Modular zk-rollup on-demand

Published in JNCA

Thomas Lavaur1,2 Jonathan Detchart1
Jérôme Lacan1 Caroline P. C. Chanel1

1ISAE-SUPAERO, Toulouse 2Université Toulouse III Paul Sabatier

JC2 2023

19/10/2023
1 Introduction

- zk-Rollups
- Motivations

2 Contribution
Rollups

Specifications

- A **smart contract** stores the funds and accounts state of the rollup.
- Transaction **execution is centralized** by a validator.
- Needed data are stored on the blockchain.

Rollups

Specifications

- **A smart contract** stores the funds and accounts state of the rollup.
- Transaction **execution is centralized** by a validator.
- Needed data are stored on the blockchain.
- Correct transitions are **decentrally verified** by the smart contract via a zero-knowledge proof for zk-rollup or a fraud proof for optimistics.

Rollups

Specifications

- A smart contract stores the funds and accounts state of the rollup.
- Transaction execution is centralized by a validator.
- Needed data are stored on the blockchain.
- Correct transitions are **decentrally verified** by the smart contract via a zero-knowledge proof for zk-rollup or a fraud proof for optimistics.
- The **validator cannot** perform cryptographic attacks but can censor a transaction (only) on a zk-rollup.

Specifications

- **A smart contract** stores the funds and accounts state of the rollup.
- Transaction **execution is centralized** by a validator.
- Needed data are stored on the blockchain.
- Correct transitions are **decentrally verified** by the smart contract via a zero-knowledge proof for zk-rollup or a fraud proof for optimistics.
- The **validator cannot** perform cryptographic **attacks but can censor** a transaction (only) on a zk-rollup.
- **Cheaper** transaction cost.

Motivations

Promising

- Appear to be a promising way to improve the scalability of secure public blockchains while providing possible privacy and cost savings.
- Allow users to take advantage of pre-established communities, pre-established cryptocurrencies (and pre-audited security if they share the same smart contracts) while offering the flexibility of private blockchains designed for specific purposes.
Motivations

Promising

- Appear to be a promising way to improve the scalability of secure public blockchains while providing possible privacy and cost savings.
- Allow users to take advantage of pre-established communities, pre-established cryptocurrencies (and pre-audited security if they share the same smart contracts) while offering the flexibility of private blockchains designed for specific purposes.

Issues

- One solution put forward by different companies is to extend these services providing privacy and customization through layer 3s built on top of their own rollup.
- Sensitive data have to be publish to a centralized validator that can censorship transactions.
- Even in a validium, data privacy is concerning if the validator is owned by an external entity.
- The setup of a zk-rollup can be expensive reducing the incentives for non-financial applications.
Introduction

Contribution

- co-existing in smart contracts
- New transaction types
- Results
All rollups in the same contracts²

Proposition

- We propose allowing several zk-rollups to co-exist on the same smart contract, by including a group ID system into the smart contracts.

All rollups in the same contracts

Group 1
Rollup
Permissionless
Low Fees
Low Speed
Validator 1

Group 2
Validium
Permissionless
Low Fees
Medium Speed
Validator 2

Group 3
Rollup
Permissioned
no Fees
High Speed
Validator 3

Smart contract with pending balance

Proposition

- We propose allowing several zk-rollups to co-exist on the same smart contract, by including a group ID system into the smart contracts.

- The functions of the smart contracts are shared by the different groups, it is possible to choose a specific smart contract for proof checking in order to use different circuits or systems.

We propose allowing several zk-rollups to co-exist on the same smart contract, by including a group ID system into the smart contracts.

The functions of the smart contracts are shared by the different groups, it is possible to choose a specific smart contract for proof checking in order to use different circuits or systems.

Using group-specific parameters, the rollups would either be permissionless or permissioned, post data on-chain or off-chain and be optimistic or zk-rollup.
All rollups in the same contracts

Benefits

- This drastically reduces the cost of subsequent "deployments" after an initial deployment.

All rollups in the same contracts

Benefits

- This drastically reduces the cost of subsequent “deployments” after an initial deployment.
- Solves privacy issues while democratizing easy access to zk-rollups for wider adoption.

All rollups in the same contracts

Benefits

- This drastically reduces the cost of subsequent “deployments” after an initial deployment.
- Solves privacy issues while democratizing easy access to zk-rollups for wider adoption.
- Can be very interesting even if they are all public and permissionless, bringing different prices, finalities, systems and applications.

New transaction types

Communications

Communications between rollups are actually bulky, laborious and costly. They have to return to user’s address before being deposited elsewhere.

Rollup 1
Validator 1

Rollup 2
Validator 2
New transaction types

Communications

Communications between rollups are actually bulky, laborious and costly. They have to return to user’s address before being deposited elsewhere.

Rollup 1
Validator 1

Withdraws

Rollup 2
Validator 2
Communications between rollups are actually bulky, laborious and costly. They have to return to user’s address before being deposited elsewhere.
New transaction types

Communications

Communications between rollups are actually bulky, laborious and costly. They have to return to user’s address before being deposited elsewhere.

![Diagram showing communication between rollups and validators]

1. Withdraws from pending balance to blockchain account
2. Updates pending balance
3. Withdraws
New transaction types

Communications

Communications between rollups are actually **bulky, laborious and costly**. They have to return to user’s address before being deposited elsewhere.
Communications between rollups are actually **bulky, laborious and costly**. They have to return to user’s address before being deposited elsewhere.
We propose adding new transaction types that can be interpreted by smart contracts and act as a bridge between two rollups. The main idea is to easily allow users to send/receive information or funds from one group to another without having to return them to the user's address. This acts as a proof of burn to the underlying layer, automatically triggering a deposit request to the targeted rollup.
We propose adding new transaction types that can be interpreted by smart contracts and act as a bridge between two rollups. The main idea is to easily allow users to send/receive information or funds from one group to another without having to return them to the user's address. This acts as a proof of burn to the underlying layer, automatically triggering a deposit request to the targeted rollup.
We propose adding new transaction types that can be interpreted by smart contracts and act as a bridge between two rollups. The main idea is to easily allow users to send/receive information or funds from one group to another without having to return them to the user’s address. This acts as a proof of burn to the underlying layer, automatically triggering a deposit request to the targeted rollup.
We propose **adding new transaction types** that can be interpreted by smart contracts and act as a bridge between two rollups. The main idea is to easily allow users to send/receive information or funds from one group to another **without having to return them to the user's address**. This acts as a proof of burn to the underlying layer, automatically triggering a deposit request to the targeted rollup.
Results

Material

To compute the proofs, we used a computer with an Intel Xeon Platinum 8164 CPU and 400GB of RAM.

Overhead

The addition of the two new operation types, the inclusion of the group in the transactions and the modification of the public input create almost no overhead for the prover. The size of the first circuit only increases from 0.18% for the smallest blocks to 0.32% for the largest blocks, and the difference in proof time is not significant.

<table>
<thead>
<tr>
<th>Block Chunk Size</th>
<th>zkSync</th>
<th>Our Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>8,526,701c</td>
<td>8,542,124c</td>
</tr>
<tr>
<td>78</td>
<td>16,908,690c</td>
<td>16,952,713c</td>
</tr>
<tr>
<td>182</td>
<td>33,672,019c</td>
<td>33,773,242c</td>
</tr>
<tr>
<td>390</td>
<td>67,185,536c</td>
<td>67,401,159c</td>
</tr>
</tbody>
</table>

Table: First circuit comparison (c mean constraints, s seconds).
Impact on existing transaction types

When block size is the largest and the number of aggregated proofs is the highest, the cost of a deposit is only increased by 3% for ERC20 and 2% for ETH, while the rest of the transactions only see their costs increase by less than 1%.
Impact on existing transaction types

When block size is the largest and the number of aggregated proofs is the highest, the cost of a **deposit** is only **increased by 3%** for ERC20 and **2%** for ETH, while the rest of the transactions only see their costs increase **by less than 1%**.
Impact on existing transaction types

When block size is the largest and the number of aggregated proofs is the highest, the cost of a deposit is only increased by 3% for ERC20 and 2% for ETH, while the rest of the transactions only see their costs increase by less than 1%.
Impact of new transaction types

The **ChangeGroup** operation reduces gas consumption by more than 49% for ETH and by more than 61% for ERC20.
Results

Impact of new transaction types

The **ChangeGroup** operation reduces gas consumption **by more than 49%** for ETH and **by more than 61%** for ERC20.
Deployment

During the first deployment of the smart contracts, our proposal leads to an additional cost of about 4%, going from 22,106,772 gas to 22,904,219 gas. However, when we compare the cost of redeploying zkSync Lite with the cost of creating a group with our proposal, costs are reduced by more than 99% from 22,106,772 gas (zkSync Lite) to 184,258 gas.
Deployment

During the **first deployment of** the smart contracts, our proposal leads to an **additional cost** of about 4%, going from 22,106,772 gas to 22,904,219 gas. However, when we compare the cost of **redeploying** zkSync Lite with the cost of creating a group with our proposal, **costs are reduced by more than 99%** from 22,106,772 gas (zkSync Lite) to 184,258 gas.

Data availability

All the **graphics** and the **code** of our implementation are available on **github**:

![QR Code](image-url)
Deployment

During the first deployment of the smart contracts, our proposal leads to an additional cost of about 4%, going from 22,106,772 gas to 22,904,219 gas. However, when we compare the cost of redeploying zkSync Lite with the cost of creating a group with our proposal, costs are reduced by more than 99% from 22,106,772 gas (zkSync Lite) to 184,258 gas.

Data availability

All the graphics and the code of our implementation are available on github:

Thanks for your attention.