A Worst-Case Analysis of a Renormalisation Decoder for Kitaev's Toric Code

Wouter Rozendaal and Gilles Zémor

Journées C2, Najac - 20 October 2023

Kitaev's code:

• Qubits indexed by edges of a toric tiling

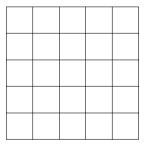


Figure: Tiling of a 2-dimensional torus

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$

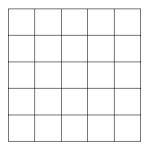


Figure: Tiling of a 2-dimensional torus

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Rows of \mathbf{H}_X

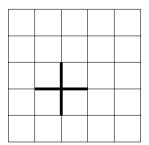


Figure: Elementary cocycle

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Rows of \mathbf{H}_Z

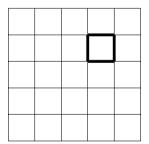


Figure: Elementary cycle

- Qubits indexed by edges of a toric tiling
- CSS stabiliser code $(\mathbf{H}_X, \mathbf{H}_Z)$
 - Orthogonality condition: $\mathbf{H}_X \mathbf{H}_Z^{\mathsf{T}} = \mathbf{0}$

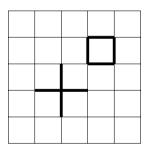


Figure: Elementary cocycles and cycles meet in an even number of edges

X or Z-error pattern \to error vector $\mathbf{e} \in \mathbb{F}_2^n$

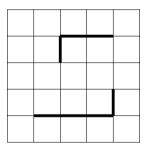


Figure: Error vector **e**

X or Z-error pattern \to error vector $\mathbf{e} \in \mathbb{F}_2^n$

• Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^\intercal$

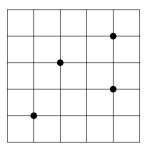


Figure: Syndrome $\sigma(\mathbf{e})$

X or Z-error pattern \to error vector $\mathbf{e} \in \mathbb{F}_2^n$

- Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^\intercal$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_2^n$ such that $\sigma(\hat{\mathbf{e}}) = \sigma(\mathbf{e})$

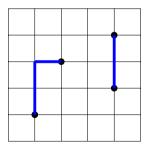


Figure: Output vector $\hat{\mathbf{e}}$ and its syndrome

X or Z-error pattern \to error vector $\mathbf{e} \in \mathbb{F}_2^n$

- ullet Input: syndrome measurement $\sigma(\mathbf{e}) := \mathbf{H}_X \mathbf{e}^\intercal$
- Output: $\hat{\mathbf{e}} \in \mathbb{F}_2^n$ such that $\sigma(\hat{\mathbf{e}}) = \sigma(\mathbf{e})$
- Successful decoding: $\mathbf{e} + \hat{\mathbf{e}}$ is in the row space of \mathbf{H}_Z

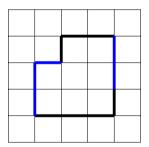


Figure: $\mathbf{e} + \hat{\mathbf{e}}$ is a trivial cycle

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

- Errors accumulate while a quantum algorithm is running
- Need for sub-linear decoding algorithms

Renormalisation decoders!

- Renormalisation idea: Duclos-Cianci and Poulin (2010)
- Time-complexity in $O(n \log_2 n)$ and parallelisable to $O(\log_2 n)$
- High threshold values for bit-flip and depolarisation channels

Worst case behaviour?

What is the smallest weight of an error pattern for which decoding fails?

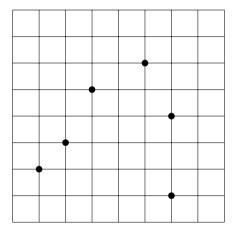


Figure: Decoding problem on a toric tiling. Input: syndrome of an error vector \mathbf{e}

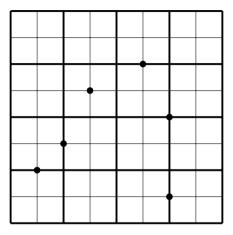


Figure: Reduction procedure: Move the syndrome vertices to the next subtiling

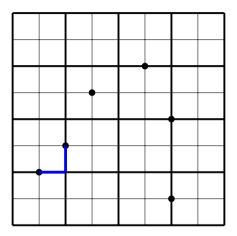


Figure: Locally pair-up syndrome vertices

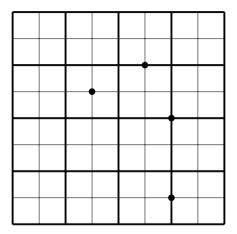


Figure: Locally pair-up syndrome vertices

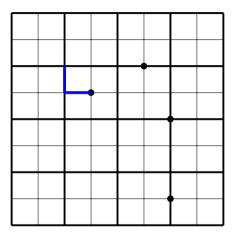


Figure: Locally shift remaining syndrome vertices

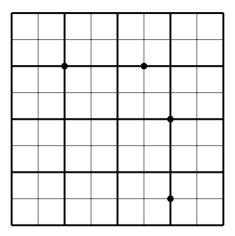


Figure: Locally shift remaining syndrome vertices

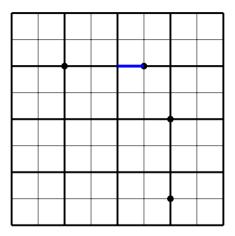


Figure: Locally shift remaining syndrome vertices

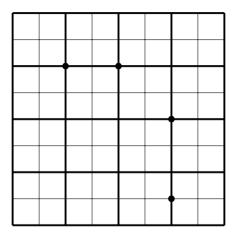


Figure: Locally shift remaining syndrome vertices

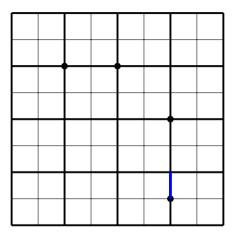


Figure: Locally shift remaining syndrome vertices

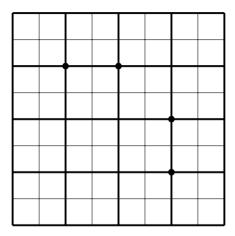


Figure: Locally shift remaining syndrome vertices

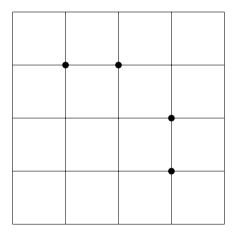


Figure: Decoding problem on the subtiling. Input: syndrome of the vector $\mathbf{e} + \hat{\mathbf{e}}$

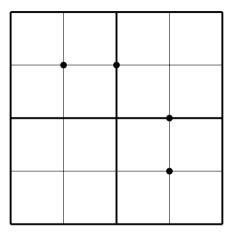


Figure: Reduction procedure: Move the syndrome vertices to the next subtiling

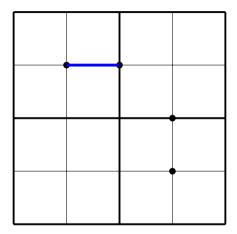


Figure: Locally pair-up syndrome vertices

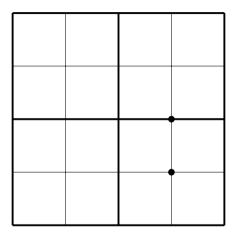


Figure: Locally pair-up syndrome vertices

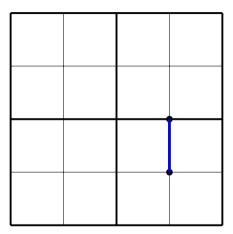


Figure: Locally pair-up syndrome vertices

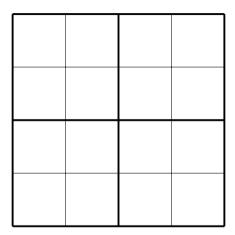


Figure: Locally pair-up syndrome vertices

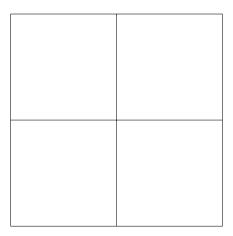


Figure: Decoding finishes.
All syndromes vertices have been paired-up

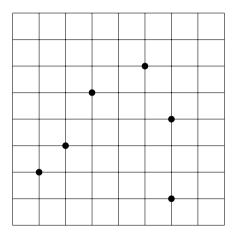


Figure: Syndrome of the error vector ${f e}$

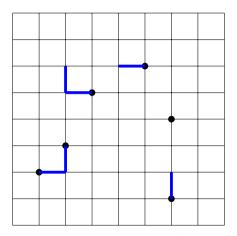


Figure: Output vector $\hat{\mathbf{e}}$ after the 1^{st} reduction step

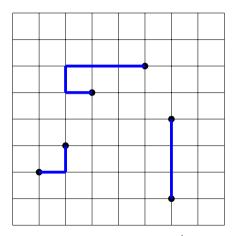


Figure: Output vector $\hat{\mathbf{e}}$ after the 2^{nd} reduction step

A Hard-Decision and Deterministic Reduction Procedure

Figure: Step 1: locally pair up diagonally opposed syndrome vertices in D cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: Step 1: locally pair up diagonally opposed syndrome vertices in D cells

Figure: Step 2: locally pair up neighbouring syndrome vertices in B and C cells

A Hard-Decision and Deterministic Reduction Procedure

Figure: Step 1: locally pair up diagonally opposed syndrome vertices in D cells

Figure: Step 2: locally pair up neighbouring syndrome vertices in B and C cells

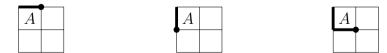


Figure: Step 3: shift remaining syndrome vertices in A cells to their top-left corner

Bounds on the Error-Correcting Radius

Upper Bound on the Error-Correcting Radius

There exist wrongly decoded error patterns whose weight scale like $d^{1/2}$.

Idea of the proof:

• Construct 1-dimensional fractal-like wrongly decoded error patterns

Bounds on the Error-Correcting Radius

Upper Bound on the Error-Correcting Radius

There exist wrongly decoded error patterns whose weight scale like $d^{1/2}$.

Idea of the proof:

• Construct 1-dimensional fractal-like wrongly decoded error patterns

Lower Bound on the Error-Correcting Radius

The renormalisation decoder corrects all errors of weight less than $\frac{5}{6}d^{\log_2(6/5)}$.

Idea of the proof:

• Evaluate the growth of $\mathsf{wt_r}(\mathbf{e}_i) + P_i$ for increasing indexes

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

• $d^{0.26} \lesssim \text{error-correcting radius} \lesssim d^{0.5}$

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

• $d^{0.26} \lesssim \text{error-correcting radius} \lesssim d^{0.5}$

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded error patterns of weight d^{α}
- \bullet α can be improved by increasing block size and using message-passing

Renormalisation decoders:

- Recursively reduce the decoding problem to smaller codes
- Good time-complexity and can be parallelised
- High threshold values over bit-flip and depolarisation channels

Our deterministic renormalisation decoder:

• $d^{0.26} \lesssim \text{error-correcting radius} \lesssim d^{0.5}$

Any deterministic renormalisation decoder:

- Existence of fractal-like wrongly decoded error patterns of weight d^{α}
- \bullet α can be improved by increasing block size and using message-passing

Thank you for your attention! Any questions?