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First steps to extend twistor integrability for gravity scattering
amplitude formulae on SD backgrounds to SD black holes.
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Promise: Encode fully nonlinear effects, exact to all-orders!
Challenges:

e Construct momentum eigenstate analogues.

e Construct exact propagators on background.

e Perform space-time perturbation theory.
What has been done?

® 3-4 points on generic plane waves general: [2018 Adamo, Casal, M. Nekovar],

BMN: [Constable-et. al., Spradlin-Volovich].
e AdS/dS correlators: 5 pt [Goncalves, Perreira, Zhou], n-pt MUV [Green-Wen].

® adamo, M., Sharma [2203.02238] ~ all-multiplicity formulae on radiative
SD backgrounds.

Here: extend to SD black hole backgrounds 2309.03s341.



Twistors at null infinity, and integrability

e Newman’s good cuts attempt to
rebuild space-time from .# data.
B4

AR
Loy .
N

zt

¢ Yields instead H-space: a
complex self-dual space-time.



Twistors at null infinity, and integrability

e Newman’s good cuts attempt to
rebuild space-time from .# data.
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¢ Yields instead H-space: a
complex self-dual space-time.

e We use Penrose’s asymptotic twistor space
at .7, reformulating Newman’s good cuts.

e Penrose’s construction embodies
integrability of self-dual sector.

e Use amplitudes to give perturbations of
‘H-space approximating real space-time.



Gravity amplitudes at MHV: — — + ... + helicity.
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Scatter n gravitons with momenta k;, i = 1,...n.
e 2-component spinors express
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a7 _ _ _ — L yQo
T ﬂ(x—iy trz) 7 UTX Y T = Capea XX
e So null momenta factorize: Kinq = KiaKia- _
Spinor helicity:  (12) := k1ok5 , [12] := K1aK5 ,
MHV formula: (Hodges 20121 define n x n matrix:

H; = { W 7]
— > (kS i=j.
Then: M(1,...,n) = (12)8 det'H §*(5; k).

e H is Laplace matrix for matrix-tree theorem

e Sum of tree diagrams with propagators % [Bern, et. al. '98]

[Feng,He 2012]
~>

For what theory???
ANSWEr: [adamo, M., Sharma, 2103.16984] M= (Vy... Vo 2)Tree
Tree correlator for sigma-model in twistor space.



MHYV formula on self-dual radiative background

[Adamo, M., Sharma, 2203.02238]

Can we exploit integrability of SD background?
e The kj, SuUrvive as contants.
e We can ‘dress’ the k;4 and send [ij] — [ij] in formulae.
e Can define (x-dependent) H
But:
e there are, say, t interactions with background, t < n— 2,
¢ and fields generate tails after hitting background. ..

e So define (n+ t) x (n+ t) generating matrix for ¢
interactions with background

_(H b
w=(yr 1)

* Gives contribution [,, d*x T]5,_; 957 det’ H|c,—0 x ...



MHYV formula on self-dual radiative background

[Adamo, M., Sharma, 2203.02238]

Can we exploit integrability of SD background?
e The kj, SuUrvive as contants.
e We can ‘dress’ the k;4 and send [ij] — [ij] in formulae.
e Can define (x-dependent) H
But:
e there are, say, t interactions with background, t < n— 2,
¢ and fields generate tails after hitting background. ..

e So define (n+ t) x (n+ t) generating matrix for ¢
interactions with background

_(H b
w=(yr 1)

* Gives contribution [,, d*x T]5,_; 957 det’ H|c,—0 x ...
But, radiative <> defined from radiation data at .#:
Stationary black holes are trivial at .7, so doesnt apply.



Outline

Extension to self-dual (SD) black hole backgrounds:
© Self dual Kerr = SD Taub-NUT with single copy SD dyon.
® Introduce charged Killing spinors for self-dual dyons ~»
® momentum eigenstates on SD dyon background.
@ Solutions lift directly to SD Taub-NUT.

® Find anomalous spin weights and fall-off from nontrivial
topology of SD dyons and Taub-NUTs.

® Two point functions for helicity-flip through backgrounds
obtained by direct integration.

@ Spin is incorporated by exponential factor.
® MHV amplitudes at n-points via twistor theory.



Black holes and valence-2 Killing spinors

Vacuum black-holes, Kerr etc. have Petrov type D Weyl-spinor
Wagﬁ{g = \UgO(a05L7L5) .

Proposition (Penrose, Walker, Hughston, Sommers, 1972,3 )
For any vacuum space-time of Petrov type D

e 3 Killing spinor x*?:  vayB1) =0,

e related to ASD Weyl spinor & ASD Maxwell field by
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SR —

waﬂfy5 - 5 (baﬁ . XS y Xaﬁ = XO(O(LB) .

e SD parts are the complex conjugates «» xdﬁ .
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Black holes and valence-2 Killing spinors

Vacuum black-holes, Kerr etc. have Petrov type D Weyl-spinor
Wagﬁ{g = \UgO(a05L7L5) .

Proposition (Penrose, Walker, Hughston, Sommers, 1972,3 )
For any vacuum space-time of Petrov type D

e 3 Killing spinor x*?:  vayB1) =0,

e related to ASD Weyl spinor & ASD Maxwell field by

X(aBX~6 X
(0465’\/ ) (baﬁ — Lﬁ Xaﬁ — Xo(ozLﬁ) )

waﬁfy5 - XS y

e SD parts are the complex conjugates «» xdﬁ .
- X+iy z—i
In Kerr’s original rectangular coords: X‘;ﬂ = ( + y .a).
zZ—lia x—1ly

a =Kerr parameter.
P xa

Newman-Janis shift: z — z—ia sends x;
But need also: z— z+iatosend ¥57 — 15



Self-dual Taub-NUT as SD part of Kerr

Euclidean SD Taub-NUT is
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Self-dual Taub-NUT as SD part of Kerr

Euclidean SD Taub-NUT is

ds? = lv(dt— 2ma)? + Vdx - dx,

here bold « 3-vector x = (x, y, z), r = |x|, and

vz1+27m, VAaa=VV, a=(1-cosh)ds

e The ASD Weyl spinor = 0 and the SD Weyl spinor is

~ _ XasXss) b wab (X—ly z

e With Newman-Janis shift z — z + ia this is SD part of Kerr.
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The self-dual dyon as single copy of SD Taub-NUT
Minimal (e = g = 1) SD Euclidean Maxwell dyon potential:

1 /dt . Xag
A:2<I’_a> ~ field Fd5:27>”<’3’ FaBZE_BZO'

¢ ‘single-copy’ of SD Taub-NUT: Coulomb + monopole.
e Ta=J(1—cosf)ds has ‘wire singularity at ¢ = .
e Gauge transformation e~'¢ gives wire singularity at § = 0

a = —%(1 +cos)dg.

e So Ais topologically non-trivial U(1) connection on Line
bundle L with Chern class 1.

¢ Defines line bundles L¢ — M — {r = 0},
¢1(L®) = e, connection ieA.



Charged Killing spinors
The SD dyon has special relationship also to y“?. Write
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e Using ¢ = ’;ig’ stereographic coord, find
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* x¢ are globally defined as sections of L*'.
* They satisfy the charged Killing spinor equation
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Charged Killing spinors
The SD dyon has special relationship also to y“?. Write

=P ke =v2eRs,

Using ¢ = ’;ig’ stereographic coord, find

a r o a r
X+_ 1_|_|<-|2 (Ca 1)a X—_ 1+‘C‘2 (17C)

x4 are globally defined as sections of L*'.
They satisfy the charged Killing spinor equation

0glxi) + iAngﬁ) =0,

Let ..., D€ @ massless field, 95Yq,...ama = 0, then

¢a1 ..ap — 77[1041 ...anBXi

is a charged massless field of charge +1.



Constructing charged momentum eigenstates

Start with momentum eigenstate of helicity —(n+ e)/2
Vay..an = Kay .../fanJreeik'X, Kio = KaFg -
e General factor of (kx4 )P(kx—)9 gives charge p — q field:
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Constructing charged momentum eigenstates

Start with momentum eigenstate of helicity —(n+ e)/2
Vay..an = Kay .../fanJreeik'X, Kio = KaFg -

General factor of (kx4 )P(kx—)9 gives charge p — q field:

3 5“14‘/@0‘) KkoC — K1 a .
90532’.(.7.)04,7 = Koy - -~ Kapl 2 ( ) (2 p+q ) elkX,
(1+¢2)2
* Minimal charge e momentum eigenstate of helicity —7 is
§1e.‘.an = HOH te H()én</€X:|:>eeik.X
e Satisfies

(0M% Lie AMY) ¢Ze  =0.

Qg

Construct charged + helicity via potentials, i.e. Maxwell
bs = 00,07(9p4 — i€Asa)d™°,

where o, = const. & ¢*€ solves wave equation, charge +e.

Note: Charge e ~ spherical harmonics / > & with r’ growth.
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implies periodic time t ~ t + 4m, quantizes frequency 2mw € Z.
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Lifting to self-dual Taub NUT

Double copy for background fields!

Nontrivial topology of a in SD Taub-Nut

ds® = lv(dt — 2ma)? + Vdx - dx

implies periodic time t ~ t + 4m, quantizes frequency 2mw € Z.
Proposition
Charge e momentum eigenstates 1)SPP on the SD dyon

oq...apn

background naturally lift to momentum eigenstates )>°™N on

Qq...Qn

SD Taub-NUT with energy w quantized by 2mw = e.
e ASD spin connection is flat in orthonormal frame:

_ ] 2m _ PN SDD
Va — W (at + Tat, aX, + 2ma,at> — W (aa + 4mAa a[>

* Forenergy w ~, Va = (0 + 4imwAy).

e Massless fields: /SPTN — SDD with e = 4muw.

aq...0n Qq...Qn



Two point functions

Intuition: SD background «+» many + particles.

On flat space, the all + and one — amplitudes vanish ~» expect:
* ++ and +— 2-point functions = 0 on SD background.
¢ First non-trivial 2-point function is for ——.

e SUSY ~» expect vanishing —— for Fermion on SD dyon
and helicity —1/2,—-1,—-3/2 on SD Taub-NUT.
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Two point functions

Intuition: SD background «+» many + particles.

On flat space, the all + and one — amplitudes vanish ~» expect:
* ++ and +— 2-point functions = 0 on SD background.
¢ First non-trivial 2-point function is for ——.
e SUSY ~» expect vanishing —— for Fermion on SD dyon

and helicity —1/2,—-1,—-3/2 on SD Taub-NUT.
Embed SD dyon into SU(2) Yang-Mills via o3A and compute
two-point function of charge +e gluons as variation of action
ASPP(1—2-) = / d*x FiasFs” .
M
For spin-2 similarly compute as 2"¢ variation of Plebanski action

ASPTN(q— 2y = /M 7, ATas, AGS A6
SDTN

where §*¢ = frame and I3 variation of ASD spin-connection.
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Two point functions and double copy

(+,+), (+—) cases vanish as expected.
(—, —) = amplitude of helicity flip — — + on + background:
e For gluons find e; + e> = 0 and for e € N integrals:

e (TC—21)(C2e + 1) ® )7
A(1,2) /dx( o ) e |

e gives, up to numerical factors (& distributions)

A(1 2) e (ez)! (2w1)92_1 (1 2>2+ez
) |k1 + k2’262+2 (FL? Rg)ez

5(W1 + wg) (5_91 €5 -

e For gravity with wo > 0 similarly obtain

4mwo—2 4+4mw
M(1,2) ~ m (4mup)l 201 (12)7T
|k1 4 k2‘8mw2+2 (K? Hg)4mw2

—w1,ws

e Double copy almost,but improves for large e:
M(1,2) ~ |ky + ko|? A2(1,2) ,

e—2mw
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Recall: Newman & Janis construct Kerr with spin & by
e shifting SD part of Schwarschild by X — X — ia,
e ASD partby X — X + ia
e taking cunning nonlinear superposition.



Incorporating spin

Recall: Newman & Janis construct Kerr with spin & by
e shifting SD part of Schwarschild by X — X — ia,
e ASD partby X — X + ia
e taking cunning nonlinear superposition.
This simplifies in SD sector:
* In SD sector, Newman-Janis ~+ spin a obtained by
imaginary translation X — X — ia.
e Momentum eigenstates from physical Lorentz slice
acquires e~* factor when shifted to slice used above.

e = Incorporate spin with extra e~ (ki+k2)d factor.



Multi-particle MHV amplitudes

Twistors become essential adamo, M., Sharma, 2203.02238.
For the SD dyon the OUtpUt IS Adamo, Bogna, M., Sharma, 2407.72??.

ANV ({rG, RS, €2, ma}) = 279" 25 () 6 (€) (12§r3>:n1>><
X /d%?e”zi ﬁ ( ! —> b ((za+1)%HMa(( — z5)% M2,
ao N
(1)
Whereas for gravity we have:
(X w) (128 & e 7 AT
My = (%_i;z <%/<>2 > 2 d4xa1:[1 ZiMa] 9e=20:1

PG M (P
q ~ 3 r 4 n
wp[0Fp] O 0 i ik x
w8M —mF— HIt]; e,
l:)l:[‘l 24 M 855852_2 H ¢ 88;285—;2[)( [ ]I|) L_O;_I;1[

c=1
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¢ Topology suggests NUT, not Schwarzschild!
¢ |n split signature, can ignore topology, but integrals harder.



Conclusions and further developments

In summary our explicit formulae
e describes helicity flip of ASD particle by SD background,
e are tractable from integrability of SD sector,
e resum infinitely many diagrams.

The two ASD particles shouldnt interact with ASD sector so:

e Should agree with Lorentzian answer with complex
conjugate ASD sector, but

¢ Topology suggests NUT, not Schwarzschild!

¢ |n split signature, can ignore topology, but integrals harder.
Future work: Charged Killing spinors arose from twistor space.

e What can they do for full Kerr?

e Scatter linear ASD Taub NUTS on full SD Taub NUT?

e Compare to conventional perturbation theory?



Thank You!



