Prediction method for cyclone-induced waves using Gaussian Process models

Chifaa Dahik, Olivier Roustant, Stéphane Puechmorel, Fabrice Gamboa

Mathematics Institute of Toulouse
March, 9 2023. IMT PhD seminar

What is a Gaussian random process?

Gaussian random process

- A random process (or stochastic process) is a family of random variables, indexed by time $Z(t)_{t \in T}$ or space $Z(x)_{x \in X}$.
- A gaussian process is a random process such that every finite collection of those random variables has a multivariate normal distribution.

$$
\begin{aligned}
& \rightarrow \mathcal{N}(\mu, \Sigma) \\
& \rightarrow \mu=E[X]=\left(E\left[X_{1}\right], \ldots, E\left[X_{n}\right]\right)^{T} \\
& \rightarrow \Sigma_{i, j}=E\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=\operatorname{Cov}\left[X_{i}, X_{j}\right]
\end{aligned}
$$

Example of a gaussian random process: figure

sample paths

- Each curve represents 100 values: 1 representation for each $Z\left(x_{i}\right)$, $i=1, \ldots, 100$.

Example: ingredients

Ingredients for a gaussian random process $Z(x)_{x \in X}$:

- A covariance function on $\mathbb{R} \times \mathbb{R}$: Matérn $5 / 2$

$$
k(x, y)=\sigma^{2}\left(1+\frac{\sqrt{5}|x-y|}{\theta}+\frac{5|x-y|^{2}}{3 \theta^{2}}\right) e^{-\frac{\sqrt{5}|x-y|}{\theta}} .
$$

- Choice of covariance parameters: $\sigma=1, \theta=0.2$.
- A regular sequence $X=\left[x_{1}, \ldots, x_{i}, \ldots, x_{n}\right]$ of $n=100$ points on $[0,1]$.
- Calculate $k\left(x_{i}, x_{j}\right) i, j=1, \ldots, n$ to get a covariance matrix K with dimension $n \times n$.
- Generate 3 multivariate normal random samples.

Example: code

```
mat5_2Kern <- function(x, y, param){
    sigma <- param[1]
    theta <- param[2]
    d <- abs(outer(x, y, '-')) * sqrt(5) / theta
    kern <- sigma^2* (1 + d + d^2 / 3)*exp(-d)
    return(kern)
}
## Fimulating sample-paths ##
n <- 100
x <- seq(0, 1, length.out = n) # regular sequence
param <- c(1, 0.2) # covariance parameters
K1 <- mat5_2Kern(x, x, param) # covariance matrix
## simulating some samples using the "mvrnorm" function
samples <- mvrnorm(n = 3, mu = rep(0, n), Sigma = K1)
# ?matplot # a function to plot the samples. The samples are indexed by columns
matplot(x, t(samples), type = "l",
    main = "sample paths", ylab = "")
```


Example: figure

sample paths

What is a Gaussian random process regression?

Gaussian random process regression (Kriging/metamodeling)

- $x=\left(x_{1}, \ldots, x_{d}\right) \in D \subset \mathbb{R}^{d}$.
- Environmental simulator $f(),. y=f(x)$.
- For the prediction, y is assumed to be a realization of a Gaussian process $\left(Y_{x}\right)_{x \in D}$ with a mean μ and a covariance function $k($.$) :$

$$
\begin{equation*}
Y(x)=\mu(x)+Z(x) \tag{1}
\end{equation*}
$$

$\rightarrow \mu: x \in D \rightarrow \mu(x) \in \mathbb{R}$ called trend function.
$\rightarrow Z$ is a centered gaussian process (with mean 0).
$\rightarrow k\left(x, x^{\prime}\right)=\operatorname{cov}\left(Y(x), Y\left(x^{\prime}\right)\right)$.

Gaussian random process regression (Kriging/metamodeling)

- $X=\left(x^{(1)}, \ldots, x^{(n)}\right)$ the points where y has already been evaluated,
- $y=\left(y^{(1)}, \ldots, y^{(n)}\right)^{T}$ the corresponding outputs.
- The prediction at a new observation x is the mean kriging

$$
\begin{aligned}
& \hat{Y}(x)=E\left[Y(x) \mid Y\left(x^{(1)}\right)=y^{(1)}, \ldots, Y\left(x^{(n)}\right)=y^{(n)}\right] \\
& =\mu(x)+c(x)^{T} K^{-1}(y-\mu), \\
& K=\left(k\left(x^{(i)}, x^{(j)}\right)\right)_{1 \leq i, j \leq n}, \\
& c(x)=\left(k\left(x, x^{(i)}\right)\right)_{1 \leq i \leq n} .
\end{aligned}
$$

- Best Linear Unbiased Predictor: minimizes

$$
\text { MSE }:=E\left[(Y(x)-\hat{Y}(x))^{2}\right]
$$

under $E[\hat{Y}(x)]=E[Y(x)]$.

Gaussian random process regression (Kriging/metamodeling)

- The error estimate

$$
\hat{\sigma}^{2}(x)=k(x, x)-c(x)^{T} K^{-1} c(x) .
$$

- The 95% prediction interval is

$$
[\hat{Y}(x)-1.96 \hat{\sigma}(x), \hat{Y}(x)+1.96 \hat{\sigma}(x)]
$$

Example

Approximate the test function $f: x \in[0,1] \rightarrow x+\sin (4 x)$ with Gaussian process regression.

Case study

Context of the postdoc

Consortium's interest: Metamodels on non-Euclidean spacesApplication given by the partner BRGM.

Data description

- A cyclone trajectory is a set of information in different positions of the cyclone, the duration between two consecutive positions is 3 hours.
- Each cyclone has a different number of positions.
- Each position has the following information: the longitude ϕ, latitude λ, the wind speed U, and the radius R from the cyclone eye.
- The goal is to predict the wave height H_{S} at a given position pt close to the coast of Guadeloupe island.

Examples of cyclone trajectory

Examples of cyclone trajectory

Examples of cyclone trajectory

Goals of the postdoc

Advisors said: Chifaa- You must do this

- Construction of graphs capturing the main characteristics of the trajectory,

And this

- Construction of adapted kernels on graphs, e.g. based on Laplacians, And this
- Application to the cyclone case study.

Chifaa said: Ok!

Challenges

- Representation of the cyclone: include physical and topological features, each cyclone different size!
- Propose a kernel function for these complex objects.

Graph representation of the cyclones

Graph definition

- $G=(V, E)$, with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ the set of nodes, and with edges $E=\left\{w_{i j}\right\}_{i j}$. The graph Laplacian L is a $n \times n$ matrix given by

$$
L_{i, j}= \begin{cases}-w_{i, j} & \text { if }\left\{v_{i}, v_{j}\right\} \in \mathrm{E}, \\ \Sigma_{k ;\left\{v_{i}, v_{k}\right\} \in E} w_{i k} & \text { if } \mathrm{i}=\mathrm{j}, \\ 0 & \text { otherwise }\end{cases}
$$

- Each node v_{i} is only connected to v_{i-1} and v_{i+1}.
- The edge weights are chosen to be the geodesic distances between the nodes.
- The Laplacian matrix contains information about the connection between the nodes of a graph, but other information are important to consider.

Feature addition

- Thus we associate to each node a vector of features that can contain any topological or physical information.
- In our case, we consider to associate each vertex v_{i} to a vector of features $\psi=\left(U, R, d_{p t}, \alpha_{l}, \alpha_{0}\right)$.
- α_{l} is the local angle of curvature at the node v, which is the angle $v_{i-1} \widehat{v_{i} v_{i}+1}$.
- α_{0} is the angle on the node with a segment of reference $\left(\overrightarrow{v_{i} v_{i+1}}, \overrightarrow{O x}\right)$.

Useful formulas for the graph representation

For $P_{1}=\left(\phi_{1}, \lambda_{1}\right), P_{2}=\left(\phi_{2}, \lambda_{2}\right)$,

$$
\begin{aligned}
& d\left(P_{1}, P_{2}\right)= \\
& R_{\text {terre }}\left(\operatorname{acos}\left(\sin \left(\lambda_{1}\right) * \sin \left(\lambda_{2}\right)+\cos \left(\lambda_{1}\right) * \cos \left(\lambda_{2}\right) * \cos \left(\phi_{1}-\phi_{2}\right)\right)\right) .
\end{aligned}
$$

For the angles computation, spherical coordinates \rightarrow cartesian coordinates

$$
\begin{aligned}
& P=(\cos \lambda \cos \phi, \cos \lambda \sin \phi, \sin \lambda) \\
& \cos \widehat{P_{1} P_{2} P 3}=\frac{\overrightarrow{P_{2} P_{1}} \bullet \overrightarrow{P_{2} P_{3}}}{\left\|\overrightarrow{P_{2} P_{1}}\right\|\left\|\overrightarrow{P_{2} P_{3}}\right\|}
\end{aligned}
$$

For 3 points A, B and C three points on earth, O center of the earth,

$$
\cos \widehat{B A C}=\frac{\cos \widehat{B O C}-\cos \widehat{A O C} \cos \widehat{A O B}}{\sin \widehat{A O C} \sin \widehat{A O B}}
$$

Object transformation

$k($ Cyclone 1, Cyclone 2$)=$?
with Cyclone $=$ set of (?) nodes with 5 features over each node.

- Transformation from the vertex space variables to the feature space variables.
- $U_{i j}=\psi_{i}\left(v_{j}\right)$, with $i \in\{1, \ldots, 5\}$, and $j \in\{1, \ldots, N\}$.
- $X \sim \mathcal{N}\left(0, L^{-1}\right) \Longrightarrow Y=U^{\top} X \sim \mathcal{N}\left(0, U L^{-1} U^{\top}\right)$. $k\left(\right.$ Cyclone 1, Cyclone 2) $=k\left(U_{1} L_{1}^{-1} U_{1}^{T}, U_{2} L_{2}^{-1} U_{2}^{T}\right)$.

Examples of kernels

- Kernels between positive semi-definite matrices

$$
k(A, B)=\sigma^{2} e^{-\lambda d_{L E}(A, B)}
$$

where

$$
\begin{aligned}
d_{L E}(A, B) & =\|\log A-\log B\|_{F} . \\
\|A\|_{F} & =\sqrt{\operatorname{tr}\left(A^{T} A\right)}
\end{aligned}
$$

- Kernels between distributions, etc.

To be continued ...

Back-up slides

MVN distribution

How to generate random multivariate normal distribution?
$\Sigma=T^{T} T, T$ upper triangular.
If $X \sim \mathcal{N}\left(0, I_{n}\right)$, then $T^{T} E \sim \mathcal{N}(0, \Sigma)$.

Example: code

```
fun <- function(x) {
    x + sin(4*pi*x)
}
X<- seq(0.1, 1, length.out = 6)
Y<- fun(X)
## 5. Conditional mean and kernel
condMean <- function(x, X, Y, kern, param) {
    K <- kern(X, X, param)
    Kinv <- solve(K)
    kxX <- kern(x, X, param)
    return(kxX %*% Kinv %*% Y)
}
condCov <- function(x, X, kern, param) {
    K <- kern(X, X, param)
    Kinv <- solve(K)
    kxX <- kern(x, x, param)
    kxx <- kern(x, x, param)
    return(kxx - kxX %*% Kinv %*% t(kxX))
}
```


Example: code

```
x<- seq(0, 1, length.out = 250) # test points
param <- c(1, 0.1) # covariance params
kern <- mat5_2Kern # default
mu <- condMean(x, X, Y, kern, param) # cond. mean
Sigma <- condCov(x, X, kern, param) # cond. covariance
varSigma <- diag(Sigma)
varSigma <- pmax(varSigma, 0) # to avoid numerical negative values
plot(x, fun(x), type = "l", ylim = c(-1.5, 4), ylab = "y",
    lty = "dotted")
lines(x, mu, type = "l", col = "blue", lwd = 3)
points(X, Y, col = "black", pch = 20, cex = 3)
lines(x, mu + 1.96*sqrt(varSigma), col = "blue")
lines(x, mu - 1.96*sqrt(varSigma), col = "blue")
```

