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What is a Gaussian random process?

2/27



Gaussian random process

@ A random process (or stochastic process) is a family of random
variables , indexed by time Z(t);c1 or space Z(x)xex-

@ A gaussian process is a random process such that every finite
collection of those random variables has a multivariate normal
distribution.

— N(p, X),
— pu=E[X]=(E[X1],...,E[X])T,
— Xij = E[(Xi — i) (X; — )] = Cov[X;, Xj].
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Example of a gaussian random process: figure

sample paths

0.0 0.2 0.4 0.6 0.8 1.0

e Each curve represents 100 values: 1 representation for each Z(x;),
i=1,...,100.
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Example: ingredients

Ingredients for a gaussian random process Z(x)yex:

@ A covariance function on R x R: Matérn 5/2

V5|x—
k(X,y) — 02(1+ _ Sle yI.

VBIx —y| | 5lx—yf?
g T e e

Choice of covariance parameters: ¢ =1, § = 0.2.

A regular sequence X = [x1,...,Xj,...,X,] of n =100 points on
[0,1].

Calculate k(x;,x;) i,j =1,...,n to get a covariance matrix K with
dimension n x n.

Generate 3 multivariate normal random samples.
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Example: code

mat5_2Kern <- function(x, y, param){
sigma <- param[1]
theta <- param[2]
d <- abs(outer(x, y, '-')) * sqrt(5) / theta
kern <- sigma®2*(1 + d + d*2 / 3)*exp(- d)
return(kern)

}

it binulating sample-paths ##
n <- 100

x <- seq(@®, 1, length.out = n) # regqular sequence
param <- c(1, @.2) # covariance parameters
K1 <- mat5_2Kern(x, x, param) # covariance matrix

## simulating some samples using the "mvrnorm" function
samples <- mvrnorm(n = 3, mu = rep(@, n), Sigma = K1)

# matplot # a function to plot the samples. The samples are indexed by columns

matplot(x, t(samples), type = "1",
main = "sample paths", ylab = "")

6/27



Example: figure

sample paths

0.0 0.2 0.4 0.6 0.8 1.0
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What is a Gaussian random process
regression?
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Gaussian random process regression

(Kriging/metamodeling)

o x=(x1,...,x4) € D CRY,
e Environmental simulator (.), y = f(x).

@ For the prediction, y is assumed to be a realization of a Gaussian
process (Yix)xep with a mean p and a covariance function k(.):

Y(x) = u(x) + Z(x). (1)

— p:x €D — p(x) € R called trend function.
— Z is a centered gaussian process (with mean 0).
— k(x,x") = cov(Y(x), Y(X)).
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Gaussian random process regression

(Kriging/metamodeling)

e X = (x(l), ... ,x(”)) the points where y has already been evaluated ,
o y=(yM,...,y(™T the corresponding outputs.
@ The prediction at a new observation x is the mean kriging

A

Y(x) = E[Y()|Y(xP) = yB v (xM) = y(1)]
= pu(x) + c(x)TK "y — p),

K = (k(D, xU))1<; j<n,

c(x) = (k(x, x"M))1<i<n.

@ Best Linear Unbiased Predictor: minimizes
MSE : = E[(Y(x) — Y(x))?]

under E[Y (x)] = E[Y(x)].
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Gaussian random process regression

(Kriging/metamodeling)

@ The error estimate
52(x) = k(x,x) — c(x)TKc(x).
@ The 95% prediction interval is

[Y(x) — 1.966(x), Y(x) + 1.965(x)].
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Approximate the test function f : x € [0,1] — x + sin(4x) with Gaussian
process regression.
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Case study
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xt of the postdoc

E @ innble Earh , Consortium Industrie Recherche
or  sustainable Eart { e
REPUBLIQUE / ! pour U'Optimisation et la
SE / ClROQUOjﬁ’ QUantification d’incertitude
y Z pour les données Onéreuses

Consortium's interest: Metamodels on non-Euclidean spaces-
Application given by the partner BRGM.
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Data description

@ A cyclone trajectory is a set of information in different positions of the
cyclone, the duration between two consecutive positions is 3 hours.

@ Each cyclone has a different number of positions.

@ Each position has the following information: the longitude ¢, latitude
A, the wind speed U, and the radius R from the cyclone eye.

@ The goal is to predict the wave height Hs at a given position pt close
to the coast of Guadeloupe island.

15/27



Examples of cyclone trajectory
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Examples of cyclone trajectory
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Examples of cyclone trajectory
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Goals of the postdoc

Advisors said: Chifaa- You must do this

@ Construction of graphs capturing the main characteristics of the
trajectory,

And this

o Construction of adapted kernels on graphs, e.g. based on Laplacians,
And this

@ Application to the cyclone case study.
Chifaa said: Ok!
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Challenges

@ Representation of the cyclone: include physical and topological
features, each cyclone different size!

@ Propose a kernel function for these complex objects.
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Graph representation of the cyclones
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Graph definition

e G=(V,E), with V = {v1,..., vy} the set of nodes, and with edges
{W,J},J The graph LapIaC|an L is a n X n matrix given by

—W;j if {V,',Vj} € E,
Li,j = Zk;{v,-,vk}EEWfk if IZJa
0 otherwise.

@ Each node v; is only connected to v;_1 and vj1 .

@ The edge weights are chosen to be the geodesic distances between
the nodes.

@ The Laplacian matrix contains information about the connection
between the nodes of a graph, but other information are important to
consider.
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Feature addition

@ Thus we associate to each node a vector of features that can contain
any topological or physical information.

@ In our case, we consider to associate each vertex v; to a vector of
features ¢ = (U, R, dpt, aj, avp).

@ oy is the local angle of curvature at the node v, which is the angle
—_—
Vi—1VjVit1.

. . =
@ ag is the angle on the node with a segment of reference (v;vj;1, Ox).

23/27



Useful formulas for the graph representation

For P1 = (61, A1), P2 = (92, \2),

d(P1, P2) =
Rierre(acos(sin(A1) * sin(A2) + cos(A1) * cos(A2) * cos(p1 — ¢2))).

For the angles computation, spherical coordinates — cartesian coordinates

P = (cosAcosp, cosAsing, sin\),

s
P2P1 [ ] P2P3
e ——
[ P2 Pl P2 P3|
For 3 points A, B and C three points on earth, O center of the earth,

cosP1P,P3 =

cosBOC - cosAOCcosAOB
smAOC smAOB

COS§A\C =
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Object transformation

k(Cyclone 1, Cyclone 2) =7

with Cyclone= set of (7) nodes with 5 features over each node.

@ Transformation from the vertex space variables to the feature space
variables.

o Uj=1i(vj), withie {1,...,5}, and j € {1,...,N}.
o X~N(0,L7Y) = Y=UTX~N(,ULtUT).
k(Cyclone 1, Cyclone 2) = k(UL P U], U L5 1 US ).
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Examples of kernels

@ Kernels between positive semi-definite matrices
k(A, B) = g2 *e(AB),

where
die(A, B) = ||logA — logB|| .

JAllr = \/tr(ATA).

@ Kernels between distributions, etc.

26 /27



To be continued . ..
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Back-up slides
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MVN distribution

How to generate random multivariate normal distribution?
Y = TTT, T upper triangular.
If X ~ N(0,1,), then TTE ~ N(0,%).
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Example: code

fun <- function(x) {
x + sin(4%pi*x)

}
X <- seq(0.1, 1, length.out = 6)
Y <- fun(X)

## 5. Conditieonal mean and kernel
condMean <- function(x, X, Y, kern, param) {
K <- kern(X, X, param)
Kinv <- solve(K)
kxX <- kern(x, X, param)
return(kxX %*% Kinv %*% ¥)

}

condCov <- function(x, X, kern, param) {
K <- kern(X, X, param)
Kinv <- solve(K)
kxX <- kern(x, X, param)
kxx <- kern(x, x, param)
return(kooe - kxX %*% Kinv %% t(kxX))
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Example: code

x <- seq(®, 1, length.out = 250) # test points
param <- c(1, @.1) # covariance params
kern <- mat5_2Kern # default

mu <- condMean(x, X, Y, kern, param) # cond. mean
Sigma <- condCov(x, X, kern, param) # cond. covariance

varSigma <- diag(Sigma)
varsigma <- pmax(varSigma, @) # to avoid numerical negative values
plot(x, fun(x), type = "1", ylim = c(-1.5, 4), ylab = "y",
1ty = "dotted")
lines(x, mu, type = "1", col = "blue", lwd = 3)
points(X, Y, col = "black”, pch = 28, cex = 3)
lines(x, mu + 1.96%sqrt(varSigma), col = "blue")
lines(x, mu - 1.96*sqrt(varSigma), col = "blue")
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