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What is a Gaussian random process?
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Gaussian random process

A random process (or stochastic process) is a family of random
variables , indexed by time Z (t)t∈T or space Z (x)x∈X .

A gaussian process is a random process such that every finite
collection of those random variables has a multivariate normal
distribution.

→ N (µ,Σ),

→ µ = E [X ] = (E [X1], . . . ,E [Xn])
T ,

→ Σi ,j = E [(Xi − µi )(Xj − µj)] = Cov [Xi ,Xj ].
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Example of a gaussian random process: figure
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Each curve represents 100 values: 1 representation for each Z (xi ),
i = 1, . . . , 100.

4 / 27



Example: ingredients

Ingredients for a gaussian random process Z (x)x∈X :

A covariance function on R× R: Matérn 5/2

k(x , y) = σ2(1 +

√
5|x − y |
θ

+
5|x − y |2

3θ2
)e−

√
5|x−y|
θ .

Choice of covariance parameters: σ = 1, θ = 0.2.

A regular sequence X = [x1, . . . , xi , . . . , xn] of n = 100 points on
[0, 1].

Calculate k(xi , xj) i , j = 1, . . . , n to get a covariance matrix K with
dimension n × n.

Generate 3 multivariate normal random samples.
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Example: code
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Example: figure
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What is a Gaussian random process
regression?
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Gaussian random process regression
(Kriging/metamodeling)

x = (x1, . . . , xd) ∈ D ⊂ Rd .

Environmental simulator f (.), y = f (x).

For the prediction, y is assumed to be a realization of a Gaussian
process (Yx)x∈D with a mean µ and a covariance function k(.):

Y (x) = µ(x) + Z (x). (1)

→ µ : x ∈ D → µ(x) ∈ R called trend function.
→ Z is a centered gaussian process (with mean 0).
→ k(x , x ′) = cov(Y (x),Y (x ′)).
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Gaussian random process regression
(Kriging/metamodeling)

X = (x (1), . . . , x (n)) the points where y has already been evaluated ,

y = (y (1), . . . , y (n))T the corresponding outputs.

The prediction at a new observation x is the mean kriging

Ŷ (x) = E [Y (x)|Y (x (1)) = y (1), . . . ,Y (x (n)) = y (n)]

= µ(x) + c(x)TK−1(y − µ),

K = (k(x (i), x (j)))1≤i ,j≤n,

c(x) = (k(x , x (i)))1≤i≤n.

Best Linear Unbiased Predictor: minimizes

MSE : = E [(Y (x)− Ŷ (x))2]

under E [Ŷ (x)] = E [Y (x)].
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Gaussian random process regression
(Kriging/metamodeling)

The error estimate

σ̂2(x) = k(x , x)− c(x)TK−1c(x).

The 95% prediction interval is

[Ŷ (x)− 1.96σ̂(x), Ŷ (x) + 1.96σ̂(x)].
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Example

Approximate the test function f : x ∈ [0, 1] → x + sin(4x) with Gaussian
process regression.
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Case study
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Context of the postdoc

Consortium’s interest: Metamodels on non-Euclidean spaces-
Application given by the partner BRGM.
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Data description

A cyclone trajectory is a set of information in different positions of the
cyclone, the duration between two consecutive positions is 3 hours.

Each cyclone has a different number of positions.

Each position has the following information: the longitude ϕ, latitude
λ, the wind speed U, and the radius R from the cyclone eye.

The goal is to predict the wave height HS at a given position pt close
to the coast of Guadeloupe island.
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Examples of cyclone trajectory
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Goals of the postdoc

Advisors said: Chifaa- You must do this

Construction of graphs capturing the main characteristics of the
trajectory,

And this

Construction of adapted kernels on graphs, e.g. based on Laplacians,

And this

Application to the cyclone case study.

Chifaa said: Ok!
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Challenges

Representation of the cyclone: include physical and topological
features, each cyclone different size!

Propose a kernel function for these complex objects.
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Graph representation of the cyclones
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Graph definition

G = (V ,E ), with V = {v1, . . . , vn} the set of nodes, and with edges
E = {wij}ij . The graph Laplacian L is a n × n matrix given by

Li ,j =


−wi ,j if {vi , vj} ∈ E,

Σk;{vi ,vk}∈Ewik if i=j,

0 otherwise.

Each node vi is only connected to vi−1 and vi+1 .

The edge weights are chosen to be the geodesic distances between
the nodes.

The Laplacian matrix contains information about the connection
between the nodes of a graph, but other information are important to
consider.
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Feature addition

Thus we associate to each node a vector of features that can contain
any topological or physical information.

In our case, we consider to associate each vertex vi to a vector of
features ψ = (U,R, dpt , αl , α0).

αl is the local angle of curvature at the node v , which is the angle
̂vi−1vivi+1.

α0 is the angle on the node with a segment of reference
̂

(−−−→vivi+1,
−→
Ox).
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Useful formulas for the graph representation

For P1 = (ϕ1, λ1), P2 = (ϕ2, λ2),

d(P1,P2) =

Rterre(acos(sin(λ1) ∗ sin(λ2) + cos(λ1) ∗ cos(λ2) ∗ cos(ϕ1 − ϕ2))).

For the angles computation, spherical coordinates → cartesian coordinates

P = (cosλcosϕ, cosλsinϕ, sinλ),

cosP̂1P2P3 =

−−−→
P2P1 •

−−−→
P2P3

∥
−−−→
P2P1∥∥

−−−→
P2P3∥

.

For 3 points A, B and C three points on earth, O center of the earth,

cosB̂AC =
cosB̂OC − cosÂOCcosÂOB

sinÂOCsinÂOB
.
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Object transformation

k(Cyclone 1,Cyclone 2) =?

with Cyclone= set of (?) nodes with 5 features over each node.

Transformation from the vertex space variables to the feature space
variables.

Uij = ψi (vj), with i ∈ {1, . . . , 5}, and j ∈ {1, . . . ,N}.
X ∼ N (0, L−1) =⇒ Y = UTX ∼ N (0,UL−1UT ).

k(Cyclone 1,Cyclone 2) = k(U1L
−1
1 UT

1 ,U2L
−1
2 UT

2 ).
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Examples of kernels

Kernels between positive semi-definite matrices

k(A,B) = σ2e−λdLE (A,B),

where
dLE (A,B) = ∥logA− logB∥F .

∥A∥F =
√
tr(ATA).

Kernels between distributions, etc.
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To be continued . . .
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Back-up slides
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MVN distribution

How to generate random multivariate normal distribution?
Σ = TTT , T upper triangular.
If X ∼ N (0, In), then TTE ∼ N (0,Σ).
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Example: code
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