Prediction method for cyclone-induced waves using Gaussian Process models

Chifaa Dahik, Olivier Roustant, Stéphane Puechmorel, Fabrice Gamboa

Mathematics Institute of Toulouse

March, 9 2023. IMT PhD seminar

What is a Gaussian random process?

- A random process (or stochastic process) is a family of random variables , indexed by time Z(t)_{t∈T} or space Z(x)_{x∈X}.
- A gaussian process is a random process such that every finite collection of those random variables has a multivariate normal distribution.

Example of a gaussian random process: figure

• Each curve represents 100 values: 1 representation for each $Z(x_i)$, i = 1, ..., 100.

Ingredients for a gaussian random process $Z(x)_{x \in X}$:

• A covariance function on $\mathbb{R}\times\mathbb{R}\colon$ Matérn 5/2

$$k(x,y) = \sigma^2(1 + rac{\sqrt{5}|x-y|}{ heta} + rac{5|x-y|^2}{3 heta^2})e^{-rac{\sqrt{5}|x-y|}{ heta}}.$$

- Choice of covariance parameters: $\sigma = 1$, $\theta = 0.2$.
- A regular sequence $X = [x_1, \ldots, x_i, \ldots, x_n]$ of n = 100 points on [0, 1].
- Calculate k(x_i, x_j) i, j = 1,..., n to get a covariance matrix K with dimension n × n.
- Generate 3 multivariate normal random samples.

Example: code

```
mat5 2Kern <- function(x, y, param){</pre>
  sigma <- param[1]
  theta <- param[2]
  d \le abs(outer(x, y, '-')) * sqrt(5) / theta
  kern <- sigma^2*(1 + d + d^2 / 3)*exp(- d)
  return(kern)
}
## Simulating sample-paths ##
n <- 100
x <- seg(0, 1, length.out = n) # regular sequence</pre>
param <- c(1, 0.2) # covariance parameters
K1 <- mat5_2Kern(x, x, param) # covariance matrix
## simulating some samples using the "mvrnorm" function
samples <- mvrnorm(n = 3, mu = rep(0, n), Sigma = K1)
# ?matplot # a function to plot the samples. The samples are indexed by columns
matplot(x, t(samples), type = "l",
```

```
main = "sample paths", ylab = "")
```

sample paths

х

What is a Gaussian random process regression?

Gaussian random process regression (Kriging/metamodeling)

•
$$x = (x_1, \ldots, x_d) \in D \subset \mathbb{R}^d$$
.

- Environmental simulator f(.), y = f(x).
- For the prediction, y is assumed to be a realization of a Gaussian process (Y_x)_{x∈D} with a mean μ and a covariance function k(.):

$$Y(x) = \mu(x) + Z(x).$$
 (1)

 $\begin{array}{l} \rightarrow \mu: x \in D \rightarrow \mu(x) \in \mathbb{R} \text{ called trend function.} \\ \rightarrow Z \text{ is a centered gaussian process (with mean 0).} \\ \rightarrow k(x, x') = cov(Y(x), Y(x')). \end{array}$

Gaussian random process regression (Kriging/metamodeling)

- X = (x⁽¹⁾,...,x⁽ⁿ⁾) the points where y has already been evaluated,
 y = (y⁽¹⁾,...,y⁽ⁿ⁾)^T the corresponding outputs.
- The prediction at a new observation x is the mean kriging

$$\begin{split} \hat{Y}(x) &= E[Y(x)|Y(x^{(1)}) = y^{(1)}, \dots, Y(x^{(n)}) = y^{(n)}] \\ &= \mu(x) + c(x)^T K^{-1}(y - \mu), \\ K &= (k(x^{(i)}, x^{(j)}))_{1 \le i, j \le n}, \\ c(x) &= (k(x, x^{(i)}))_{1 \le i \le n}. \end{split}$$

Best Linear Unbiased Predictor: minimizes

MSE : =
$$E[(Y(x) - \hat{Y}(x))^2]$$

under $E[\hat{Y}(x)] = E[Y(x)].$

Gaussian random process regression (Kriging/metamodeling)

The error estimate

$$\hat{\sigma}^2(x) = k(x,x) - c(x)^T \mathcal{K}^{-1} c(x).$$

• The 95% prediction interval is

$$[\hat{Y}(x) - 1.96\hat{\sigma}(x), \hat{Y}(x) + 1.96\hat{\sigma}(x)].$$

Example

Approximate the test function $f : x \in [0,1] \rightarrow x + sin(4x)$ with Gaussian process regression.

Case study

Consortium's interest: Metamodels on non-Euclidean spaces-Application given by the partner BRGM.

- A cyclone trajectory is a set of information in different positions of the cyclone, the duration between two consecutive positions is 3 hours.
- Each cyclone has a different number of positions.
- Each position has the following information: the longitude ϕ , latitude λ , the wind speed U, and the radius R from the cyclone eye.
- The goal is to predict the wave height H_S at a given position pt close to the coast of Guadeloupe island.

Examples of cyclone trajectory

Examples of cyclone trajectory

Examples of cyclone trajectory

Advisors said: Chifaa- You must do this

• Construction of graphs capturing the main characteristics of the trajectory,

And this

• Construction of adapted kernels on graphs, e.g. based on Laplacians, And this

• Application to the cyclone case study.

Chifaa said: Ok!

- Representation of the cyclone: include physical and topological features, each cyclone different size!
- Propose a kernel function for these complex objects.

Graph representation of the cyclones

Graph definition

• G = (V, E), with $V = \{v_1, \ldots, v_n\}$ the set of nodes, and with edges $E = \{w_{ij}\}_{ij}$. The graph Laplacian L is a $n \times n$ matrix given by

$$L_{i,j} = \begin{cases} -w_{i,j} & \text{if } \{v_i, v_j\} \in \mathsf{E}, \\ \Sigma_{k;\{v_i, v_k\} \in \mathsf{E}} w_{ik} & \text{if } i=j, \\ 0 & \text{otherwise.} \end{cases}$$

- Each node v_i is only connected to v_{i-1} and v_{i+1} .
- The edge weights are chosen to be the geodesic distances between the nodes.
- The Laplacian matrix contains information about the connection between the nodes of a graph, but other information are important to consider.

- Thus we associate to each node a vector of features that can contain any topological or physical information.
- In our case, we consider to associate each vertex v_i to a vector of features ψ = (U, R, d_{pt}, α_l, α₀).
- α_l is the local angle of curvature at the node v, which is the angle $v_{i-1}v_iv_{i+1}$.
- α_0 is the angle on the node with a segment of reference $(\overrightarrow{v_i v_{i+1}}, \overrightarrow{Ox})$.

Useful formulas for the graph representation

For
$$P_1 = (\phi_1, \lambda_1)$$
, $P_2 = (\phi_2, \lambda_2)$,
 $d(P_1, P_2) =$
 $R_{\text{terre}}(a\cos(\sin(\lambda_1) * \sin(\lambda_2) + \cos(\lambda_1) * \cos(\lambda_2) * \cos(\phi_1 - \phi_2)))$.

For the angles computation, spherical coordinates \rightarrow cartesian coordinates

$$P = (\cos\lambda\cos\phi, \cos\lambda\sin\phi, \sin\lambda),$$

$$cos\widehat{P_1P_2P_3} = \frac{\overrightarrow{P_2P_1} \bullet \overrightarrow{P_2P_3}}{\|\overrightarrow{P_2P_1}\|\|\overrightarrow{P_2P_3}\|}$$

For 3 points A, B and C three points on earth, O center of the earth,

$$cos\widehat{BAC} = \frac{cos\widehat{BOC} - cos\widehat{AOC}cos\widehat{AOB}}{sin\widehat{AOC}sin\widehat{AOB}}$$

k(Cyclone 1, Cyclone 2) =?

with Cyclone= set of (?) nodes with 5 features over each node.

- Transformation from the vertex space variables to the feature space variables.
- $U_{ij} = \psi_i(v_j)$, with $i \in \{1, \dots, 5\}$, and $j \in \{1, \dots, N\}$. • $X \sim \mathcal{N}(0, L^{-1}) \implies Y = U^T X \sim \mathcal{N}(0, UL^{-1}U^T)$.

k(Cyclone 1, Cyclone 2) = $k(U_1L_1^{-1}U_1^T, U_2L_2^{-1}U_2^T)$.

• Kernels between positive semi-definite matrices

$$k(A,B) = \sigma^2 e^{-\lambda d_{LE}(A,B)},$$

where

$$d_{LE}(A, B) = \|logA - logB\|_F.$$

 $\|A\|_F = \sqrt{tr(A^T A)}.$

• Kernels between distributions, etc.

To be continued ...

Back-up slides

How to generate random multivariate normal distribution? $\Sigma = T^T T$, T upper triangular. If $X \sim \mathcal{N}(0, I_n)$, then $T^T E \sim \mathcal{N}(0, \Sigma)$.

Example: code

```
fun <- function(x) {</pre>
  x + sin(4*pi*x)
}
X <- seq(0.1, 1, length.out = 6)
Y <- fun(X)
## 5. Conditional mean and kernel
condMean <- function(x, X, Y, kern, param) {</pre>
  K <- kern(X, X, param)</pre>
  Kinv <- solve(K)
  kxX <- kern(x, X, param)</pre>
  return(kxX %*% Kinv %*% Y)
condCov <- function(x, X, kern, param) {</pre>
  K <- kern(X, X, param)</pre>
  Kinv <- solve(K)
  kxX <- kern(x, X, param)
  kxx <- kern(x, x, param)</pre>
  return(kxx - kxX %*% Kinv %*% t(kxX))
```