy & z-ia \\ z-ia & x-iy \end{pmatrix}$. a=Kerr parameter.

Newman-Janis shift: $z \to z - ia$ sends $\chi_0^{\alpha\beta} \to \chi_a^{\alpha\beta}$.

Black holes and valence-2 Killing spinors

Vacuum black-holes, Kerr etc. have Petrov type D Weyl-spinor

$$\Psi_{\alpha\beta\gamma\delta} = \Psi_2 o_{(\alpha} o_{\beta} \iota_{\gamma} \iota_{\delta)}.$$

Proposition (Penrose, Walker, Hughston, Sommers, 1972,3)

For any vacuum space-time of Petrov type D

- \exists Killing spinor $\chi^{\alpha\beta}$: $\nabla^{\dot{\alpha}(\alpha}\chi^{\beta\gamma)} = 0$.
- related to ASD Weyl spinor & ASD Maxwell field by

$$\Psi_{\alpha\beta\gamma\delta} = \frac{\chi_{(\alpha\beta}\chi_{\gamma\delta)}}{\chi^5}, \quad \phi_{\alpha\beta} := \frac{\chi_{\alpha\beta}}{\chi^3}, \quad \chi^{\alpha\beta} = \chi o^{(\alpha}\iota^{\beta)}.$$

• SD parts are the complex conjugates $\leftrightarrow ar{\chi}^{\dot{lpha}\dot{eta}}$.

In Kerr's original rectangular coords: $\chi_a^{\alpha\beta} = \begin{pmatrix} x+iy & z-ia \\ z-ia & x-iy \end{pmatrix}$. a=Kerr parameter.

Newman-Janis shift: $z \rightarrow z - ia$ sends $\chi_0^{\alpha\beta} \rightarrow \chi_a^{\alpha\beta}$.

But need also: $z \to z + ia$ to send $\bar{\chi}_0^{\dot{\alpha}\dot{\beta}} \to \bar{\chi}_a^{\dot{\alpha}\dot{\beta}}$.

Self-dual Taub-NUT as SD part of Kerr

Euclidean SD Taub-NUT is

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x},$$

here bold \leftrightarrow 3-vector $\mathbf{x} = (x, y, z)$, $r = |\mathbf{x}|$, and

$$V = 1 + \frac{2m}{r},$$
 $\nabla \wedge \mathbf{a} = \nabla V,$ $\mathbf{a} = (1 - \cos \theta) d\phi$

The ASD Weyl spinor = 0 and the SD Weyl spinor is

$$\widetilde{\Psi}_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}} = \frac{\widetilde{\chi}_{(\dot{\alpha}\dot{\beta}}\widetilde{\chi}_{\dot{\gamma}\dot{\delta})}}{\widetilde{\chi}^5}\,, \qquad \widetilde{\chi}^{\dot{\alpha}\dot{\beta}} = \widetilde{\chi}_0^{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} x-iy & z \\ z & x+iy \end{pmatrix}.$$

• With Newman-Janis shift $z \rightarrow z + ia$ this is SD part of Kerr.

Self-dual Taub-NUT as SD part of Kerr

Euclidean SD Taub-NUT is

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x},$$

here bold \leftrightarrow 3-vector $\mathbf{x} = (x, y, z)$, $r = |\mathbf{x}|$, and

$$V = 1 + \frac{2m}{r},$$
 $\nabla \wedge \mathbf{a} = \nabla V,$ $\mathbf{a} = (1 - \cos \theta) d\phi$

The ASD Weyl spinor = 0 and the SD Weyl spinor is

$$\widetilde{\Psi}_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}} = \frac{\widetilde{\chi}_{(\dot{\alpha}\dot{\beta}}\widetilde{\chi}_{\dot{\gamma}\dot{\delta})}}{\widetilde{\chi}^5}\,, \qquad \widetilde{\chi}^{\dot{\alpha}\dot{\beta}} = \widetilde{\chi}_0^{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} \mathbf{x} - \mathbf{i}\mathbf{y} & \mathbf{z} \\ \mathbf{z} & \mathbf{x} + \mathbf{i}\mathbf{y} \end{pmatrix}.$$

• With Newman-Janis shift $z \rightarrow z + ia$ this is SD part of Kerr.

Self-dual Taub-NUT as SD part of Kerr

Euclidean SD Taub-NUT is

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x},$$

here bold \leftrightarrow 3-vector $\mathbf{x} = (x, y, z)$, $r = |\mathbf{x}|$, and

$$V = 1 + \frac{2m}{r},$$
 $\nabla \wedge \mathbf{a} = \nabla V,$ $\mathbf{a} = (1 - \cos \theta) d\phi$

The ASD Weyl spinor = 0 and the SD Weyl spinor is

$$\widetilde{\Psi}_{\dot{\alpha}\dot{\beta}\dot{\gamma}\dot{\delta}} = \frac{\widetilde{\chi}_{(\dot{\alpha}\dot{\beta}}\widetilde{\chi}_{\dot{\gamma}\dot{\delta})}}{\widetilde{\chi}^5}\,, \qquad \widetilde{\chi}^{\dot{\alpha}\dot{\beta}} = \widetilde{\chi}_0^{\dot{\alpha}\dot{\beta}} = \begin{pmatrix} \mathbf{x} - \mathbf{i}\mathbf{y} & \mathbf{z} \\ \mathbf{z} & \mathbf{x} + \mathbf{i}\mathbf{y} \end{pmatrix}.$$

• With Newman-Janis shift $z \rightarrow z + ia$ this is SD part of Kerr.

The self-dual dyon as single copy of SD Taub-NUT

Minimal (e = g = 1) SD Euclidean Maxwell dyon potential:

$$\label{eq:A} \textit{A} = \frac{1}{2} \left(\frac{\textit{d}t}{\textit{r}} - \textbf{a} \right) \qquad \rightsquigarrow \quad \text{field} \quad \textit{F}_{\dot{\alpha}\dot{\beta}} = \frac{\tilde{\chi}_{\dot{\alpha}\dot{\beta}}}{2\tilde{\chi}^3} \,, \quad \textit{F}_{\alpha\beta} = \textbf{E} - \textbf{B} = 0.$$

- 'single-copy' of SD Taub-NUT: Coulomb + monopole.
- $\frac{1}{2}$ **a** = $\frac{1}{2}(1 \cos \theta)d\phi$ has 'wire singularity at $\theta = \pi$.
- Gauge transformation $e^{-i\phi}$ gives wire singularity at $\theta=0$

$$\mathbf{a}' = -\frac{1}{2}(1+\cos\theta)d\phi.$$

- So A is topologically non-trivial U(1) connection on Line bundle L with Chern class 1.
- Defines line bundles $L^e o \mathbb{M} \{r = 0\}$, $c_1(L^e) = e$, connection ieA.

The self-dual dyon as single copy of SD Taub-NUT

Minimal (e = g = 1) SD Euclidean Maxwell dyon potential:

$$\label{eq:A} \textit{A} = \frac{1}{2} \left(\frac{\textit{d}t}{\textit{r}} - \textbf{a} \right) \qquad \rightsquigarrow \quad \text{field} \quad \textit{F}_{\dot{\alpha}\dot{\beta}} = \frac{\tilde{\chi}_{\dot{\alpha}\dot{\beta}}}{2\tilde{\chi}^3} \,, \quad \textit{F}_{\alpha\beta} = \textbf{E} - \textbf{B} = 0.$$

- 'single-copy' of SD Taub-NUT: Coulomb + monopole.
- $\frac{1}{2}$ **a** = $\frac{1}{2}$ (1 cos θ) $d\phi$ has 'wire singularity at $\theta = \pi$.
- Gauge transformation ${
 m e}^{-i\phi}$ gives wire singularity at heta=0

$$\mathbf{a}' = -\frac{1}{2}(1+\cos\theta)\mathbf{d}\phi.$$

- So A is topologically non-trivial U(1) connection on Line bundle L with Chern class 1.
- Defines line bundles $L^e \to \mathbb{M} \{r = 0\}$, $c_1(L^e) = e$, connection ieA.

The self-dual dyon as single copy of SD Taub-NUT

Minimal (e = g = 1) SD Euclidean Maxwell dyon potential:

$$A = rac{1}{2} \left(rac{dt}{r} - \mathbf{a}
ight) \qquad
ightarrow \quad ext{field} \quad F_{\dot{lpha}\dot{eta}} = rac{ ilde{\chi}_{\dot{lpha}\dot{eta}}}{2 ilde{\chi}^3} \,, \quad F_{lphaeta} = \mathbf{E} - \mathbf{B} = 0.$$

- 'single-copy' of SD Taub-NUT: Coulomb + monopole.
- $\frac{1}{2}$ **a** = $\frac{1}{2}(1 \cos \theta)d\phi$ has 'wire singularity at $\theta = \pi$.
- Gauge transformation $e^{-i\phi}$ gives wire singularity at $\theta = 0$

$$\mathbf{a}' = -\frac{1}{2}(1+\cos\theta)d\phi.$$

- So A is topologically non-trivial U(1) connection on Line bundle L with Chern class 1.
- Defines line bundles L^e → M {r = 0}, c₁(L^e) = e, connection ieA.

Charged Killing spinors

The SD dyon has special relationship also to $\chi^{\alpha\beta}$. Write

$$\chi^{\alpha\beta} = \chi_+^{(\alpha}\chi_-^{\beta)}\,, \qquad \chi_-^{\alpha} = \sqrt{2}\,t_{\dot{\alpha}}^{\alpha}\bar{\chi}_+^{\dot{\alpha}}\,,$$

• Using $\zeta = \frac{x+iy}{r+z}$, stereographic coord, find

$$\chi_{+}^{\alpha} = \sqrt{\frac{r}{1+|\zeta|^2}} (\bar{\zeta},-1), \qquad \chi_{-}^{\alpha} = \sqrt{\frac{r}{1+|\zeta|^2}} (1,\zeta)$$

- χ^{α}_{+} are globally defined as sections of $L^{\pm 1}$.
- They satisfy the charged Killing spinor equation

$$\partial_{\dot{\alpha}}^{(\alpha}\chi_{\pm}^{\beta)} \pm i A_{\dot{\alpha}}^{(\alpha}\chi_{\pm}^{\beta)} = 0,$$

• Let $\psi_{\alpha_1...\alpha_{n+1}}$ be a massless field, $\partial_{\dot{\alpha}}^{\alpha}\psi_{\alpha_1...\alpha_n\alpha}=0$, then

$$\phi_{\alpha_1...\alpha_n} = \psi_{\alpha_1...\alpha_n\beta} \chi_{\pm}^{\beta}$$

is a charged massless field of charge ± 1 .

Charged Killing spinors

The SD dyon has special relationship also to $\chi^{\alpha\beta}$. Write

$$\chi^{\alpha\beta} = \chi_+^{(\alpha}\chi_-^{\beta)}\,, \qquad \chi_-^{\alpha} = \sqrt{2}\,t_{\dot{\alpha}}^{\alpha}\bar{\chi}_+^{\dot{\alpha}}\,,$$

• Using $\zeta = \frac{x+iy}{r+z}$, stereographic coord, find

$$\chi_{+}^{\alpha} = \sqrt{\frac{r}{1 + |\zeta|^2}} (\bar{\zeta}, -1), \qquad \chi_{-}^{\alpha} = \sqrt{\frac{r}{1 + |\zeta|^2}} (1, \zeta)$$

- χ^{α}_{+} are globally defined as sections of $L^{\pm 1}$.
- They satisfy the charged Killing spinor equation

$$\partial_{\dot{\alpha}}^{(\alpha}\chi_{\pm}^{\beta)} \pm i A_{\dot{\alpha}}^{(\alpha}\chi_{\pm}^{\beta)} = 0,$$

• Let $\psi_{\alpha_1...\alpha_{n+1}}$ be a massless field, $\partial_{\dot{\alpha}}^{\alpha}\psi_{\alpha_1...\alpha_n\alpha}=0$, then

$$\phi_{\alpha_1...\alpha_n} = \psi_{\alpha_1...\alpha_n\beta} \chi_{\pm}^{\beta}$$

is a charged massless field of charge ± 1 .

Constructing charged momentum eigenstates

Start with momentum eigenstate of helicity -(n+e)/2

$$\psi_{\alpha_1...\alpha_n} = \kappa_{\alpha_1} \dots \kappa_{\alpha_{n+e}} e^{i\mathbf{k}\cdot\mathbf{x}}, \qquad \mathbf{k}_{\dot{\alpha}\alpha} = \kappa_{\alpha}\tilde{\kappa}_{\dot{\alpha}}.$$

• General factor of $\langle \kappa \chi_+ \rangle^p \langle \kappa \chi_- \rangle^q$ gives charge p-q field:

$$\varphi_{\alpha_1...\alpha_n}^{(p,q)} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} r^{\frac{p+q}{2}} \frac{(\bar{\zeta}\kappa_1 + \kappa_0)^p (\kappa_0 \zeta - \kappa_1)^q}{(1+|\zeta|^2)^{\frac{p+q}{2}}} e^{ik \cdot x},$$

• Minimal charge $\pm e$ momentum eigenstate of helicity $-\frac{n}{2}$ is

$$\phi_{\alpha_1...\alpha_n}^{\pm e} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} \langle \kappa \chi_{\pm} \rangle^{e} e^{ik \cdot x}$$

Satisfies

$$\left(\partial^{\alpha_1\dot{lpha}}\pm\mathrm{i}\boldsymbol{e}\,\boldsymbol{A}^{\alpha_1\dot{lpha}}\right)\phi^{\pm\boldsymbol{e}}_{\alpha_1\cdots\alpha_n}=\mathbf{0}\,.$$

Construct charged + helicity via potentials, i.e. Maxwell

$$b_{\dot{\alpha}\alpha}^{\pm e} = o_{\alpha}o^{\beta}(\partial_{\beta\dot{\alpha}} - ieA_{\beta\dot{\alpha}})\phi^{\pm e}$$

where $o_{\alpha} = \text{const.} \& \phi^{\pm e}$ solves wave equation, charge $\pm e$.

Note: Charge $e \sim$ spherical harmonics $l \geq \frac{e}{2}$ with r^l growth.

Constructing charged momentum eigenstates

Start with momentum eigenstate of helicity -(n+e)/2

$$\psi_{\alpha_1...\alpha_n} = \kappa_{\alpha_1} \dots \kappa_{\alpha_{n+e}} e^{i\mathbf{k}\cdot\mathbf{x}}, \qquad \mathbf{k}_{\dot{\alpha}\alpha} = \kappa_{\alpha}\tilde{\kappa}_{\dot{\alpha}}.$$

• General factor of $\langle \kappa \chi_+ \rangle^p \langle \kappa \chi_- \rangle^q$ gives charge p-q field:

$$\varphi_{\alpha_1...\alpha_n}^{(p,q)} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} r^{\frac{p+q}{2}} \frac{(\bar{\zeta}\kappa_1 + \kappa_0)^p (\kappa_0 \zeta - \kappa_1)^q}{(1+|\zeta|^2)^{\frac{p+q}{2}}} e^{ik \cdot x},$$

• Minimal charge $\pm e$ momentum eigenstate of helicity $-\frac{n}{2}$ is

$$\phi_{\alpha_1...\alpha_n}^{\pm e} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} \langle \kappa \chi_{\pm} \rangle^{e} e^{ik \cdot x}$$

Satisfies

$$\left(\partial^{\alpha_1\dot{lpha}}\pm\mathrm{i}\boldsymbol{e}\,\boldsymbol{A}^{\alpha_1\dot{lpha}}\right)\phi^{\pm\boldsymbol{e}}_{\alpha_1\cdots\alpha_n}=\mathbf{0}\,.$$

Construct charged + helicity via potentials, i.e. Maxwell

$$b_{\dot{\alpha}\alpha}^{\pm e} = o_{\alpha}o^{\beta}(\partial_{\beta\dot{\alpha}} - ieA_{\beta\dot{\alpha}})\phi^{\pm e}$$
,

where $o_{\alpha} = \text{const.} \& \phi^{\pm e}$ solves wave equation, charge $\pm e$.

Note: Charge $e \sim$ spherical harmonics $l \geq \frac{e}{2}$ with r^l growth.

Constructing charged momentum eigenstates

Start with momentum eigenstate of helicity -(n+e)/2

$$\psi_{\alpha_1...\alpha_n} = \kappa_{\alpha_1} \dots \kappa_{\alpha_{n+e}} e^{ik \cdot x}, \qquad \mathbf{k}_{\dot{\alpha}\alpha} = \kappa_{\alpha} \tilde{\kappa}_{\dot{\alpha}}.$$

• General factor of $\langle \kappa \chi_+ \rangle^p \langle \kappa \chi_- \rangle^q$ gives charge p-q field:

$$\varphi_{\alpha_1...\alpha_n}^{(p,q)} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} r^{\frac{p+q}{2}} \frac{(\bar{\zeta}\kappa_1 + \kappa_0)^p (\kappa_0 \zeta - \kappa_1)^q}{(1+|\zeta|^2)^{\frac{p+q}{2}}} e^{ik \cdot x},$$

• Minimal charge $\pm e$ momentum eigenstate of helicity $-\frac{n}{2}$ is

$$\phi_{\alpha_1...\alpha_n}^{\pm e} = \kappa_{\alpha_1} \dots \kappa_{\alpha_n} \langle \kappa \chi_{\pm} \rangle^e e^{i\mathbf{k} \cdot \mathbf{x}}$$

Satisfies

$$(\partial^{\alpha_1\dot{\alpha}} \pm i\boldsymbol{e} \boldsymbol{A}^{\alpha_1\dot{\alpha}}) \, \phi^{\pm\boldsymbol{e}}_{\alpha_1\cdots\alpha_n} = 0.$$

Construct charged + helicity via potentials, i.e. Maxwell

$$oldsymbol{b}_{\dot{eta}lpha}^{\pmoldsymbol{e}}=oldsymbol{o}_{lpha}oldsymbol{o}^{eta}(\partial_{eta\dot{lpha}}-ioldsymbol{e}oldsymbol{A}_{eta\dot{lpha}})\phi^{\pmoldsymbol{e}}\,,$$

where $o_{\alpha} = \text{const.} \& \phi^{\pm e}$ solves wave equation, charge $\pm e$.

Note: Charge $e \sim$ spherical harmonics $l \geq \frac{e}{2}$ with r^l growth.

Double copy for background fields!

Nontrivial topology of **a** in SD Taub-Nut

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x}$$

implies periodic time $t \sim t + 4m$, quantizes frequency $2m\omega \in \mathbb{Z}$.

Proposition

Charge e momentum eigenstates $\psi^{SDD}_{lpha_1...lpha_n}$ on the SD dyon background naturally lift to momentum eigenstates $\psi^{SDTN}_{lpha_1...lpha_n}$ on SD Taub-NUT with energy ω quantized by 2m $\omega=e$.

$$\nabla_{a} = \frac{1}{\sqrt{V}} \left(\partial_{t} + \frac{2m}{r} \partial_{t}, \partial_{x^{i}} + 2ma_{i} \partial_{t} \right) = \frac{1}{\sqrt{V}} \left(\partial_{a} + 4mA_{a}^{SDD} \partial_{t} \right)$$

- For energy $\omega \rightsquigarrow$, $\nabla_a = \frac{1}{\sqrt{N}} (\partial_a + 4im\omega A_a)$.
- Massless fields: $\psi_{\alpha_1...\alpha_n}^{SDTN} = \psi_{\alpha_1...\alpha_n}^{SDD}$ with $e = 4m\omega$.

Double copy for background fields!

Nontrivial topology of **a** in SD Taub-Nut

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x}$$

implies periodic time $t \sim t + 4m$, quantizes frequency $2m\omega \in \mathbb{Z}$.

Proposition

Charge e momentum eigenstates $\psi^{SDD}_{\alpha_1...\alpha_n}$ on the SD dyon background naturally lift to momentum eigenstates $\psi^{SDTN}_{\alpha_1...\alpha_n}$ on SD Taub-NUT with energy ω quantized by $2m\omega=e$.

$$\nabla_{a} = \frac{1}{\sqrt{V}} \left(\partial_{t} + \frac{2m}{r} \partial_{t}, \partial_{x^{i}} + 2ma_{i} \partial_{t} \right) = \frac{1}{\sqrt{V}} \left(\partial_{a} + 4mA_{a}^{SDD} \partial_{t} \right)$$

- For energy $\omega \sim$, $\nabla_a = \frac{1}{\sqrt{V}} (\partial_a + 4im\omega A_a)$.
- Massless fields: $\psi^{SDTN}_{\alpha_1...\alpha_n} = \psi^{SDD}_{\alpha_1...\alpha_n}$ with $e=4m\omega$.

Double copy for background fields!

Nontrivial topology of **a** in SD Taub-Nut

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x}$$

implies periodic time $t \sim t + 4m$, quantizes frequency $2m\omega \in \mathbb{Z}$.

Proposition

Charge e momentum eigenstates $\psi^{SDD}_{\alpha_1...\alpha_n}$ on the SD dyon background naturally lift to momentum eigenstates $\psi^{SDTN}_{\alpha_1...\alpha_n}$ on SD Taub-NUT with energy ω quantized by $2m\omega=e$.

$$\nabla_{a} = \frac{1}{\sqrt{V}} \left(\partial_{t} + \frac{2m}{r} \partial_{t}, \partial_{x^{i}} + 2ma_{i} \partial_{t} \right) = \frac{1}{\sqrt{V}} \left(\partial_{a} + 4mA_{a}^{SDD} \partial_{t} \right)$$

- For energy $\omega \rightsquigarrow$, $\nabla_a = \frac{1}{\sqrt{V}} (\partial_a + 4im\omega A_a)$.
- Massless fields: $\psi^{SDTN}_{\alpha_1...\alpha_n} = \psi^{SDD}_{\alpha_1...\alpha_n}$ with $e=4m\omega$.

Double copy for background fields!

Nontrivial topology of **a** in SD Taub-Nut

$$ds^2 = \frac{1}{V}(dt - 2m\mathbf{a})^2 + Vd\mathbf{x} \cdot d\mathbf{x}$$

implies periodic time $t \sim t + 4m$, quantizes frequency $2m\omega \in \mathbb{Z}$.

Proposition

Charge e momentum eigenstates $\psi^{SDD}_{\alpha_1...\alpha_n}$ on the SD dyon background naturally lift to momentum eigenstates $\psi^{SDTN}_{\alpha_1...\alpha_n}$ on SD Taub-NUT with energy ω quantized by $2m\omega=e$.

$$\nabla_{a} = \frac{1}{\sqrt{V}} \left(\partial_{t} + \frac{2m}{r} \partial_{t}, \partial_{x^{i}} + 2ma_{i} \partial_{t} \right) = \frac{1}{\sqrt{V}} \left(\partial_{a} + 4mA_{a}^{SDD} \partial_{t} \right)$$

- For energy $\omega \rightsquigarrow$, $\nabla_a = \frac{1}{\sqrt{M}} (\partial_a + 4im\omega A_a)$.
- Massless fields: $\psi_{\alpha_1...\alpha_n}^{SDTN} = \psi_{\alpha_1...\alpha_n}^{SDD}$ with $e = 4m\omega$.

Two point functions

Intuition: SD background \leftrightarrow many + particles.

On flat space, the all + and one - amplitudes vanish \rightarrow expect:

- ++ and +- 2-point functions = 0 on SD background.
- First non-trivial 2-point function is for —.
- SUSY → expect vanishing for Fermion on SD dyon and helicity -1/2, -1, -3/2 on SD Taub-NUT.

Embed SD dyon into SU(2) Yang-Mills via σ_3A and compute two-point function of charge $\pm e$ gluons as variation of action

$$A^{SDD}(1-,2-) = \int_{\mathbb{M}} d^4x \, F_{1\alpha\beta} F_2^{\alpha\beta} \,.$$

For spin-2 similarly compute as 2nd variation of Plebanski action

$$\mathcal{A}^{SDTN}(1-,2-) = \int_{M_{SDTN}} \Gamma_{1\alpha}^{\gamma} \wedge \Gamma_{2\beta\gamma} \wedge \theta_{\dot{\alpha}}^{\alpha} \wedge \theta^{\beta\dot{\alpha}}$$

where $\theta^{\alpha\dot{\alpha}}=$ frame and Γ^{α}_{β} variation of ASD spin-connection.

Two point functions

Intuition: SD background \leftrightarrow many + particles.

On flat space, the all + and one - amplitudes vanish \rightarrow expect:

- ++ and +- 2-point functions = 0 on SD background.
- First non-trivial 2-point function is for —.
- SUSY → expect vanishing for Fermion on SD dyon and helicity -1/2, -1, -3/2 on SD Taub-NUT.

Embed SD dyon into SU(2) Yang-Mills via $\sigma_3 A$ and compute two-point function of charge $\pm e$ gluons as variation of action

$$\mathcal{A}^{SDD}(1-,2-)=\int_{\mathbb{M}}d^4x\,F_{1\alpha\beta}F_2^{\alpha\beta}\,.$$

For spin-2 similarly compute as 2nd variation of Plebanski action

$$\mathcal{A}^{\textit{SDTN}}(1-,2-) = \int_{\textit{M}_{\textit{SDTN}}} \Gamma_{1\alpha}^{\gamma} \wedge \Gamma_{2\beta\gamma} \wedge \theta_{\dot{\alpha}}^{\alpha} \wedge \theta^{\beta\dot{\alpha}}$$

where $\theta^{\alpha\dot{\alpha}}$ = frame and Γ^{α}_{β} variation of ASD spin-connection.

Two point functions

Intuition: SD background \leftrightarrow many + particles.

On flat space, the all + and one - amplitudes vanish \rightsquigarrow expect:

- ++ and +- 2-point functions = 0 on SD background.
- First non-trivial 2-point function is for ——.
- SUSY → expect vanishing for Fermion on SD dyon and helicity -1/2, -1, -3/2 on SD Taub-NUT.

Embed SD dyon into SU(2) Yang-Mills via $\sigma_3 A$ and compute two-point function of charge $\pm e$ gluons as variation of action

$$\mathcal{A}^{SDD}(1-,2-)=\int_{\mathbb{M}}d^4x\,F_{1\alpha\beta}F_2^{\alpha\beta}.$$

For spin-2 similarly compute as 2nd variation of Plebanski action

$$\mathcal{A}^{SDTN}(1-,2-) = \int_{M_{SDTN}} \Gamma_{1lpha}^{\gamma} \wedge \Gamma_{2eta\gamma} \wedge heta_{\dot{lpha}}^{lpha} \wedge heta^{eta\dot{lpha}}$$

where $\theta^{\alpha\dot{\alpha}}=$ frame and Γ^{α}_{β} variation of ASD spin-connection.

(+,+),(+-) cases vanish as expected. (-,-)= amplitude of helicity flip $-\to +$ on + background:

• For gluons find $e_1 + e_2 = 0$ and for $e_2 \in \mathbb{N}$ integrals:

$$\mathcal{A}(1,2) \sim \int d^3 \vec{x} \, \left(\frac{r(\zeta-z_1)(\bar{\zeta}z_2+1)}{1+|\zeta|^2} \right)^{e_2} \mathrm{e}^{i(\vec{k}_1+\vec{k}_2)\cdot\vec{x}} \,.$$

• gives, up to numerical factors (& distributions)

$$\mathcal{A}(1,2) \simeq e_2 \, (e_2)! \, rac{(2\omega_1)^{e_2-1} \, \langle 1 \, 2
angle^{2+e_2}}{|ec{k}_1 + ec{k}_2|^{2e_2+2} \, (\kappa_1^0 \, \kappa_2^0)^{e_2}} \, \delta(\omega_1 + \omega_2) \, \delta_{-e_1,e_2} \, .$$

• For gravity with $\omega_2 > 0$ similarly obtain

$$\mathcal{M}(1,2) \simeq m(4m\omega_2)! \frac{(2\omega_1)^{4m\omega_2-2} \langle 12 \rangle^{4+4m\omega_2}}{|\vec{k}_1 + \vec{k}_2|8m\omega_2+2 (\kappa_1^0 \kappa_2^0)4m\omega_2} \delta_{-\omega_1,\omega_2}$$

Double copy almost, but improves for large ex

$$\mathcal{M}(1,2) \sim |\vec{k}_1 + \vec{k}_2|^2 \mathcal{A}^2(1,2)|_{2=2m-1}$$

- (+,+),(+-) cases vanish as expected.
- (-,-)= amplitude of helicity flip $-\to +$ on + background:
 - For gluons find $e_1 + e_2 = 0$ and for $e_2 \in \mathbb{N}$ integrals:

$$\mathcal{A}(1,2) \sim \int d^3 \vec{x} \, \left(rac{r(\zeta-z_1)(ar{\zeta}z_2+1)}{1+|\zeta|^2}
ight)^{e_2} \mathrm{e}^{i(\vec{k}_1+\vec{k}_2)\cdot\vec{x}} \, .$$

gives, up to numerical factors (& distributions)

$$\mathcal{A}(1,2) \simeq e_2(e_2)! \, rac{(2\omega_1)^{e_2-1} \, \langle 1\, 2
angle^{2+e_2}}{|\vec{k}_1 + \vec{k}_2|^{2e_2+2} \, (\kappa_1^0 \, \kappa_2^0)^{e_2}} \, \delta(\omega_1 + \omega_2) \, \delta_{-e_1,e_2} \, .$$

• For gravity with $\omega_2 > 0$ similarly obtain

$$\mathcal{M}(1,2) \simeq m (4m\omega_2)! \frac{(2\omega_1)^{4m\omega_2-2} \langle 1 2 \rangle^{4+4m\omega_2}}{|\vec{k}_1 + \vec{k}_2|^{8m\omega_2+2} (\kappa_1^0 \kappa_2^0)^{4m\omega_2}} \delta_{-\omega_1,\omega_2},$$

• Double copy almost, but improves for large e

$$\mathcal{M}(1,2) \sim |\vec{k}_1 + \vec{k}_2|^2 \mathcal{A}^2(1,2)$$

- (+,+),(+-) cases vanish as expected. (-,-)= amplitude of helicity flip $-\to+$ on + background:
 - For gluons find $e_1 + e_2 = 0$ and for $e_2 \in \mathbb{N}$ integrals:

$$\mathcal{A}(1,2) \sim \int d^3 \vec{x} \, \left(rac{r(\zeta-z_1)(ar{\zeta}z_2+1)}{1+|\zeta|^2}
ight)^{e_2} \mathrm{e}^{i(\vec{k}_1+\vec{k}_2)\cdot\vec{x}} \, .$$

gives, up to numerical factors (& distributions)

$$\mathcal{A}(1,2) \simeq e_2(e_2)! \, rac{(2\omega_1)^{e_2-1} \, \langle 1\,2
angle^{2+e_2}}{|\vec{k}_1 + \vec{k}_2|^{2e_2+2} \, (\kappa_1^0 \, \kappa_2^0)^{e_2}} \, \delta(\omega_1 + \omega_2) \, \delta_{-e_1,e_2} \, .$$

• For gravity with $\omega_2 > 0$ similarly obtain

$$\mathcal{M}(1,2) \simeq m(4m\omega_2)! \frac{(2\omega_1)^{4m\omega_2-2} \langle 1 \, 2 \rangle^{4+4m\omega_2}}{|\vec{k}_1 + \vec{k}_2|^{8m\omega_2+2} (\kappa_1^0 \, \kappa_2^0)^{4m\omega_2}} \, \delta_{-\omega_1,\omega_2} \,,$$

• Double copy almost, but improves for large e

$$\mathcal{M}(1,2) \sim |\vec{k}_1 + \vec{k}_2|^2 \mathcal{A}^2(1,2)|_{2,2m}$$

- (+,+),(+-) cases vanish as expected. (-,-)= amplitude of helicity flip $-\to +$ on + background:
 - For gluons find $e_1 + e_2 = 0$ and for $e_2 \in \mathbb{N}$ integrals:

$$\mathcal{A}(1,2) \sim \int d^3\vec{x} \, \left(\frac{r(\zeta-z_1)(\bar{\zeta}z_2+1)}{1+|\zeta|^2} \right)^{e_2} \mathrm{e}^{i(\vec{k}_1+\vec{k}_2)\cdot\vec{x}} \, .$$

gives, up to numerical factors (& distributions)

$$\mathcal{A}(1,2) \simeq e_2(e_2)! \, rac{(2\omega_1)^{e_2-1} \, \langle 1\,2
angle^{2+e_2}}{|\vec{k}_1 + \vec{k}_2|^{2e_2+2} \, (\kappa_1^0 \, \kappa_2^0)^{e_2}} \, \delta(\omega_1 + \omega_2) \, \delta_{-e_1,e_2} \, .$$

• For gravity with $\omega_2 > 0$ similarly obtain

$$\mathcal{M}(1,2) \simeq m(4m\omega_2)! \, rac{(2\omega_1)^{4m\omega_2-2}\,\langle 1\,2
angle^{4+4m\omega_2}}{|ec{k}_1+ec{k}_2|^{8m\omega_2+2}\,(\kappa_1^0\,\kappa_2^0)^{4m\omega_2}} \, \delta_{-\omega_1,\omega_2} \, ,$$

• Double copy almost, but improves for large e:

$$\mathcal{M}(1,2) \sim |\vec{k}_1 + \vec{k}_2|^2 \mathcal{A}^2(1,2)|_{2,2m}$$

(+,+),(+-) cases vanish as expected. (-,-)= amplitude of helicity flip $-\to +$ on + background:

• For gluons find $e_1 + e_2 = 0$ and for $e_2 \in \mathbb{N}$ integrals:

$$\mathcal{A}(1,2) \sim \int d^3 \vec{x} \, \left(rac{r(\zeta-z_1)(ar{\zeta}z_2+1)}{1+|\zeta|^2}
ight)^{e_2} \mathrm{e}^{i(\vec{k}_1+\vec{k}_2)\cdot\vec{x}} \, .$$

• gives, up to numerical factors (& distributions)

$$\mathcal{A}(1,2) \simeq e_2 \, (e_2)! \, rac{(2\omega_1)^{e_2-1} \, \langle 1\, 2
angle^{2+e_2}}{|ec{k}_1 + ec{k}_2|^{2e_2+2} \, (\kappa_1^0 \, \kappa_2^0)^{e_2}} \, \delta(\omega_1 + \omega_2) \, \delta_{-e_1,e_2} \, .$$

• For gravity with $\omega_2 > 0$ similarly obtain

$$\mathcal{M}(1,2) \simeq m (4 m \omega_2)! \, rac{(2 \omega_1)^{4 m \omega_2 - 2} \, \langle 1 \, 2
angle^{4 + 4 m \omega_2}}{|ec{k}_1 + ec{k}_2|^{8 m \omega_2 + 2} \, (\kappa_0^0 \, \kappa_0^0)^{4 m \omega_2}} \, \delta_{-\omega_1,\omega_2} \, ,$$

Double copy almost,but improves for large e:

$$\mathcal{M}(1,2) \sim |\vec{k}_1 + \vec{k}_2|^2 \mathcal{A}^2(1,2)|_{e \to 2m_{ij}},$$

Incorporating spin

Recall: Newman & Janis construct Kerr with spin \vec{a} by

- shifting SD part of Schwarschild by $\vec{x} \rightarrow \vec{x} i\vec{a}$,
- ASD part by $\vec{x} \rightarrow \vec{x} + i\vec{a}$
- taking cunning nonlinear superposition.

This simplifies in SD sector:

- In SD sector, Newman-Janis \rightsquigarrow spin \vec{a} obtained by imaginary translation $\vec{x} \rightarrow \vec{x} i\vec{a}$.
- Momentum eigenstates from physical Lorentz slice acquires $e^{-\vec{k}\cdot\vec{a}}$ factor when shifted to slice used above
- \Rightarrow Incorporate spin with extra $e^{-(\vec{k}_1 + \vec{k}_2) \cdot \vec{a}}$ factor.

Incorporating spin

Recall: Newman & Janis construct Kerr with spin \vec{a} by

- shifting SD part of Schwarschild by $\vec{x} \rightarrow \vec{x} i\vec{a}$,
- ASD part by $\vec{x} \rightarrow \vec{x} + i\vec{a}$
- taking cunning nonlinear superposition.

This simplifies in SD sector:

- In SD sector, Newman-Janis \sim spin \vec{a} obtained by imaginary translation $\vec{x} \rightarrow \vec{x} i\vec{a}$.
- Momentum eigenstates from physical Lorentz slice acquires $e^{-\vec{k}\cdot\vec{a}}$ factor when shifted to slice used above.
- \Rightarrow Incorporate spin with extra $e^{-(\vec{k}_1 + \vec{k}_2) \cdot \vec{a}}$ factor.

Multi-particle MHV amplitudes

Twistors become essential Adamo, M., Sharma, 2203.02238.

For the SD dyon the output is Adamo, Bogna, M., Sharma, 240?.????.

$$\mathcal{A}_{n}^{\mathsf{MHV}}(\{\kappa_{a}^{\alpha}, \tilde{\kappa}_{a}^{\dot{\alpha}}, e_{a}, m_{a}\}) = 2\pi g^{n-2} \delta(\omega) \delta(e) \frac{\langle r s \rangle^{4}}{\langle 1 2 \rangle \dots \langle n 1 \rangle} \times \int d^{3}\vec{x} \, e^{i\vec{k}\cdot\vec{x}} \prod_{a=1}^{n} \left(\frac{r}{1+\zeta\bar{\zeta}}\right)^{m_{a}} (\bar{\zeta}z_{a}+1)^{e_{a}+m_{a}} (\zeta-z_{a})^{e_{a}-m_{a}},$$

$$(1)$$

Whereas for gravity we have:

$$\mathcal{M}_{n}^{1} = \frac{\tilde{\delta}\left(\sum_{i=1}^{n}\omega_{i}\right) \, \langle 1 \, 2 \rangle^{6}}{\langle 1 \, i \rangle^{2} \, \langle 2 \, i \rangle^{2}} \, \sum_{\stackrel{p+q+r=t}{t=0}M \times (\mathbb{P}^{1})^{t}}^{\infty} \, \mathrm{d}^{4}x \, \prod_{a=1}^{p} \, \frac{\varpi_{a}\left[\tilde{\imath} \, F_{a}\right]}{24 \, M} \, \frac{\partial^{3}}{\partial \varepsilon_{a}^{-2} \partial \varepsilon_{a}^{+}}$$

$$\prod_{b=1}^{q} \frac{\varpi_{b} \left[\tilde{o} F_{b}\right]}{24 M} \frac{\partial^{3}}{\partial \varepsilon_{b}^{-} \partial \varepsilon_{a}^{+2}} \prod_{c=1}^{r} \varpi_{c} 8 M \frac{\partial^{4}}{\partial \varepsilon_{a}^{-2} \partial \varepsilon_{a}^{+2}} \rho \left(|\mathcal{H}[t]_{i}^{i}| \right) \Big|_{\varepsilon=0} \prod_{i=1}^{n} e^{i k_{i} \cdot x}.$$

Conclusions and further developments

In summary our explicit formulae

- describes helicity flip of ASD particle by SD background,
- are tractable from integrability of SD sector,
- resum infinitely many diagrams.

The two ASD particles shouldnt interact with ASD sector so:

- Should agree with Lorentzian answer with complex conjugate ASD sector, but
- Topology suggests NUT, not Schwarzschild!
- In split signature, can ignore topology, but integrals harder.

Future work: Charged Killing spinors arose from twistor space.

- What can they do for full Kerr?
- Scatter linear ASD Taub NUTS on full SD Taub NUT?
- Compare to conventional perturbation theory?

Conclusions and further developments

In summary our explicit formulae

- describes helicity flip of ASD particle by SD background,
- are tractable from integrability of SD sector,
- resum infinitely many diagrams.

The two ASD particles shouldnt interact with ASD sector so:

- Should agree with Lorentzian answer with complex conjugate ASD sector, but
- Topology suggests NUT, not Schwarzschild!
- In split signature, can ignore topology, but integrals harder.

Future work: Charged Killing spinors arose from twistor space.

- What can they do for full Kerr?
- Scatter linear ASD Taub NUTS on full SD Taub NUT?
- Compare to conventional perturbation theory?

Conclusions and further developments

In summary our explicit formulae

- describes helicity flip of ASD particle by SD background,
- are tractable from integrability of SD sector,
- resum infinitely many diagrams.

The two ASD particles shouldnt interact with ASD sector so:

- Should agree with Lorentzian answer with complex conjugate ASD sector, but
- Topology suggests NUT, not Schwarzschild!
- In split signature, can ignore topology, but integrals harder.

Future work: Charged Killing spinors arose from twistor space.

- What can they do for full Kerr?
- Scatter linear ASD Taub NUTS on full SD Taub NUT?
- Compare to conventional perturbation theory?

Thank You!