Threshold Zero-Knowledge Proofs based on MPC

Jules Maire

Sorbonne Université – CNRS
Motivation

- a first paradigm for building threshold zero-knowledge proofs based on MPC
- threshold signatures from any NP relation
- the equivalence of MPC in the Head paradigm for **multi-prover & threshold**
 - Ishai et al. (STOC 2007) with 1 prover vs 1 verifier
- NIST call for post-quantum threshold signatures
Roadmap

- System and security model
- Black-box construction
- A construction with VSS-BGW
- Threshold signatures
(n, k)-Threshold Signature

- n users have a share of the signing/secret key
- at least $k \leq n$ users can sign a message
- at most $t < k$ users can be corrupted
(n, k)-Threshold Signature

- n users have a share of the signing/secret key
- at least $k \leq n$ users can sign a message
- at most $t < k$ users can be corrupted
(n, k)-Threshold Signature

- n users have a share of the signing/secret key
- at least \(k \leq n \) users can sign a message
- at most \(t < k \) users can be corrupted
(n, k)-Threshold Signature

- n users have a share of the signing/secret key
- at least $k \leq n$ users can sign a message
- at most $t < k$ users can be corrupted
Secure Multi-Party Computation (MPC)

- 1st model: **malicious setting** with robust security (for provers)
- 2nd model: **semi-honest setting** (for parties in heads)
Secure Multi-Party Computation (MPC)

- 1st model: **malicious setting** with robust security (for provers)
- 2nd model: **semi-honest setting** (for parties in heads)
any (n, t)-threshold secret sharing (for provers)

Shamir secret sharing $[s]^t = \{[s]^t_1 := p(1), \ldots, [s]^t_n := p(n)\}$ with $p(x)$ degree t and $p(0) = s$

any linear secret sharing (for parties in the heads)

additive secret sharing $[s] = \{[s]_1, \ldots, [s]_n\}$ s.t. $s = \sum_{i=1}^{n} [s]_i$
Participants

- k provers/signers P_1, \ldots, P_k
- 1 verifier V
- an adversary A that may corrupt up to t provers ($t < k$)
- assume that $k \geq \beta(t)$ for some $\beta : \mathbb{N} \to \mathbb{N}$
Threshold Zero-Knowledge Proof (TZKP)

\[F : x \rightarrow y \text{ a public one-way function (AES, syndrome decoding, ...)} \]

\[\mathcal{P}_1, \ldots, \mathcal{P}_k \text{ hold } [x]^t \text{ (i.e. } \mathcal{P}_i \text{ has } [x]^t_i) \]

\[\mathcal{V} \text{ knows } y \text{ (public)} \]

\[k \text{ provers want to prove the conjoint knowledge of } x \text{ to } \mathcal{V} \]
Threshold Zero-Knowledge Proof (TZKP)

Security Proofs

- **Completeness**: \(\Pr[\mathcal{V} \text{ accepts } | \text{ at least } t + 1 \text{ provers hold a valid share}] = 1 \)
 - perfect \(t \)-robustness

- **Soundness**: \(\Pr[\mathcal{V} \text{ accepts } | \text{ less than } t + 1 \text{ provers hold a valid share}] \leq \epsilon \)
 - perfect correctness

- **Zero-knowledge**: \(\mathcal{V} \) learns nothing on the secret
 - \(t \)-privacy
Overview of provers computation in TZKP

- secure per-to-per channel
- broadcasting authenticated channel
challenge ℓ^* for opening all-but-one party

\mathcal{V} chooses a subset of $t + 1$ provers and checks the computation
Black-box construction

- \(\mathcal{R}^{t,k}(x, w_1, \ldots, w_k) \) a generalized NP-relation for multi-witness (threshold).

- Leads to a **general construction of a TZKP system** \(\Pi_{\mathcal{R}^{t,k}} \) **for any NP-relation** \(\mathcal{R}^{t,k} \) which makes a black-box use of an MPC protocol \(\Pi_f \) for a related multi-party functionality \(f \).

Theorem - Informal

Let \(\Pi_f \) realizes the \(k \)-party functionality \(f \) such that \(\Pi_f \) is **perfect \(t \)-robust**, and **\(t \)-private** in the malicious setting with an adversary corrupting up to \(t \) provers. Then our Protocol \(\Pi_{\mathcal{R}^{t,k}} \) is a TZKP for the NP-relation \(R^{t,k} \).
Verifiable Secret Sharing

A (possibly corrupted) dealer shares s with $F(x)$ of degree t.

1. Dealer sends shares from bivariate polynomial of degree t in both variables $S(x, y) \in \mathbb{F}[x, y]$ with $F(x) = S(x, 0)$

2. They hold a shares from a t-threshold secret sharing (or dealer cheated and is fired)

However... no guarantee on s
Construction based on BGW

1. provers shared secrets from t-Shamir secret sharing ($[a]^t, [b]^t$)
 - BGW protocol for multiplicative relations

2. in BGW some communication
 - VSS to communicate with each other

3. after VSS provers shared a word of distance at most t from a code of length k and dimension $2t + 1$
 - when $k \geq \beta(t) \geq 4t + 1$, code can correct up to t errors

4. Reed-Solomon decoding algorithm
 - $[ab]^t$

 perfect t-robust protocol
Proof of Π

Theorem - proved by Lindell

Let $\beta(t) = 3t + 1$. Then, VSS-BGW sub-protocol is t-secure in the presence of an adversary corrupting up to t provers.

Informally, a protocol is *secure* if its real-world behavior can be simulated in the ideal model.

Theorem

Let $\beta(t) = 3t + 1$. Then Π is a TZKP in the VSS-BGW-hybrid model.
Threshold (post-quantum) signatures

- Multi-round Fiat Shamir for multi-prover
- Signature size: factor between $\approx k$ and k^2 compared to MPCitH based signatures

확연한 시스템/보안 모델로 임의의 주식 중개자 ZKP

확연한 첫 번째 유연한 프레임워크로 MPC를 기반으로 임의의 주식 중개자 중계 서명을 만드는