

A Path Integral method for quantum accurate atomistic spin dynamics simulations

<u>T. Nussle¹</u>, S. Nicolis², J. Barker¹

¹ School of Physics and Astronomy, University of Leeds, United Kingdom ² Institut Denis Poisson, Université de Tours, Université d'Orléans, CNRS (UMR7013) France

arXiv:2303.00602

Engineering and Physical Sciences Research Council Grant Number: EP/V037935/1

F. Körmann, Phys. Rev. B 83, 165114 (2011)

Temperature rescaling

$$\eta_S(T) = \int_0^\infty \frac{\hbar\omega}{\exp(\hbar\omega/k_B T) - 1} g_m(\omega, T) d\omega$$

$$g_m(\omega, T) \equiv \frac{\Omega}{(2\pi)^3} \frac{4\pi k^2}{\nabla_k \omega(T)}$$

C. H. Woo, Phys. Rev. B 91, 104306 (2015)

Semi-quantum thermostats

R. F. L. Evans, *Phys. Rev. B* 91, 144425 (2015)
L. Bergqvist, *Phys. Rev. Materials* 2, 013802 (2018) *F. Walsh, npj Comput Mater* 8, 186 (2022)
J. Anders, *New J. Phys.* 24 033020 (2022)

Post-hoc methods Include quantum effects systematically/rigorously?

J. Anders, New J. Phys. 24 033020 (2022)

- More systematically quantum
- Thermostat but by inferring stochastic equations of motion for thermostat and coupling to spin system

How to include quantum effects systematically?

Simulation techniques

- Fully quantum simulation very small scale
- Quantum Monte Carlo large scale quantum access to dynamics

 \rightarrow Much too expensive

 \rightarrow Sign problem for antiferromagnets

Do not need all the quantum accessible information Systematic method to include quantum effects in classical model?

 \sim - (

• Landau-Lifshitz-Gilbert Equation

$$\dot{\boldsymbol{s}}^{(i)} = -\frac{\gamma}{1+\alpha^2} \left(\boldsymbol{s}^{(i)} \times \boldsymbol{B}_{\text{eff}}^{(i)} + \alpha \boldsymbol{s}^{(i)} \times \left(\boldsymbol{s}^{(i)} \times \boldsymbol{B}_{\text{eff}}^{(i)} \right) \right)$$

• Stochastic field with fluctuation dissipation theorem

$$\mathcal{H} = -\mu_{s} \sum_{i} \boldsymbol{B} \cdot \boldsymbol{s}^{(i)} - J \sum_{\langle ij \rangle} \boldsymbol{s}^{(i)} \cdot \boldsymbol{s}^{(j)} \qquad \boldsymbol{B}_{\text{eff}}^{(i)} = \frac{\partial \mathcal{H}}{\partial \boldsymbol{s}^{(i)}}$$
$$\boldsymbol{B}_{\text{eff}}^{(i)} = \boldsymbol{B}_{\text{eff}}^{(i)} - J \sum_{\langle ij \rangle} \boldsymbol{s}^{(i)} \cdot \boldsymbol{s}^{(j)} \qquad \boldsymbol{B}_{\text{eff}}^{(i)} = \frac{\partial \mathcal{H}}{\partial \boldsymbol{s}^{(i)}}$$

B. Skubic, J. Phys.: Condens. Matter 20 315203 (2008)

Continuous vs. discrete basis How to get classical object without going to classical limit

How to recover quantum expectation values from classical model?

Quantum effects in molecular dynamics

B) Acetamide group localization

• Dynamics through **position** and **momenta**

- Temperature → stochastic fluctuations thereof
- Low temperature → arbitrary precision for both

Graphical representation of the e energy surface generated from erature using the sGDML@DFT(PBEO Breaking Heisenberg uncertainty principle

Fig. 4 Strengthening of electrostatic interactions in paracetamol molecule by proton delocalization. A Graphical representation of the paracetamol molecule. **B** Effective free energy surface generated from classical MD and PIMD at room temperature using the sGDML@DFT(PBEO +MBD) force field. **C** Interatomic distance distribution $d_{O...H}$ generated from classical MD (black) and PIMD (blue).

H.E. Sauceda, Nat. Com. 12, 442 (2021)

From scalar to operator: $\mathcal{H} \Rightarrow \mathcal{H}$

Partition function:
$$\mathcal{Z}_{ ext{quantum}} = \int dq \langle q | e^{-eta \hat{\mathcal{H}}} | q \rangle$$

^

From quantum to classical:

$$\tilde{\mathcal{Z}}_{\text{quantum}} = \int dq \prod_{i} dp_{i} e^{-\beta \tilde{\mathcal{H}}_{\text{eff}}}$$
$$\mathcal{H}_{\text{eff}} = \sum_{i} \frac{\tilde{p}_{i}^{2}}{2\tilde{m}} - \phi_{\text{eff}}$$
$$\phi_{\text{eff}} = \sum_{i=1}^{P} \left(\frac{1}{2}m\omega_{P}^{2}(q_{i+1} - q_{i})^{2} + \frac{1}{P}\phi\right)$$

Quantum Molecular Dynamics

Each particle...

... *P* beads coupled by harmonic springs:

Necklace with P beads

Molecular dynamics vs Spin dynamics

• Eigenstates of operators

 $egin{array}{ccc} K & |p
angle \ \hat{\Phi} & |q
angle \end{array}$

• Continuous quantum description

$$\tilde{\mathcal{Z}}_{\text{quantum}} = \int dq \prod_{i} dp_{i} e^{-\beta \tilde{\mathcal{H}}_{\text{eff}}}$$

Eigenstates of some operators

$$\hat{m{S}}^2$$
 $\hat{m{S}}_z$ $|s,m
angle$ $\hat{m{S}}_x$ $\hat{m{S}}_y$ Discrete quantum description

$$\langle \hat{S}_z \rangle = \frac{\sum_{m=-s}^{s} \langle s, m | \, \hat{S}_z e^{-\beta \hat{\mathcal{H}}} \, | s, m \rangle}{\mathcal{Z}}$$

Need mapping to classical magnetisation vector Need to approximate matrix elements

• Continuous basis
$$|z
angle\equiv(1+|z|^2)^{-s}\,{
m e}^{z\hat{S}_-/\hbar}\,|0
angle$$

• Mapping onto unit sphere: magnetisation unit vector

$$|z
angle \Rightarrow n$$

• Converge to classical limit (but not only the classical limit)

$$\mathcal{H}_{\text{eff}} = -g\mu_B s B_z n_z \leftrightarrow \cdots \gg -\mu_s \boldsymbol{B} \cdot \boldsymbol{s}$$

Contains information about **non-commutativity** of **operators**

→ Enables calculating quantum expectation values, classically

Visualising spin coherent states

Y. Loh, American Journal of Physics 83, 30 (2015)

• Single spin in magnetic field

$$\hat{\mathcal{H}} = -g\mu_B \boldsymbol{B} \cdot \hat{\boldsymbol{S}}$$

- Constant field, along z-direction $\hat{\mathcal{H}}=-g\mu_BB_z\hat{S}_z$
- Writing spin coherent state as a sum

$$|z\rangle \equiv (1+|z|^2)^{-s} \sum_{p=0}^{2s} {\binom{2s}{p}}^{1/2} z^p |p\rangle$$

$$\mathcal{Z} = \int \sum_{p=0}^{2s} d\mu(z) \langle z | e^{\frac{\beta g \mu_B}{\hbar} B_z \hat{S}_z} | p \rangle \langle p | z \rangle.$$

$$\mathcal{Z} = \int d\mu(z) \left[e^{-\beta g\mu_B s B_z} \left(\frac{e^{\beta g\mu_B B_z} + |z|^2}{1 + |z|^2} \right)^{2s} \right]$$

$$\ln(F[\beta, z]) \approx \frac{\left(1 - |z|^2\right)\beta g\mu_B sB_z}{1 + |z|^2} + \frac{|z|^2\beta^2 \left(g\mu_B\right)^2 sB_z^2}{\left(1 + |z|^2\right)^2} \\ - \frac{|z|^2 \left(1 - |z|^2\right)\beta^3 \left(g\mu_B\right)^3 sB_z^3}{3 \left(1 + |z|^2\right)^3} + \mathcal{O}(\beta^4)$$

$$\begin{cases} n_x = \frac{z + \bar{z}}{1 + |z|^2} \\ n_y = \frac{1}{i} \frac{z - \bar{z}}{1 + |z|^2} \\ n_z = \frac{1 - |z|^2}{1 + |z|^2} \end{cases} \qquad \begin{cases} |z|^2 = \frac{1 - n_z}{1 + n_z} \\ z = \frac{1 + n_z}{2} (n_x + in_y) \\ \bar{z} = \frac{1 + n_z}{2} (n_x - in_y) \end{cases}$$

Clear interpretation of quantum states in terms of classical vector

Field and temperature dependent anisotropies

Above 1K, accurate quantum expectation values from enhanced ASD

Extra numerical cost very small

Higher order increase accuracy but not for arbitrary low temperature

- Quantum expectation value from effective classical model
 - Easy to confront to experiment and computationally cheap
 - Necessary for low temperatures/small scales and complex materials
- Currently working on general field and exchange
 - Exchange dictates the relevant temperature scales in magnets
- Aiming to **include** for **quantum** effects in **antiferromagnets**
 - Including exchange in our formalism should enable describing 0 point fluctuations.

• Python source to **reproduce** all figures from paper

DOI 10.5281/zenodo.7688972

 For now single spin in magnetic field along z Working on exchange and general field

END